CC BY 4.0 · Organic Materials 2024; 06(02): 40-44
DOI: 10.1055/a-2291-8774
Soluble Graphene Nanoarchitectures
Short Communication

A Nonbenzenoid 3D Nanographene Containing 5/6/7/8-Membered Rings

a   State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. of China
,
a   State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. of China
,
Rui Xue
a   State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. of China
,
a   State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. of China
,
a   State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. of China
,
a   State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. of China
,
a   State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. of China
› Author Affiliations


Abstract

Nanographenes (NGs) have attracted continuous attention in recent years owing to their opened bandgaps and optoelectronic applications. Especially, nonbenzenoid NGs containing non-six-membered rings have been developed rapidly due to their unique structures and properties. In this work, we employ nonbenzenoid acepleiadylene (APD) and the cyclooctatetraene (COT) moiety to construct the first three-dimensional (3D) NG containing 5/6/7/8-membered rings in one molecule (COT-APD). The calculated results prove that COT-APD has a saddle-like configuration similar to that of other COT-type molecules. Each APD segment in COT-APD keeps the inherent aromaticity of the APD moiety. Compared with other COT-type molecules, COT-APD shows a narrower bandgap, which indicates the superiority of APD in bandgap regulation. Furthermore, four reversible reductive waves are observed in electrochemical characterizations, demonstrating the excellent electron-accepting capability of COT-APD.



