Synlett 2022; 33(19): 1913-1916
DOI: 10.1055/a-1921-0928
letter

α-Metalated Isocyanides Toward a Tangible Reagent Space

,
Constantinos G. Neochoritis
The research project (to C.G.N) was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "2nd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers” (Project Number: 0911) and by the University of Crete (UoC, ELKE).


Dedicated to Ulrich Schöllkopf, the pioneer of a-metalated isocyanide chemistry

Abstract

α-Metalated isocyanides are a versatile class of compounds that can easily be employed in various transformations, affording tangible libraries for screening campaigns. We report the ring-opening reactions of cyclic anhydrides and lactones with three different metalated isocyanides that readily give 4,5-disubstituted oxazoles, including useful drug-like synthetic intermediates with two functional groups as handles for further modifications.

Supporting Information



Publication History

Received: 20 June 2022

Accepted after revision: 08 August 2022

Accepted Manuscript online:
08 August 2022

Article published online:
09 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Passerini M. Gazz. Chim. Ital. 1921; 51: 126
  • 2 Marquarding D, Gokel G, Hoffmann P, Ugi I. Isonitrile Chemistry . Ugi IK. Academic Press; New York: 1971. 133
  • 3 Giustiniano M, Basso A, Mercalli V, Massarotti A, Novellino E, Tron GC, Zhu J. Chem. Soc. Rev. 2017; 46: 1295
  • 4 Dömling A. Chem. Rev. 2006; 106: 17
  • 5 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
  • 6 Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
  • 7 Neochoritis CG, Zhao T, Dömling A. Chem. Rev. 2019; 119: 1970
  • 8 Collet JW, Roose TR, Ruijter E, Maes BU. W, Orru RV. A. Angew. Chem. Int. Ed. 2020; 59: 540
  • 9 Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VY. Chem. Rev. 2015; 115: 2698
  • 10 D’Souza DM, Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
  • 11 Altundas B, Marrazzo J.-PR, Fleming FF. Org. Biomol. Chem. 2020; 18: 6467
  • 12 Hoppe D. Angew. Chem. Int. Ed. 1974; 13: 789
  • 13 Schöllkopf U. Angew. Chem. Int. Ed. 1977; 16: 339
  • 14 Eger WA, Grange RL, Schill H, Goumont R, Clark T, Williams CM. Eur. J. Org. Chem. 2011; 2011: 2548
  • 15 Lekkala AR, Dayabhai Lilakar J, Aaseef M, Budhdev RR, Nariyam SM, Bandichhor R, Pachore SS, Sarkar SR, Ireni B, Mala D, Doniparthi KK, Badarla VK. R.
  • 16 de Almeida AF, Moreira R, Rodrigues T. Nat. Rev. Chem. 2019; 3: 589
  • 17 Seierstad M, Tichenor MS, DesJarlais RL, Na J, Bacani GM, Chung DM, Mercado-Marin EV, Steffens HC, Mirzadegan T. ACS Med. Chem. Lett. 2021; 12: 1853
  • 18 Wiley RH. Chem. Rev. 1945; 37: 401
  • 19 Tilvi S, Singh K. Curr. Org. Chem. 2016; 20: 898
  • 20 Ke S, Zhang Z, Shi L, Liu M, Fang W, Zhang Y, Wu Z, Wan Z, Long T, Wang K. Org. Biomol. Chem. 2019; 17: 3635
  • 21 Abdelaleem ER, Samy MN, Desoukey SY, Liu M, Quinn RJ, Abdelmohsen UR. RSC Adv. 2020; 10: 34959
  • 22 Kakkar S, Narasimhan B. BMC Chem. 2019; 13: 16
  • 23 Guerrero-Pepinosa NY, Cardona-Trujillo MC, Garzón-Castaño SC, Veloza LA, Sepúlveda-Arias JC. Biomed. Pharmacother. 2021; 138: 111495
