Planta Med 2010; 76(1): 41-47
DOI: 10.1055/s-0029-1185906
Pharmacology
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Protective Effect of Sauchinone by Upregulating Heme Oxygenase-1 via the P38 MAPK and Nrf2/ARE Pathways in HepG2 Cells

Gil-Saeng Jeong1 , Dong-Sung Lee2 , Bin Li2 , Erisa Byun2 , Dong-Yeul Kwon3 , Hyun Park1 , Youn-Chul Kim1 , 2
  • 1Zoonosis Research Center, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
  • 2College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
  • 3College of Pharmacy and Wonkwang–Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
Further Information

Publication History

received April 23, 2009 revised June 5, 2009

accepted June 11, 2009

Publication Date:
09 July 2009 (online)

Abstract

Sauchinone, a unique lignan isolated from the roots of Saururus chinensis (Lour.) Baill. (Saururaceae), is reported to exert potent hepatoprotective, anti-inflammatory actions and inhibitory effects on bone resorption. This study investigated the potency of sauchinone as a hepatic heme oxygenase (HO)-1 inducer and its protective effects in HepG2 cells. Treatment of the cells with sauchinone induced HO-1 expression and increased HO activity in a concentration- and time-dependent manner. This expression conferred cytoprotection against oxidative injury induced by t-butyl hydroperoxide. HO-1 expression by sauchinone also suppressed t-butyl hydroperoxide-induced reactive oxygen species generation in HepG2 cells. Moreover, sauchinone promoted the nuclear accumulation of the nuclear factor, E2-related factor 2 (Nrf2), and increased the promoter property of the antioxidant response element (ARE). Furthermore, treatment of the cells with a p38 MAPK inhibitor (SB203580) reduced sauchine-induced HO-1 expression and its protective effects. These results suggest that sauchinone increases the cellular resistance of HepG2 cells to t-butyl hydroperoxide-induced oxidative injury, presumably through the p38 MAPK pathway-Nrf2/ARE-dependent HO-1 expression.

