Planta Med 2010; 76(11): 1103-1117
DOI: 10.1055/s-0030-1249859
Cancer Therapy
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

Anti-Inflammatory Plant Natural Products for Cancer Therapy

Kandan Aravindaram1 , Ning-Sun Yang1
  • 1Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, Taiwan, R. O. C.
Further Information

Publication History

received January 14, 2010 revised March 25, 2010

accepted March 29, 2010

Publication Date:
29 April 2010 (online)

Abstract

Much of the current research in cancer therapeutics is aimed at developing drugs or vaccines to target key molecules for combating tumor cell growth, metastasis, proliferation, or changes in the associated stromal microenvironment. Studies on a wide spectrum of plant secondary metabolites extractable as natural products from fruits, vegetables, teas, spices, and traditional medicinal herbs show that these plant natural products can act as potent anti-inflammatory, antioxidant or anticancer agents. The recent advances in genomics and metabolomics have enabled biologists to better investigate the potential use of immunomodulatory natural products for treatment or control of various cancerous diseases. The cancer preventive or protective activities of the various immunomodulatory natural products lie in their effects on cellular defenses including detoxifying and antioxidant enzyme systems, and the induction of anti-inflammatory and antitumor or antimetastasis responses, often by targeting specific key transcription factors like nuclear factor kappa B (NF-κB), activator protein (AP-1), signal transducers and activators of transcription (STAT) and others. This review presents recent findings and hypotheses on the molecular mechanisms through which various inflammatory activities are linked to tumorigenic processes and the specific immunomodulatory natural products that may suppress inflammation and the associated tumor progression and metastasis both in vitro and in vivo. In addition to tumor cells per se, the various associated roles of myeloid-derived suppressor cells, stromal fibroblasts, myofibroblasts, and inflammatory immune cells, and the possible effects of phytomedicines on these cells in the tumor microenvironment will be discussed.