  • 24 Neochoritis CG, Livadiotou D, Tsiaras V, Zarganes-Tzitzikas T, Samatidou E. Tetrahedron 2016; 72: 5149
  • 25 Lei X, Thomaidi M, Angeli GK, Dömling A, Neochoritis CG. Synlett 2022; 33: 155
  • 26 Ohba M, Izuta R, Shimizu E. Tetrahedron Lett. 2000; 41: 10251
  • 27 Jacobi PA, Walker DG, Odeh IM. A. J. Org. Chem. 1981; 46: 2065
  • 28 Ohba M, Izuta R. Heterocycles 2001; 55: 823
  • 29 Kaur T, Wadhwa P, Sharma A. RSC Adv. 2015; 5: 52769
  • 30 Mathiyazhagan AD, Anilkumar G. Org. Biomol. Chem. 2019; 17: 6735
  • 31 Zheng X, Liu W, Zhang D. Molecules 2020; 25: 1594
  • 32 Grassberger MA, Turnowsky F, Hildebrandt J. J. Med. Chem. 1984; 27: 947
  • 33 van Leusen AM, Hoogenboom BE, Siderius H. Tetrahedron Lett. 1972; 13: 2369
  • 34 van Leusen AM, van Gennep HE. Tetrahedron Lett. 1973; 14: 627
  • 35 Suzuki M, Iwasaki T, Miyoshi M, Okumura K, Matsumoto K. J. Org. Chem. 1973; 38: 3571
  • 36 Lygin AV, de Meijere A. Angew. Chem. Int. Ed. 2010; 49: 9094
  • 37 Wang Y, Patil P, Dömling A. Synthesis 2016; 48: 3701
  • 38 Oxazoles 2 and 3; General Procedure A 1.6 M solution of BuLi in hexanes (1.1 equiv) was added to a solution of the appropriate isocyanide in anhyd THF at –78 °C. After 10 min, the appropriate lactone or anhydride (1.0 equiv) was added. The cooling bath was removed after 10 min and stirring was continued for 3–18 h. The mixture was then diluted with sat. aq NH4Cl at 0 °C and extracted with EtOAc. The organic layer was collected, dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, PE–EtOAc (3:1)]. 2,2-Dimethyl-3-{4-[(propylamino)carbonyl]-1,3-oxazol-5-yl}cyclopropanecarboxylic acid (2l) Yellow solid; yield: 438 mg (67%). 1H NMR (500 MHz, CDCl3): δ = 7.69 (s, 1 H), 7.08–7.05 (t, J = 6 Hz, 1 H), 3.34–3.30 (m, 2 H), 2.69–2.67 (d, J = 9 Hz, 1 H), 2.11–2.09 (d, J = 9 Hz, 1 H), 1.62–1.55 (sextet, J = 7 Hz, 2 H), 1.37 (s, 3 H), 1.36 (s, 3 H), 0.96–0.93 (t, J = 7 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 174.3, 161.5, 151.6, 148.2, 131.6, 40.7, 31.8, 28.7, 28.3, 27.3, 22.8, 16.0, 11.4. HRMS (ESI): m/z [M + H]+ calcd for C13H19N2O4: 267.13393; found: 267.13385. 4-(4-Tosyl-1,3-oxazol-5-yl)butan-1-ol (3b) Yellow solid; yield: 118 mg (50%). 1H NMR (500 MHz, CDCl3): δ = 7.91–7.90 (d, J = 5 Hz, 2 H), 7.72 (s, 1 H), 7.34–7.33 (d, J = 5 Hz, 2 H), 3.71–3.68 (td, J1 = 7.5 Hz, J2 = 0.5 Hz, 2 H), 3.16–3.13 (t, J = 7.5 Hz, 2 H), 2.42 (s, 3 H), 1.85–1.79 (m, 2 H), 1.67–1.61 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 156.9, 149.5, 144.9, 137.2, 135.4, 129.9, 128.0, 62.0, 31.7, 25.0, 24.3, 21.6. HRMS (ESI): m/z [M + H]+ calcd for C14H18NO4S: 296.09511; found: 296.09464.
  • 39 Chandgude AL, Li J, Dömling A. Asian J. Org. Chem. 2017; 6: 798
  • 40 Kerns EH, Di L. Drug-Like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization. Academic Press; London: 2015
  • 41 Sander T, Freyss J, von Korff M, Rufener C. J. Chem. Inf. Model. 2015; 55: 460
  • 42 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Adv. Drug Delivery Rev. 2001; 46: 3
  • 43 Wager TT, Hou X, Verhoest PR, Villalobos A. ACS Chem. Neurosci. 2010; 1: 435