References

  • 1 Sung S H, Kim Y C. Hepatoprotective diastereomeric lignans from Saururus chinensis herbs.  J Nat Prod. 2000;  63 1019-1021
  • 2 Sung S H, Lee E J, Cho J H, Kim H S, Kim Y C. Sauchinone, a lignan from Saururus chinensis, attenuates CCl4-induced toxicity in primary cultures of rat hepatocytes.  Biol Pharm Bull. 2000;  23 666-668
  • 3 Lee A K, Sung S H, Kim Y C, Kim S G. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-alpha and COX‐2 expression by sauchinone effects on I-kappaBalpha phosphorylation, C/EBP and AP‐1 activation.  Br J Pharmacol. 2003;  139 11-20
  • 4 Song H, Kim Y C, Moon A. Sauchinone, a lignan from Saururus chinensis, inhibits staurosporine-induced apoptosis in C6 rat glioma cells.  Biol Pharm Bull. 2003;  26 1428-1430
  • 5 Park S Y, Lee S H, Choi W H, Koh E M, Seo J H, Ryu S Y, Kim Y S, Kwon D Y, Koh W S. Immunosuppressive lignans isolated from Saururus chinensis.  Planta Med. 2007;  73 674-678
  • 6 Hwang B Y, Lee J H, Jung H S, Kim K S, Nam J B, Hong Y S, Paik S G, Lee J J. Sauchinone, a lignan from Saururus chinensis, suppresses iNOS expression through the inhibition of transactivation activity of RelA of NF-kappaB.  Planta Med. 2003;  69 1096-1101
  • 7 Han K Y, Yang D, Chang E J, Lee Y, Huang H, Sung S H, Lee Z H, Kim Y C, Kim H H. Inhibition of osteoclast differentiation and bone resorption by sauchinone.  Biochem Pharmacol. 2007;  74 911-923
  • 8 Loguercio C, Federico A. Oxidative stress in viral and alcoholic hepatitis.  Free Radic Biol Med. 2003;  34 1-10
  • 9 Dalle-Donne I, Rossi R, Colombo R, Ciustarini D, Milzani A. Biomakers of oxidative damage in human disease.  Clin Chem. 2006;  52 601-623
  • 10 Kaur I P, Geetha T. Screening methods for antioxidants.  Mini Rev Med Chem. 2006;  6 305-312
  • 11 Crimi E, Sica V, Williams-Ignarro S, Zhang H, Slutsky A S, Ignarro L J, Napoli C. The role of oxidative stress in adult critical care.  Free Radic Biol Med. 2005;  40 398-406
  • 12 Kapitulnik J. Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties.  Mol Pharmacol. 2004;  66 773-779
  • 13 Kirkby K A, Adin C A. Products of heme oxygenase and their potential therapeutic applications.  Am J Physiol Renal Physiol. 2006;  290 F563-F571
  • 14 Morse D, Choi A M. Heme oxygenase-1: the “emerging molecule” has arrived.  Am J Respir Cell Mol Biol. 2002;  27 8-16
  • 15 Maines M D. The heme oxygenase system: a regulator of second messenger gases.  Annu Rev Pharmacol Toxicol. 1997;  37 517-554
  • 16 Jeong G S, Oh G S, Pae H O, Jeong S O, Kim Y C, Shin M K, Seo B Y, Han S Y, Lee H S, Jeong J G, Koh J S, Chung H T. Comparative effects of curcuminoids on endothelial heme oxygenase-1 expression: ortho-methoxy groups are essential to enhance heme oxygenase activity and protection.  Exp Mol Med. 2006;  38 393-400
  • 17 Jeong G S, Pae H O, Jeong S O, Kim Y C, Kwon T O, Lee H S, Kim N S, Park S D, Chung H T. The alpha-methylene-gamma-butyrolactone moiety in dehydrocostus lactone is responsible for cytoprotective heme oxygenase-1 expression through activation of the nuclear factor E2-related factor 2 in HepG2 cells.  Eur J Pharmacol. 2007;  565 37-44
  • 18 Jeong G S, An R B, Pae H O, Chung H T, Yoon K H, Kang D G, Lee H S, Kim Y C. Cudratricusxanthone A protects mouse hippocampal cells against glutamate-induced neurotoxicity via the induction of heme oxygenase-1.  Planta Med. 2008;  74 1368-1373
  • 19 Jeong G S, Li B, Lee D S, Kwon J W, Lee H S, Kwon T O, Kim Y C. Hepatoprotective constituents of Saururus chinensis roots against tacrine-induced cytotoxicity in human liver-derived HepG2 cells.  Kor J Pharmcognosy. 2007;  38 176-180
  • 20 Lemasters J J, Nieminen A L, Qian T, Trost L C, Elmore S P, Nishimura Y, Crowe R A, Cascio W E, Bradham C A, Brenner D A, Herman B. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy.  Biochim Biophys Acta. 1998;  1366 177-196
  • 21 Alam J, Stewart D, Touchard C, Bionapally S, Choi A M, Cook J L. Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene.  J Biol Chem. 1999;  274 26071-26078
  • 22 Nguyen T, Sherratt P J, Pickett C B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element.  Annu Rev Pharmacol Toxicol. 2003;  43 233-260
  • 23 Kietzmann T, Samoylenko A, Immenschuh S. Transcriptional regulation of heme oxygenase-1 gene expression by MAP kinases of the JNK and p 38 pathways in primary cultures of rat hepatocytes.  J Biol Chem. 2003;  278 17927-17936
  • 24 Choi B M, Kim Y M, Jeong Y R, Pae H O, Song C E, Park J E, Ahn Y K, Chung H T. Induction of heme oxygenase-1 is involved in anti-proliferative effects of paclitaxel on rat vascular smooth muscle cells.  Biochem Biophys Res Commun. 2004;  321 132-137
  • 25 Balogun E, Hoque M, Gong P, Killeen E, Green C J, Foresti R, Alam J, Motterlini R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element.  Biochem J. 2003;  371 887-895
  • 26 Das S, Fraga C G, Das D K. Cardioprotective effect of resveratrol via HO‐1 expression involves p 38 map kinase and PI‐3-kinase signaling, but does not involve NF-kappaB.  Free Radic Res. 2006;  40 1066-1075
  • 27 Haridas V, Hanausek M, Nishimura G, Soehnge H, Gaikwad A, Narog M, Spears E, Zoltaszek R, Walaszek Z, Gutterman J U. Triterpenoid electrophiles (avicins) activate the innate stress response by redox regulation of a gene battery.  J Clin Invest. 2004;  113 65-73
  • 28 Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshiman Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements.  Biochem Biophys Res Commun. 1997;  236 313-322

Prof. Youn-Chul Kim

Zoonosis Research Center
Wonkwang University

Iksan

Jeonbuk 570–749

Republic of Korea

Phone: + 82 6 38 50 68 23

Fax: + 82 6 38 52 88 37

Email: yckim@wku.ac.kr

    >