References

  • 1 Surh Y J. Cancer chemoprevention with dietary phytochemicals.  Nat Rev Cancer. 2003;  3 768-780
  • 2 Michels K B, Giovannucci E, Chan A T, Singhania R, Fuchs C S, Willett W C. Fruit and vegetable consumption and colorectal adenomas in the nurses' health study.  Cancer Res. 2006;  66 3942-3953
  • 3 Amin A R M R, Kucuk O, Khuri F R, Shin D M. Perspectives for cancer prevention with natural compounds.  J Clin Oncol. 2009;  27 2712-2725
  • 4 Tosetti F, Nooman D M, Albini A. Metabolic regulation and redox activity as mechanisms for angioprevention by dietary phytochemicals.  Int J Cancer. 2009;  125 1997-2003
  • 5 Fearon E R, Vogelstein B. A genetic model for colorectal carcinogenesis.  Cell. 1990;  61 759-767
  • 6 Hanahan D, Weinberg R A. The hallmarks of cancer.  Cell. 2000;  100 57-70
  • 7 Pan M H, Chai G, Ho C T. Food bioactives, apoptosis, and cancer.  Mol Nutr Food Res. 2008;  52 43-52
  • 8 Weinberg R A. The biology of cancer. New York; Taylor and Francis Group, LLC 2007: 441-451
  • 9 Aggarwal B B, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer.  Biochem Pharmacol. 2006;  7 1397-1421
  • 10 Marx J. Inflammation and cancer: the links grows stronger.  Science. 2004;  306 966-968
  • 11 Marx J. Cancer's bulwark against immune attack: MDS cells.  Science. 2008;  319 154-156
  • 12 Serafini P, Bronte V. Myeloid-derived suppressor cells in cancer. Gabrilovich DI, Hurwitz AA Tumor-induced immune suppression. Heidelberg; Springer 2008: 157-195
  • 13 Stix G. A malignant flame.  Scientific American. 2007;  297 60-67
  • 14 Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato E, Diederich M. Chemopreventive and therapeutic effects of curcumin.  Cancer Lett. 2005;  223 181-190
  • 15 Nandakumar V, Singh T, Katiyar S K. Multi-targeted prevention and therapy of cancer by proanthocyanidins.  Cancer Lett. 2008;  269 378-387
  • 16 Reddy L, Odhav B, Bhoola K D. Natural products for cancer prevention: a global perspective.  Pharmacol Ther. 2003;  99 1-13
  • 17 Benetou V, Orfanos P, Lagiou P, Trichopoulos D, Boffetta P, Trichopoulos A. Vegetables and fruits in relation to cancer risk: evidence from the Greek EPIC cohort study.  Cancer Epidemiol Biomarkers Prev. 2008;  17 387-392
  • 18 Freedman N D, Park Y, Subar A F, Hollenbeck A R, Leitzmann M F, Schatzkin A, Abnet C C. Fruit and vegetable intake and head and neck cancer risk in a large United States prospective cohort study.  Int J Cancer. 2008;  122 2330-2336
  • 19 Schmidt B M, Erdman J W, Lila M A. Differential effects of blueberry proanthocyanidins on androgen sensitive and insensitive human prostate cancer cell lines.  Cancer Lett. 2006;  231 240-246
  • 20 Shammas M A, Neri P, Koley H, Batchu R B, Bertheau R C, Munshi V, Prabhala R, Fulciniti M, Tai Y T, Treon S P, Goyal R K, Anderson K C, Munshi N C. Specific killing of multiple myeloma cells by (−)-epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications.  Blood. 2006;  108 2804-2810
  • 21 Singh R P, Tyagi A, Sharma G, Mohan S, Agarwal R. Oral silibinin inhibits in vivo human bladder tumor xenograft growth involving downregulaton of survivin.  Clin Cancer Res. 2008;  14 300-308
  • 22 Kwon K H, Barve A, Yu S, Huang M T, Kong A N T. Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models.  Acta Pharmacol Sin. 2007;  28 1409-1421
  • 23 Hayes J D, McMohan M. Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention.  Cancer Lett. 2001;  174 103-113
  • 24 Manson M M. Cancer prevention – the potential for diet to modulate molecular signalling.  Trends Mol Med. 2003;  9 11-18
  • 25 Waltener-Law M E, Wang X L, Law B K, Hall R K, Nawano M, Granner D K. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production.  J Biol Chem. 2002;  277 34933-34940
  • 26 Bacon J R, Williamson G, Garner R C, Lappin G, Langouët S, Bao Y. Sulforaphane and quercetin modulate PhIP-DNA adduct formation in human HepG2 cells and hepatocytes.  Carcinogenesis. 2003;  24 1903-1911
