Synlett
DOI: 10.1055/a-2324-8899
letter
Special Issue to Celebrate the 75th Birthday of Prof. B. C. Ranu

Enantioselective Synthesis of Substituted Dihydropyrans by Organocatalyst-Mediated Domino Michael/Enolization/Acetalization Reactions

,
Xiaolei Han
,
William R. Hack
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant Number JP19H05630).


This letter is dedicated to Prof. Brindaban C. Ranu on the occasion of his 75th birthday.

Abstract

A highly enantioselective synthetic method for 3,4-trans-dihydropyrans was developed by the reaction of α-acyl-β-aryl-substituted acrylonitrile and aldehyde catalyzed by diphenylprolinol silyl ether. This is an asymmetric domino reaction via a catalytic Michael reaction/enolization/acetalization.

Supporting Information



Publication History

Received: 14 April 2024

Accepted after revision: 13 May 2024

Accepted Manuscript online:
13 May 2024

Article published online:
27 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Bailleul F, Leveau AM, Durand M. J. Nat. Prod. 1981; 44: 573
    • 2b Garcia J, Mpondo EM, Kaouadji M. Phytochemistry 1990; 29: 3353
    • 3a Battersby AR, Burnett AR, Parsons PG. J. Chem. Soc. C 1969; 1187
    • 3b Bisset NG, Choudhury AK. Phytochemistry 1974; 13: 265
    • 3c Tietze LF. Angew. Chem., Int. Ed. Engl. 1983; 22: 828
  • 4 Desimoni G, Faita G, Quadrelli P. Chem. Rev. 2018; 118: 2080

    • Selected reviews on organocatalysis:
    • 5a Asymmetric Organocatalysis 1 . List B. Thieme; Stuttgart: 2012
    • 5b Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications. Dalko PI. Wiley-VCH; Weinheim: 2013
  • 6 Juhl K, Jørgensen KA. Angew. Chem. Int. Ed. 2003; 42: 1498
  • 7 For a review, see: Laina-Martin V, Fernández-Salas JA, Alemán J. Chem. Eur. J. 2021; 27: 12509

