Homeopathy 2014; 103(01): 44-50
DOI: 10.1016/j.homp.2013.08.004
Original Paper
Georg Thieme Verlag KG Stuttgart · New York

Experimental evidence of stable water nanostructures in extremely dilute solutions, at standard pressure and temperature

Vittorio Elia
1   Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126 Naples, Italy
,
Giovanni Ausanio
3   Department of Physics, CNR-SPIN University of Naples “Federico II”, Piazzale V. Tecchio 80, 80125 Naples, Italy
,
Francesco Gentile
1   Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126 Naples, Italy
,
Roberto Germano
2   PROMETE Srl, CNR Spin off, Via Buongiovanni 49, 80046 San Giorgio a Cremano, NA, Italy
,
Elena Napoli
1   Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126 Naples, Italy
,
Marcella Niccoli
1   Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126 Naples, Italy
› Author Affiliations

Subject Editor:
Further Information

Publication History

Received31 May 2013
revised28 June 2013

accepted12 August 2013

Publication Date:
10 January 2018 (online)

This paper presents the results of several experimental methods (FT-IR spectroscopy, UV–vis spectroscopy, fluorescence microscopy (FM), Atomic Force Microscopy (AFM)) evidencing structural changes induced in extremely diluted solutions (EDS), which are prepared by an iterated process of centesimal (1:100) dilution and succussion (shaking). The iteration is repeated until an extremely high dilution is reached, so that the composition of the solution becomes identical to that of the solvent—in this case water—used to prepare it.

The experimental observations reveal the presence of supramolecular aggregates hundreds of nanometres in size in EDS at ambient pressure and temperature, and in the solid state. These findings confirm the hypothesis—developed thanks to previous physico-chemical investigations—that formation of water aggregates occurs in EDS. The experimental data can be analyzed and interpreted with reference to the thermodynamics of far-from-equilibrium systems and irreversible processes.

 
  • References

  • 1 Cacace C.M., Elia L., Elia V., Napoli E., Niccoli M. Conductometric and pHmetric titrations of extremely diluted solutions using HCl solutions as titrant. A molecular model. J Mol Liq 2009; 146: 122-126.
  • 2 Elia V., Napoli E., Niccoli M. A molecular model of interaction between extremely diluted solutions and NaOH solutions used as titrant. Conductometric and pHmetric titrations. J Mol Liq 2009; 148: 45-50.
  • 3 Elia V., Napoli E., Niccoli M. Thermodynamic parameters for the binding process of the OH ion with the dissipative structures. Calorimetric and conductometric titrations. J Therm Anal Calorim 2010; 102: 1111-1118.
  • 4 Belon P., Elia V., Elia L., Montanino M., Napoli E., Niccoli M. Conductometric and calorimetric studies of the serially diluted and agitated solutions. On the combined anomalous effect of time and volume parameters. J Therm Anal Calorim 2008; 93: 459-469.
  • 5 Elia V., Elia L., Marchettini N., Napoli E., Niccoli M., Tiezzi E. Physico-chemical properties of aqueous extremely diluted solutions in relation to ageing. J Therm Anal Calorim 2008; 93: 1003-1011.
  • 6 Nicolis G. Physics of far-equilibrium systems and self-organization. In: Davies P. (ed). The New Physics. New York: Cambridge University Press; 1989.
  • 7 Prigogine I. Time, structure and fluctuations. Nobel Lecture; 1977.
  • 8 Magnani A., Marchettini N., Ristori S. et al. Chemical waves and pattern formation in the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/water amellar system. J Am Chem Soc 2004; 126: 11406-11407.
  • 9 Zheng J.M., Chin W.C., Khijniak E., Pollack G.H. Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv Colloid Interface Sci 2006; 127: 19-27.
  • 10 Zheng J., Wexler A., Pollack G.H. Effect of buffers on aqueous solute-exclusion zones around ion-exchange resins. J Colloid Interface Sci 2009; 332: 511-514.
  • 11 Chai B., Zheng J., Zhao Q., Pollack G.H. Spectroscopic studies of solutes in aqueous solution. J Phys Chem A 2008; 112: 2242-2247.
  • 12 Elia V., Elia L., Napoli E., Niccoli M. Physical–chemical study of water in contact with a hydrophilic polymer: Nafion. J Therm Anal Calorim 2012 http://dx.doi.org/10.1007/s10973-012-2576-z.
  • 13 Elia V., Ausanio G., De Ninno A. et al. Experimental evidence of stable aggregates of water at room temperature and normal pressure after iterative contact with a Nafion polymer membrane. Water 2013; 5: 16-26.
  • 14 Lo S.Y., Xu G., Gann D. Evidence for the existence of stable-water-clusters at room temperature and normal pressure. Phys Lett A 2009; 373: 3872-3876.
  • 15 Demangeat J.L. Nanosized solvent superstructures in ultramolecular aqueous dilutions: twenty years' research using water proton NMR relaxation. Homeopathy 2013; 102: 87-105.
  • 16 Montagnier L., Aissa J., Ferris S. et al. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdiscip Sci 2009; 1: 81-90.
  • 17 Montagnier L., Aissa J., La vallee C. et al. Electromagnetic detection of HIV DNA in the blood of AIDS patients treated by antiretroviral therapy. Interdiscip Sci 2009; 1: 245-253.
  • 18 Rao M.L., Roy R., Bell I.R., Hoover R. The defining role of structure (including epitaxy) in the plausibility of homeopathy. Homeopathy 2007; 96: 175-182.
  • 19 Hahnemann S. Organon. 6th edn. RED; 1985.
  • 20 Elia V., Napoli E. Dissipative structures in extremely diluted solutions of homeopathic medicines. A molecular model based on physico-chemical and gravimetric evidences. Int J Des Nat 2010; 5: 39-48.
  • 21 De Grotthuss C.J.T. Sur la dècomposition de l'eau et des corps qu'uelle tient en dissolution à l'aid del l'èlectricitè galvanique. Ann Chim LVIII 1806; 58: 54-74.
  • 22 Gileadi E., Kirowa Eisner E. Electrolytic conductivity – the hopping mechanism of the proton and beyond. Electrochim Acta 2006; 51: 6003-6011.