  • 27 Holme A L, Pervaiz S. Resveratrol in cell fate decisions.  J Bioenerg Biomembr. 2007;  39 59-63
  • 28 Shen G, Xu C, Hu R, Jain M R, Gopalkrishnan A, Nair S, Huang M T, Chan J Y, Kong A N. Modulation of nuclear factor E2-related factor 2-mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin.  Mol Cancer Ther. 2006;  5 39-51
  • 29 Staniforth V, Wang S Y, Shyur L F, Yang N S. Shikonins, phytocompounds from Lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor α promoter in vivo.  J Biol Chem. 2004;  279 5877-5885
  • 30 Chiu S C, Yang N S. Inhibition of tumor necrosis factor-alpha through selective blockade of pre-mRNA splicing by shikonin.  Mol Pharmacol. 2007;  71 1640-1645
  • 31 Kong A N, Yu R, Hebbar V, Chen C, Owuor E, Hu R, Ee R, Mandlekar S. Signal transduction events elicited by cancer prevention compounds.  Mutat Res. 2001;  480–481 231-241
  • 32 Sarkar F H, Li Y. Targeting multiple signal pathways by chemopreventive agents for cancer prevention and therapy.  Acta Pharmacol Sin. 2007;  28 1305-1315
  • 33 Belleri M, Ribatti D, Savio M, Stivala L A, Forti L, Tanghetti E, Alessi P, Coltrini D, Bugatti A, Mitola S, Nicoli S, Vannini V, Presta M. AlphaVbeta3 integrin-dependent antiangiogenic activity of resveratrol stereoisomers.  Mol Cancer Ther. 2008;  7 3761-3770
  • 34 Khan N, Afaq F, Mukhtar H. Apoptosis by dietary factors: the suicide solution for delaying cancer growth.  Carcinogenesis. 2007;  28 233-239
  • 35 Cram E J, Liu B D, Bjeldanes L F, Firestone G L. Indole-3-carbinol inhibits CDK6 expression in human MCF-7 breast cancer cells by disrupting sp1 transcription factor interactions with a composite element in the CDK6 gene promoter.  J Biol Chem. 2001;  276 22332-22340
  • 36 Meeran S M, Katiyar S K. Cell cycle control as a basis for cancer chemoprevention through dietary agents.  Front Biosci. 2008;  13 2191-2202
  • 37 Liang Y C, Tsai S H, Chen L, Lin-Shiau S Y, Lin J K. Resveratrol-induced G2 arrest through the inhibition of CDK7 and p 34CDC2 kinases in colon carcinoma HT29 cells.  Biochem Pharmacol. 2003;  65 1053-1060
  • 38 Rabi T, Wang L, Banerjee S. Novel triterpenoid 25-hydroxy-3-oxoolean-12-en-28-oic acid induces growth arrest and apoptosis in breast cancer cells.  Breast Cancer Res Treat. 2007;  101 27-36
  • 39 Wiseman D A, Werner S R, Crowell P L. Cell cycle arrest by the isoprenoids perillyl alcohol, geraniol, and farnesol is mediated by p 21Cip1 and p 27Kip1 in human pancreatic adenocarcinoma cells.  J Pharmacol Exp Ther. 2007;  320 1163-1170
  • 40 Park M J, Kim E H, Park I C, Lee H C, Woo S H, Lee J Y, Hong Y J, Rhee C H, Choi S H, Shim B S, Lee S H, Hong S I. Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p 21WAF1/CIP1, p 27KIP1 and p 53.  Int J Oncol. 2002;  21 379-383
  • 41 Gupta S, Ahmad N, Nieminen A L, Mukhtar H. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (−)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells.  Toxicol Appl Pharmacol. 2000;  164 82-90
  • 42 Shen G, Khor T O, Hu R, Yu S, Nair S, Ho C T, Reddy B S, Huang M T, Newmark H L, Kong A N T. Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in ApcMin/+ mouse.  Cancer Res. 2007;  67 9937-9944
  • 43 Qin J, Xie L P, Zheng X Y, Wang Y B, Bai Y, Shen H F, Li L C, Dahiya R. A component of green tea, (−)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/AKT pathway and Bcl-2 family proteins.  Biochem Biophys Res Commun. 2007;  354 852-857
  • 44 Xu C, Shen G, Chen C, Gelinas C, Kong A N. Suppression of NF-κB and NF-κB-regulated gene expression by sulforaphane and PEITC through IκBα, IKK pathway in human prostate cancer PC-3 cells.  Oncogene. 2005;  24 4486-4495
  • 45 Shishodia S, Sethi G, Aggarwal B B. Curcumin: getting back to the roots.  Ann NY Acad Sci. 2005;  1056 206-217
  • 46 Singh S, Aggarwal B B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane).  J Biol Chem. 1995;  270 24995-25000