    • For reviews, see:
    • 8a Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
    • 8b Albrecht Ł, Jiang H, Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 8492
    • 8c Pellissier H. Adv. Synth. Catal. 2012; 354: 237
    • 8d Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
    • 8e Hayashi Y. Chem. Sci. 2016; 7: 866
    • 8f Hayashi Y. J. Org. Chem. 2021; 86: 1
    • 8g Hayashi Y. Acc. Chem. Res. 2021; 54: 1385
    • 9a Franke PT, Richter B, Jørgensen KA. Chem. Eur. J. 2008; 14: 6317
    • 9b Zhu M.-K, Wei Q, Gong L.-Z. Adv. Synth. Catal. 2008; 350: 1281
    • 9c Niu Z.-Q, He X.-W, Shang Y.-J. Tetrahedron: Asymmetry 2014; 25: 796
    • 9d Guevara-Pulido JO, Andrés JM, Pedrosa R. Eur. J. Org. Chem. 2014; 8072
    • 10a Palomo C, Mielgo A. Angew. Chem. Int. Ed. 2006; 45: 7876
    • 10b Mielgo A, Palomo C. Chem. Asian J. 2008; 3: 922
    • 10c Xu L.-W, Li L, Shi Z.-H. Adv. Synth. Catal. 2010; 352: 243
    • 10d Jensen KL, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
    • 10e Gotoh H, Hayashi Y. In Sustainable Catalysis . Dunn J, Hii KK, Krische MJ, Williams MT. Wiley; Hoboken: 2013: 287
    • 10f Donslund BS, Johansen TK, Poulsen PH, Halskov KS, Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 13860
    • 10g Reyes-Rodriguez GJ, Rezayee NM, Vidal-Albalat A, Jørgensen KA. Chem. Rev. 2019; 119: 4221
    • 11a Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 11b Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA. Angew. Chem. Int. Ed. 2005; 44: 794
  • 12 Wang J, Yu F, Zhang X, Ma D. Org. Lett. 2008; 10: 2561
  • 13 Das U, Huang C.-H, Lin W.-W. Chem. Commun. 2012; 48: 5590
  • 14 Tilekar AR, Jagdale AR, Kukreja G, Shenoy GG, Sinha N. Tetrahedron: Asymmetry 2017; 28: 153
  • 15 Vicario JL, Badia D, Carrillo L. Synthesis 2007; 2065
    • 16a Hayashi Y, Odoh AS, Kranidiotis-Hisatomi N. ChemCatChem 2020; 12: 2412
    • 16b Sakamoto D, Hayashi Y. Chem. Lett. 2018; 47: 833
    • 17a Hayashi Y, Itoh T, Aratake S, Ishikawa H. Angew. Chem. Int. Ed. 2008; 47: 2082
    • 17b Hayashi Y, Itoh T, Ohkubo M, Ishikawa H. Angew. Chem. Int. Ed. 2008; 47: 4722
    • 17c Hayashi Y, Okano T, Itoh T, Urushima T, Ishikawa H, Uchimaru T. Angew. Chem. Int. Ed. 2008; 47: 9053
    • 17d Yang JW, Chandler C, Stadler M, Kampen D, List B. Nature 2008; 452: 453
    • 17e García-García P, Ladépêche A, Halder R, List B. Angew. Chem. Int. Ed. 2008; 47: 4719
    • 17f Nori V, Sinibaldi A, Giorgianni G, Pesciaioli F, Donato FD, Cocco E, Biancolillo A, Landa A, Carlone A. Chem. Eur. J. 2022; 28: e202104524
  • 19 The enantiomeric excess of 8a and 8b would be the same as that of 4aa (97% ee), because there is no racemization step.
  • 20 trans-3aa was prepared by the reduction of lactone trans-6, which was separated from lactone cis-6. See the Supporting Information for details.
  • 21 Enantiomers could not be separated by HPLC by the reported chiral column (ref. 13). We did not know the reason.
  • 22 General Procedure of Acetates 4A–C First Step To a solution of aldehyde 1 (0.60 mmol) and cyanide 2 (0.20 mmol) in MeCN (0.40 mL), 3,5-dinitrobenzoic acid (8.5 mg, 0.040 mmol), water (10.8 μL, 0.60 mmol), and organocatalyst (13.0 mg, 0.040 mmol) were added at room temperature. After stirring the reaction mixture at this temperature for the indicated time, the reaction mixture was directly purified by column (n-hexane only to n-hexane/EtOAc = 5:1) to give 3,4-dihydro-2H-pyran derivatives as an inseparable diastereomeric mixture. Second Step To a solution of 3,4-dihydro-2H-pyran derivatives 3 in CH2Cl2 (0.20 M), acetic anhydride (1.5 equiv.) and DMAP (0.20 equiv.) were added at room temperature. After stirring the reaction mixture at this temperature for 20 min, the reaction mixture was directly purified by column chromatography on silica gel (n-hexane only to n-hexane/EtOAc = 10:1) to give the acetates 4 as an inseparable diastereomeric mixture. (2S,3R,4S)-5-Cyano-3,6-dimethyl-4-phenyl-3,4-dihydro-2H-pyran-2-yl Acetate (4aaA), (2R,3R,4S)-5-Cyano-3,6-dimethyl-4-phenyl-3,4-dihydro-2H-pyran-2-yl Acetate (4aaB), and (2S,3R,4R)-5-Cyano-3,6-dimethyl-4-phenyl-3,4-dihydro-2H-pyran-2-yl Acetate (4aaC) Following the general procedure, 4aaA, 4aaB, and 4aaC were isolated as colorless oil in 92% overall yield (total 49.9 mg, A:B:C = 65:24:11, trans/cis = 8.1:1 at C3/C4). 1H NMR (400 MHz, C6D6): δ = 7.12 (d, J = 8.0 Hz, 1 H), 7.08–7.04 (m, 1 H), 6.96 (d, J = 7.2 Hz, 2 H), 6.18 (d, J = 2.4 Hz, 0.24 H, B), 6.06 (d, J = 5.6 Hz, 0.11 H, C), 5.84 (d, J = 8.0 Hz, 0.65 H, A), 3.51 (d, J = 5.6 Hz, 0.11 H, C), 3.16 (d, J = 10.8 Hz, 0.24 H, B), 2.73 (d, J = 8.8 Hz, 0.65 H, A), 1.90 (d, J = 1.6 Hz, 0.33 H, C), 1.89 (d, J = 1.6 Hz, 0.72 H, B), 1.86 (d, J = 2.0 Hz, 1.95 H, A), 1.84–1.68 (m, 1 H), 1.58 (d, J = 2.0 Hz, 0.72 H, B), 1.57 (d, J = 2.0 Hz, 0.33 H, C), 1.47 (d, J = 1.6 Hz, 1.95 H, A), 0.52 (d, J = 6.8 Hz, 1.95 H, A), 0.46 (d, J = 6.8 Hz, 0.72 H, B), 0.35 (d, J = 7.2 Hz, 0.33 H, C) 13C NMR (100 MHz, CDCl3): δ = 169.3, 169.1, 169.0, 164.1, 164.0, 162.9, 139.4, 139.3, 137.0, 129.0, 128.9, 128.7, 128.5, 128.5, 128.3, 128.0, 127.8, 127.6, 118.5, 118.3, 118.1, 94.9, 93.1, 91.6, 89.7, 88.4, 87.0, 45.5, 42.1, 40.5, 37.5, 36.5, 34.0, 20.9, 20.8, 20.6, 19.6, 19.6, 19.5, 14.5, 13.6, 12.0. HRMS (ESI): m/z [M + Na]+ calcd for C16H17NNaO3 +: 294.1101; found: 294.1104. IR (neat): ν = 2974, 2210, 1762, 1641, 1389, 1217, 1186, 1028, 753, 702 cm–1. The enantiomeric excess of 4aaA (97% ee) was determined by HPLC using CHIRALPAK® OZ-H (n-hexane/i-PrOH = 99:1; flow rate 1.0 mL/min; major isomer t R = 40.6 min, minor isomer t R = 58.1 min). The enantiomeric excess of 4aaB (97% ee) was determined by HPLC using CHIRALPAK® OZ-H (n-hexane/i-PrOH = 333:1; flow rate 1.0 mL/min; major isomer t R = 21.2 min, minor isomer t R = 43.2 min). The enantiomeric excess of 4aaC (43% ee) was determined by HPLC using CHIRALPAK® OZ-H (n-hexane/i-PrOH = 333:1; flow rate 1.0 mL/min; major isomer t R = 28.9 min, minor isomer t R = 37.4 min).