Synlett 2022; 33(11): 1065-1070
DOI: 10.1055/a-1822-2832
letter

Cu/Mn-Catalyzed C–N Cross-Coupling Reaction of Aryl Chlorides and Amines Promoted by a Polyamidoamine Dendrimer

Archana Ranjan
a   Amity Institute of Microbial Technology, Amity University, Noida, 201313, Uttar Pradesh, India
,
Ajit Varma
a   Amity Institute of Microbial Technology, Amity University, Noida, 201313, Uttar Pradesh, India
,
Sangeeta Kumari
b   Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
,
Raj K. Joshi
b   Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
› Author Affiliations
R.K.J. thanks CSIR [01(2996)/19/EMR-II] for financial assistance.


Abstract

A bimetallic catalytic combination of Mn(OAc)2 and Cu(OAc)2 was found to be significantly effective for the Buchwald-type C–N cross-coupling of aryl chlorides and amines. The reaction was markedly affected by the presence of a poly(amidoamine) dendrimer as a promoter that also possesses the advantages of being stable, nontoxic, biocompatible, nonimmunogenic, and acting as a soluble support for the transition-metal complex. Although, manganese is cheap and environmentally benign, it has not been fully exploited, due to its low intrinsic catalytic activity. Here, the catalytic potential of manganese was drastically increased by the presence of another metal salt, Cu(OAc)2. In the bimetallic composition, Mn significantly influenced the activity and selectivity, and played a vital role in catalysis. We have developed a novel, green, and economical procedure for Buchwald-type C–N cross-coupling of aryl chlorides and amines. This coupling method works under aerobic and solvent-free conditions and gives excellent yields of value-added N-arylated or N-alkylated products.