  • 47 Han S S, Keum Y S, Seo H J, Surh Y J. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells.  J Biochem Mol Biol. 2002;  35 337-342
  • 48 Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal B B. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines.  Oncogene. 2001;  20 7597-7609
  • 49 Singh A V, Franke A A, Blackburn G L, Zhou J R. Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosis and tumor angiogenesis.  Cancer Res. 2006;  66 1851-1858
  • 50 Bode A M, Ma W Y, Surh Y J, Dong Z. Inhibition of epidermal growth factor-induced cell transformation and activator protein-1 activation by [6]-gingerol.  Cancer Res. 2001;  61 850-853
  • 51 Han S S, Keum Y S, Chun K S, Surh Y J. Suppression of phorbol ester-induced NF-κB activation by capsaicin in cultured human promyelocytic leukemia cells.  Arch Pharm Res. 2002;  25 475-479
  • 52 Rahman K M, Li Y, Sarkar F H. Inactivation of AKT and NF-kappaB play important roles during indole-3-carbinol-induced apoptosis in breast cancer cells.  Nutr Cancer. 2004;  48 84-94
  • 53 Manna S K, Mukhopadhyay A, Aggarwal B B. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-κB, activator protein AP-1 and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation.  J Immunol. 2000;  164 6509-6519
  • 54 Holdenrieder S, Stieber P. Apoptotic markers in cancer.  Clin Biochem. 2004;  37 605-617
  • 55 Danial N N, Korsmeyer S J. Cell death: critical control points.  Cell. 2004;  116 205-219
  • 56 Jiang H, Zhang L, Kuo J, Kuo K, Gautam S C, Groc L, Rodriguez A L, Koubi D, Hunter T J, Corcoran G B, Seidman M D, Levine R A. Resveratrol-induced apoptotic death in human U251 glioma cells.  Mol Cancer Ther. 2005;  4 554-561
  • 57 Alkhalaf M. Resveratrol-induced apoptosis is associated with activation of p 53 and inhibition of protein translation in T47D human breast cancer cells.  Pharmacology. 2007;  80 134-143
  • 58 Zhang R, Loganathan S, Humphreys I, Srivastava S K. Benzyl isothiocyanate-induced DNA damage causes G2/M cell cycle arrest and apoptosis in human pancreatic cancer cells.  J Nutr. 2006;  136 2728-2734
  • 59 Huang D, Shen Y C, Wu C, Huang Y T, Kung F L, Teng C M, Guh J H. Investigation of extrinsic and intrinsic apoptosis pathways of new clerodane diterpenoids in human prostate cancer in PC-3 cells.  Eur J Pharmacol. 2004;  503 17-24
  • 60 Qanungo S, Das M, Haldar S, Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells.  Carcinogenesis. 2005;  26 958-967
  • 61 Siddiqui I A, Zaman N, Aziz M H, Reagan-Shaw S R, Sarfaraz S, Adhami V M, Ahmad N, Raisuddin S, Mukhtar H. Inhibition of CWR22RnuI tumor growth and PSA secretion in athymic nude mice by green and black teas.  Carcinogenesis. 2006;  27 833-839
  • 62 Nihal M, Ahmad N, Mukhtar H, Wood G S. Anti-proliferative and proapoptotic effects of (−)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma.  Int J Cancer. 2005;  114 513-521
  • 63 Nishikawa T, Nakajima T, Moriguchi M, Jo M, Sekoguchi S, Ishii M, Takashima H, Katagishi T, Kimura H, Minami M, Itoh Y, Kagawa K, Okanoue T. A green tea polyphenol, (−)-epigallocatechin-3-gallate, induces apoptosis of human heptocellular carcinoma, possibly through inhibition of Bcl-2 family proteins.  J Hepatol. 2006;  44 1074-1082
  • 64 Horinaka M, Yoshida T, Shiraishi T, Nakata S, Wakada M, Nakanishi R, Nishino H, Matsui H, Sakai T. Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells.  Oncogene. 2005;  24 7180-7189
  • 65 Vargo M A, Voss O H, Poustka F, Cardounel A J, Grotewold E, Doseff A L. Apigenin-induced apoptosis is mediated by the activation of PKC delta and caspases in leukemia cells.  Biochem Pharmacol. 2006;  72 681-692
  • 66 Bush J A, Cheung Jr K J, Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p 53.  Exp Cell Res. 2001;  271 304-314
  • 67 Somasundaram S, Edmund N A, Moore D T, Small G W, Shi Y Y, Orlowski R Z. Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer.  Cancer Res. 2002;  62 3868-3875