Publication History

Received: 01 January 2024

Accepted after revision: 22 February 2024

Accepted Manuscript online:
20 March 2024

Article published online:
30 April 2024

© 2024. The Authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Narita A, Wang X-Y, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
    • 1b Wang X-Y, Yao X, Müllen K. Sci. China Chem. 2019; 62: 1099
    • 3a Anderson HV, Gois ND, Chalifoux WA. Org. Chem. Front. 2023; 10: 4167
    • 3b Hermann M, Wassy D, Esser B. Angew. Chem. Int. Ed. 2021; 60: 15743
    • 4a Chaolumen Chaolumen, Stepek IA, Yamada KE, Ito H, Itami K. Angew. Chem. Int. Ed. 2021; 60: 23508
    • 4b Pun SH, Miao Q. Acc. Chem. Res. 2018; 51: 1630
    • 4c Xin H, Hou B, Gao X. Acc. Chem. Res. 2021; 54: 1737
    • 4d Konishi A, Yasuda M. Chem. Lett. 2021; 50: 195
    • 4e Shimizu A, Morikoshi T, Sugisaki K, Shiomi D, Sato K, Takui T, Shintani R. Angew. Chem. Int. Ed. 2022; 61: e202205729
    • 4f Horii K, Kishi R, Nakano M, Shiomi D, Sato K, Takui T, Konishi A, Yasuda M. J. Am. Chem. Soc. 2022; 144: 3370
    • 4g Wang Y, Huang Y, Huang T, Zhang J, Luo T, Ni Y, Li B, Xie S, Zeng Z. Angew. Chem. Int. Ed. 2022; 61: e202200855
    • 4h Ma J, Fu Y, Dmitrieva E, Liu F, Komber H, Hennersdorf F, Popov AA, Weigand JJ, Liu J, Feng X. Angew. Chem. Int. Ed. 2020; 59: 5637
    • 4i Fei Y, Fu Y, Bai X, Du L, Li Z, Komber H, Low K-H, Zhou S, Phillips DL, Feng X, Liu J. J. Am. Chem. Soc. 2021; 143: 2353
    • 4j Mallada B, de la Torre B, Mendieta-Moreno JI, Nachtigallová D, Matěj A, Matoušek M, Mutombo P, Brabec J, Veis L, Cadart T, Kotora M, Jelínek P. J. Am. Chem. Soc. 2021; 143: 14694
    • 4k Park S, Kim C-E, Jeong J, Ryu H, Maeng C, Kim D, Baik M-H, Lee PH. Nat. Commun. 2023; 14: 7936
    • 4l Liu B, Chen M, Liu X, Fu R, Zhao Y, Duan Y, Zhang L. J. Am. Chem. Soc. 2023; 145: 28137
    • 4m Yamada KE, Stepek IA, Matsuoka W, Ito H, Itami K. Angew. Chem. Int. Ed. 2023; 62: e202311770
    • 4n Sanil G, Krzeszewski M, Chaładaj W, Danikiewicz W, Knysh I, Dobrzycki Ł, Staszewska-Krajewska O, Cyrański MK, Jacquemin D, Gryko DT. Angew. Chem. Int. Ed. 2023; 62: e202311123
    • 4o Luo H, Liu J. Angew. Chem. Int. Ed. 2023; 62: e202302761
    • 4p Borstelmann J, Bergner J, Rominger F, Kivala M. Angew. Chem. Int. Ed. 2023; 62: e202312740
    • 4q Liu R, Fu Y, Wu F, Liu F, Zhang JJ, Yang L, Popov AA, Ma J, Feng X. Angew. Chem. Int. Ed. 2023; 62: e202219091
    • 4r Segawa Y. Chem 2023; 9: 2725
    • 5a Zhang XS, Huang YY, Zhang J, Meng W, Peng Q, Kong R, Xiao Z, Liu J, Huang M, Yi Y, Chen L, Fan Q, Lin G, Liu Z, Zhang G, Jiang L, Zhang D. Angew. Chem. Int. Ed. 2020; 59: 3529
    • 5b Ikai T, Oki K, Yamakawa S, Yashima E. Angew. Chem. Int. Ed. 2023; 62: e202301836
    • 5c Yang L, Ju YY, Medel MA, Fu Y, Komber H, Dmitrieva E, Zhang JJ, Obermann S, Campaña AG, Ma J, Feng X. Angew. Chem. Int. Ed. 2023; 62: e202216193
    • 5d Qiu ZL, Chen XW, Huang YD, Wei RJ, Chu KS, Zhao XJ, Tan YZ. Angew. Chem. Int. Ed. 2022; 61: e202116955
    • 5e Qin L, Huang YY, Wu B, Pan J, Yang J, Zhang J, Han G, Yang S, Chen L, Yin Z, Shu Y, Jiang L, Yi Y, Peng Q, Zhou X, Li C, Zhang G, Zhang XS, Wu K, Zhang D. Angew. Chem. Int. Ed. 2023; 62: e202304632
    • 5f Xin H, Ge C, Jiao X, Yang X, Rundel K, McNeill CR, Gao X. Angew. Chem. Int. Ed. 2017; 57: 1322
    • 5g Yang X, Rominger F, Mastalerz M. Angew. Chem. Int. Ed. 2019; 58: 17577
    • 5h Xin H, Li J, Lu R-Q, Gao X, Swager TM. J. Am. Chem. Soc. 2020; 142: 13598
    • 5i Ogawa N, Yamaoka Y, Takikawa H, Yamada K-i, Takasu K. J. Am. Chem. Soc. 2020; 142: 13322
    • 5j Lu X, Gopalakrishna TY, Han Y, Ni Y, Zou Y, Wu J. J. Am. Chem. Soc. 2019; 141: 5934
    • 5k Zou Y, Zeng W, Gopalakrishna TY, Han Y, Jiang Q, Wu J. J. Am. Chem. Soc. 2019; 141: 7266
    • 6a Liu P, Chen X-Y, Cao J, Ruppenthal L, Gottfried JM, Müllen K, Wang X-Y. J. Am. Chem. Soc. 2021; 143: 5314
    • 6b Fu L, Liu P, Xue R, Tang XY, Cao J, Yao ZF, Liu Y, Yan S, Wang XY. Angew. Chem. Int. Ed. 2023; 62: e202306509
    • 6c Liu P, Fu L, Tang X-Y, Xue R, Zhang L, Cao J, Wang X-Y. J. Mater. Chem. C 2023; 11: 10149
    • 6d Liu P, Tang X-Y, Du C-Z, Xue R, Chen X-Y, Cao J, Wang X-Y. Sci. China Chem. 2023; 66: 3506
    • 7a Marsella MJ. Acc. Chem. Res. 2002; 35: 944
    • 7b Wang C, Xi Z. Chem. Commun. 2007; 5119
    • 7c Yamakado T, Saito S. J. Am. Chem. Soc. 2022; 144: 2804
    • 7d Kotani R, Yokoyama S, Nobusue S, Yamaguchi S, Osuka A, Yabu H, Saito S. Nat. Commun. 2022; 13: 303
    • 7e Suga K, Yamakado T, Saito S. J. Am. Chem. Soc. 2023; 145: 26799
    • 8a Urieta-Mora J, Krug M, Alex W, Perles J, Fernández I, Molina-Ontoria A, Guldi DM, Martín N. J. Am. Chem. Soc. 2020; 142: 4162
    • 8b Kumar R, Chmielewski PJ, Lis T, Volkmer D, Stępień M. Angew. Chem. Int. Ed. 2022; 61: e202207486
    • 8c Sumy DP, Dodge NJ, Harrison CM, Finke AD, Whalley AC. Chem. Eur. J. 2016; 22: 4709
  • 9 Cyclooctatetraacepleiadylene (COT-APD) was prepared by the Yamamoto coupling of compound 3. A typical procedure for the synthesis of COT-APD is described as follows. To a Schlenk flask charged with compound 3 (50.4 mg, 0.0900 mmol), Ni(cod)2 (49.5 mg, 0.180 mmol), 1, 5-cyclooctadiene (19.5 mg, 0.180 mmol) and 2, 2′-bipyridine (28.1 mg, 0.180 mmol) was added dioxane (4.5 mL) under argon. Then the mixture was heated to 100 °C for 16 h. After cooling to room temperature, the mixture was filtrated and the residue was sequentially washed by MeOH, HCl (2 M), EtOH, and CH2Cl2. The obtained solid was dried in vacuo to afford 15.9 mg (yield: 44‍%) of COT-APD as a black solid. 1HNMR (400 MHz, CS2/CDCl3, 297 K, ppm) δ 8.300 (d, J = 7.5 Hz, 8H), 7.961 (d, J = 7.6 Hz, 8H), 7.793 – 7.710 (m, 8H), 6.958–6.881 (m, 8H). 13CNMR (101 MHz, CS2/CDCl3, 297 K, ppm) δ 137.98, 136.96, 135.49, 127.54, 127.06, 126.68. HRMS (MALDI) m/z: Calcd. for C64H32 +, 800.2499; found: 800.2488 [M]+.
  • 10 Krygowski TM, Cyrański MK. Phys. Chem. Chem. Phys. 2004; 6: 249
  • 11 Geuenich D, Hess K, Köhler F, Herges R. Chem. Rev. 2005; 105: 3758
    • 12a Klod S, Kleinpeter E. J. Chem. Soc., Perkin Trans. 2 2001; 1893
    • 12b Lu T, Chen F. J. Comput. Chem. 2011; 33: 580
  • 13 Becker BC, Huber W, Müllen K. J. Am. Chem. Soc. 1980; 102: 7805