Planta Med 2009; 75(3): 262-267
DOI: 10.1055/s-0028-1088383
Natural Products Chemistry
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

New Furanoditerpenoids from Croton jatrophoides

Zakaria H. Mbwambo1 , Kenne Foubert2 , Musa Chacha1 , Modest C. Kapingu1 , Joseph J. Magadula1 , Mainen M. Moshi1 , Filip Lemière3 , Kees Goubitz4 , Jan Fraanje4 , René Peschar4 , Arnold Vlietinck2 , Sandra Apers2 , Luc Pieters2
  • 1Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
  • 2Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
  • 3Department of Chemistry, Faculty of Sciences, University of Antwerp, Antwerp, Belgium
  • 4Laboratory for Crystallography, Van’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
Further Information

Publication History

Received: June 1, 2008 Revised: October 3, 2008

Accepted: October 22, 2008

Publication Date:
17 December 2008 (online)

Abstract

Four furanoditerpenoids were isolated from roots of Croton jatrophoides (Euphorbiaceae) collected in Tanzania. In addition to the known compounds penduliflaworosin and teucvin (mallotucin A), a new teucvin isomer, which was named isoteucvin, and a furanoditerpenoid with a new skeleton, for which the name jatrophoidin was adopted, were isolated. Their structures were elucidated by spectroscopic methods such as ESI-MS and NMR, including 1H-, 13C-, and two-dimensional NMR. The crystal structures of isoteucvin and jatrophoidin were solved using single-crystal X-ray diffraction, by which we also established the absolute configuration of jatrophoidin. The refined crystal structure of isoteucvin has the same (absolute) configuration as jatrophoidin, although the X-ray diffraction data of isoteucvin were not conclusive with respect to the absolute configuration.

References

  • 1 Smith A R. Euphorbiaceae (Part 1). In: Polhill RM Flora of tropical East Africa. Rotterdam; A.A.Balkema 1987: 51
  • 2 Kokwaro J O. Medicinal plants of East Africa. Nairobi; East African Literature Bureau 1976: 88
  • 3 Salantino A, Salantino M LF, Negri G. Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae).  J Braz Chem Soc. 2007;  18 11-33
  • 4 Nihei K, Hanke F J, Asaka Y, Matsumoto T, Kubo I. Insect antifeedants from tropical plants II: Structure of zumsin.  J Agric Food Chem. 2002;  50 5048-52
  • 5 Nihei K, Asaka Y, Mine Y, Ito C, Furukawa H, Ju-Ichi M. et al . Insect antifeedants from tropical plants: Structures of dumnin and dumsenin.  J Agric Food Chem. 2004;  52 3325-28
  • 6 Nihei K, Asaka Y, Mine Y, Kubo I. Insect antifeedants from Croton jatrophoides: Structures of zumketol, zumsenin, and zumsensol.  J Nat Prod. 2005;  68 244-7
  • 7 Nihei K, Asaka Y, Mine Y, Yamada Y, Iigo M, Yanagisawa T. et al . Musidunin and musiduol, insect antifeedants from Croton jatrophoides. .  J Nat Prod. 2006;  69 975-7
  • 8 Mbwambo Z H, Apers S, Moshi M J, Kapingu M C, Van Miert S, Brun R. et al . Anthranoid compounds with antiprotozoal activity from Vismia orientalis. .  Planta Med. 2004;  70 706-10
  • 9 Mbwambo Z H, Kapingu M C, Moshi M J, Machumi F, Apers S, Cos P. et al . Antiparasitic activity of some xanthones and biflavonoids from the root bark of Garcinia livingstonei. .  J Nat Prod. 2006;  69 369-72
  • 10 Kapingu M C, Mbwambo Z H, Moshi M J, Magadula J J, Cos P, Vanden Berghe D. et al . A novel isoflavonoid from Millettia puguensis. .  Planta Med. 2006;  72 1341-3
  • 11 De Gelder R, De Graaff R AG, Schenk H. Automatic determination of crystal structures using Karle-Hauptman Matrices.  Acta Crystallogr. 1993;  A49 287-93
  • 12 Hall S R, Du Boulay D J, Olthof-Hazekamp R. XTAL3.7 System. Lamb, Perth; University of Western Australia 2000
  • 13 Spek A L. Single-crystal structure validation with the program PLATON.  J Appl Crystallogr. 2003;  36 7-13
  • 14 Adesogan E K. The structure of penduliflaworosin, a new furanoid diterpene from Croton penduliflorus. J Chem Soc [Perkin I] 1981: 1151-3
  • 15 Sanni S B, Behm H, Beurskens P T, Adegosan E K. Structure of ent-(12R)-methyl-15,16-epoxy-9,10-friedolabda-5(10),13(16),14-trien-19-oate 20,12-lactone (penduliflaworosin).  Acta Crystallogr. 1987;  C43 555-8
  • 16 Fujita E, Uchida I, Fujita T, Masaki N, Osaki K. Teucvin, a novel furanoid norditerpene from Teucrium viscidum var. miquelianum. . J C S Chem Commun 1973: 793-4
  • 17 Fujita E, Uchida I. Terpenoids. Part XXXII. Structure and stereochemistry of teucvin, a novel norclerodane-type diterpenoid from Teucrium viscidum var. miquelianum. J Chem Soc [Perkin I] 1974: 1547-55
  • 18 Kawashima T, Nakatsu T, Fukazawa Y, Ito S. Diterpenic lactones from Mallotus repandus. .  Heterocycles. 1976;  5 227-32
  • 19 Rodriguez B, Jimeno M L. 1H and 13C NMR spectral assignments and conformational analysis of 14 19-nor-clerodane diterpenoids.  Magn Reson Chem. 2004;  42 605-16
  • 20 Flack H D. On enantiomorph-polarity estimation.  Acta Crystallogr. 1983;  A39  876-81
  • 21 Hanson J R. Diterpenoids. In: Charlwood BV, Banthorpe DV, editors Methods in plant biochemistry. Vol. 7 Terpenoids. London; Academic Press 1991: 263-87
  • 22 Rodriguez-Hahn L, Esquivel B, Cardenas J. Clerodane diterpenes in Labiatae.  Progr Chem Org Nat Prod. 1994;  63 107-96
  • 23 Youngsa-ad W, Ngamrojanavanich N, Mahidol C, Ruchirawat S, Prawat H, Kittakoop P. Diterpenoids from Croton oblongifolius. .  Planta Med. 2007;  73 1491-4

Luc Pieters

Department of Pharmaceutical Sciences

Faculty of Pharmaceutical, Biomedical and Veterinary Sciences

University of Antwerp

Universiteitsplein 1

2610 Antwerp

Belgium

Phone: +32-3-820-2715

Fax: +32-3-820-2709

Email: luc.pieters@ua.ac.be

>