Supporting Information



Publication History

Received: 07 February 2022

Accepted after revision: 11 April 2022

Accepted Manuscript online:
11 April 2022

Article published online:
24 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Reek JN. H, Arévalo S, van Heerbeek R, Kamer PC. J, van Leeuwen PW. N. M. Adv. Catal. 2006; 49: 71
  • 2 Kaminskas LM, Boyd BJ, Porter CJ. H. Nanomedicine (N. Y., NY U. S.) 2011; 6: 1063
  • 3 Breinbauer R, Jacobsen EN. Angew. Chem. Int. Ed. 2000; 39: 3604
  • 4 Lyu Z, Ding L, Huang A. Y.-T, Kao C.-L, Peng L. Mater. Today Chem. 2019; 13: 34
  • 5 Santos A, Veiga F, Figueiras A. Materials 2020; 13: 65
  • 6 Esfand R, Tomalia DA. Drug Discovery Today 2001; 6: 427
  • 7 Patri AK, Majoros IJ, Baker JR. Curr. Opin. Chem. Biol. 2002; 6: 466
  • 8 Mankbadi MR, Barakat MA, Ramadan MH, Woodcock HL, Kuhn JN. J. Phys. Chem. B 2011; 115: 13534
  • 9 Borkowski T, Subik P, Trzeciak AM, Wołowiec S. Molecules 2011; 16: 427
  • 10 Wolfe JP, Wagaw S, Marcoux J.-F, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
  • 11 Yuan C, Zhang L, Zhao Y. Molecules 2019; 24: 4177
  • 12 Kwan EE, Zeng Y, Besser HA, Jacobsen EN. Nat. Chem. 2018; 10: 917
  • 13 Ma D, Cai Q. Acc. Chem. Res. 2008; 41: 1450
  • 14 Hartwig JF. Acc. Chem. Res. 1998; 31: 852
  • 15 Hartwig JF. Angew. Chem. Int. Ed. 1998; 37: 2046.5
  • 16 Zhang W, Wang N.-X, Bai C.-B, Wang Y.-J, Lan X.-W, Xing Y, Li Y.-H, Wen J.-L. Sci. Rep. 2015; 5: 15250
  • 17 He R, Huang Z.-T, Zheng Q.-Y, Wang C. Angew. Chem. Int. Ed. 2014; 53: 4950
  • 18 Zhou B, Chen H, Wang C. J. Am. Chem. Soc. 2013; 135: 1264
  • 19 Liu W, Groves JT. Angew. Chem. Int. Ed. 2013; 52: 6024
  • 20 Räisänen MT, Al-Hunaiti A, Atosuo E, Kemell M, Leskelä M, Repo T. Catal. Sci. Technol. 2014; 4: 2564
  • 21 Khusnutdinov RI, Bayguzina AR, Dzhemilev UM. Russ. J. Org. Chem. 2012; 48: 309
  • 22 Leng W, Ge R, Dong B, Wang C, Gao Y. RSC Adv. 2016; 6: 37403
  • 23 Zhang J.-X, Wang Y.-J, Zhang W, Wang N.-X, Bai C.-B, Xing Y.-L, Li Y.-H, Wen J.-L. Sci. Rep. 2014; 4: 7446
  • 24 Pye DR, Cheng L.-J, Mankad NP. Chem. Sci. 2017; 8: 4750
  • 25 Yousuf SK, Mukherjee D, Singh B, Maity S, Taneja SC. Green Chem. 2010; 12: 1568
  • 26 Li J.-X, Xiong L.-Y, Fu L.-L, Bo W.-B, Du Z.-X, Feng X. J. Solid State Chem. 2022; 305: 122636
  • 27 Xiao Z, Yang J, Ren R, Li J, Wang N, Chu W. Chemosphere 2020; 247: 125812
  • 28 Sharma C, Srivastava AK, Sharma KN, Joshi RK. Org. Biomol. Chem. 2020; 18: 3599
  • 29 Srivastava AK, Sharma C, Joshi RK. Green Chem. 2020; 22: 8248
  • 30 Coupling Products 1–23; General Procedure A clean and oven-dried tube was charged with the appropriate primary or secondary amine (1 mmol) and chloro(het)arene derivative (1 mmol). Mn(OAc)2 (5 mol%), Cu(OAc)2 (0.5 mmol), and PAMAM (40 mol%) were added, and the tube was sealed. The mixture was heated at 100 °C for 12 h while the reaction was periodically monitored by TLC. The mixture was then cooled to r.t. and H2O (45 mL) and EtOAc (70 mL) were added. The organic layer was extracted (3×) then dried (Na2SO4) and concentrated under reduced pressure. Finally, the crude product was purified by column chromatography (silica gel, EtOAc–hexane). 7-Chloro-N-(4-chlorobenzyl)quinolin-4-amine (22) Solid Brown; yield: 63%. 1H NMR (400 MHz, CDCl3): δ = 8.49 (s, 1 H), 7.95 (s, 1 H), 7.73–7.70 (d, 1 H), 7.37–7.28 (m, 4 H), 7.24–7.22 (d, 1 H), 6.37 (d, 1 H), 5.50 (s, 1 H), 4.49–4.48 (d, 2 H). 13C NMR (100 MHz, CDCl3): δ = 149.50, 135.83, 135.25, 133.90, 129.32, 128.93, 125.83, 121.14, 47.04. HRMS: m/z [M + H]+ calcd for C16H12Cl2N2 = 303.0451; found = 303.0452.
  • 31 Ottaviani MF, Montalti F, Romanelli M, Turro NJ, Tomalia DA. J. Phys. Chem. 1996; 100: 11033
  • 32 Yashwantrao G, Saha S. Tetrahedron 2021; 97: 132406
  • 33 Deraedt C, Melaet G, Ralston WT, Ye R, Somorjai GA. Nano Lett. 2017; 17: 1853
  • 34 Kosugi M, Kameyama M, Migita T. Chem. Lett. 1983; 12: 927
  • 35 Guram AS, Rennels RA, Buchwald SL. Angew. Chem. Int. Ed. 1995; 34: 1348
  • 36 Louie J, Hartwig JF. Tetrahedron Lett. 1995; 36: 3609
  • 37 Mauger CC, Mignani GA. Org. Proc. Res. Dev. 2004; 8: 1065
  • 38 Robinson GE, Cunningham OR, Dekhane M, McManus JC, O’Kearney-McMullan A, Mirajkar AM, Mishra V, Norton AK, Venugopalan B, Williams EG. Org. Proc. Res. Dev. 2004; 8: 925
  • 39 Affouard C, Crockett RD, Diker K, Farrell RP, Gorins G, Huckins JR, Caille S. Org. Proc. Res. Dev. 2015; 19: 476
  • 40 Corcoran EB, Pirnot MT, Lin S, Dreher SD, DiRocco DA, Davies IW, Buchwald SL, MacMillan DW. C. Science 2016; 353: 279
  • 41 Bruno NC, Tudge MT, Buchwald SL. Chem. Sci. 2013; 4: 916