  • 68 Gao X, Deeb D, Jiang H, Liu Y B, Dulchavsky S A, Gautam S C. Curcumin differentially sensitizes malignant glioma cells to TRAIL/Apo2L-mediated apoptosis through activation of procaspases and release of cytochrome c from mitochondria.  J Exp Ther Oncol. 2005;  5 39-48
  • 69 Kim Y A, Xiao D, Xiao H, Powolny A A, Lew K L, Reilly M L, Zeng Y, Wang Z, Singh S V. Mitochondria-mediated apoptosis by diallyl trisulfide in human prostate cancer cells is associated with generation of reactive oxygen species and regulated by Bax/Bak.  Mol Cancer Ther. 2007;  6 1599-1609
  • 70 Park S Y, Cho S J, Kwon H C, Lee K R, Rhee D K, Pyo S. Caspase-independent cell death by allicin in human epithelial carcinoma cells: involvement of PKA.  Cancer Lett. 2005;  224 123-132
  • 71 Zhou H B, Chen J M, Cai J T, Du Q, Wu C N. Anticancer activity of genistein on implanted tumor human SG7901 cells in nude mice.  World J Gastroenterol. 2008;  14 627-631
  • 72 Su S J, Chow N H, Kung M L, Hung T C, Chang K L. Effects of soy isoflavones on apoptosis induction and G2-M arrest in human hepatoma cells involvement of caspase-3 activation, Bcl-2 and Bcl-XL down-regulation, and CDC2 kinase activity.  Nutr Cancer. 2003;  45 113-123
  • 73 Jin C Y, Park C, Kim G Y, Lee S J, Kim W J, Choi Y H. Genistein enhances TRAIL-induced apoptosis through inhibition of p 38 MAPK signaling in human hepatocellular carcinoma Hep3B cells.  Chem Biol Interact. 2009;  180 143-150
  • 74 Afaq F, Syed D N, Malik A, Hadi N, Sarfaraz S, Kweon M H, Khan N, Zaid M A, Mukhtar H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis.  J Invest Dermatol. 2007;  127 222-232
  • 75 Lawrence T, Willoughby D A, Gilroy D W. Anti-inflammatory lipid mediators and insights into the resolution of inflammation.  Annu Rev Immunol. 2002;  2 787-795
  • 76 Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation.  Trends Immunol. 2003;  24 25-29
  • 77 Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity.  Annu Rev Immunol. 2000;  18 621-663
  • 78 Gonda T A, Tu S, Wang T C. Chronic inflammation, the tumor microenvironment and carcinogenesis.  Cell Cycle. 2009;  8 2005-2013
  • 79 Moore R J, Owens D M, Stamp G, Arnott C, Burke F, East N, Holdsworth H, Turner L, Rollins B, Pasparakis M, Kollias G, Balkwill F. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis.  Nat Med. 1999;  5 828-831
  • 80 Shishodia S, Amin H M, Lai R, Aggarwal B B. Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma.  Biochem Pharmacol. 2005;  70 700-713
  • 81 Yang F, de Villiers W J, McClain C J, Varilek G W. Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model.  J Nutr. 1998;  128 2334-2340
  • 82 Martin A R, Villegas I, Sanchez-Hidalgo M, de la Lastra C A. The effects of resveratrol, a phytoalexin derived from red wines, on chronic inflammation induced in an experimentally induced colitis model.  Br J Pharmacol. 2006;  147 873-885
  • 83 Posadas I, Terencio M C, Guillen I, Ferrandiz M L, Coloma J, Paya M, Alcaraz M J. Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation.  Naunyn Schmiedebergs Arch Pharmacol. 2000;  361 98-106
  • 84 D'Acquisto F, Maiuri M C, de Cristofaro F, Carnuccio R. Nitric oxide prevents inducible cyclooxygenase expression by inhibiting nuclear factor-kappa B and nuclear factor-interleukin-6 activation.  Naunyn Schmiedebergs Arch Pharmacol. 2001;  364 157-165
  • 85 Subbaramaiah K, Dannenberg A J. Cyclooxygenase 2: a molecular target for cancer prevention and treatment.  Trends Pharmacol Sci. 2003;  24 96-102
  • 86 Surh Y J, Chun K S, Cha H H, Han S S, Keum Y S, Park K K, Lee S S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation.  Mutat Res. 2001;  480–481 243-268
  • 87 Tsuji S, Tsujii M. COX-2 and advanced digestive cancer phenotypes.  J Gastroenterol. 2004;  39 1224-1225
  • 88 Hussain T, Gupta S, Adhami V M, Mukhtar H. Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells.  Int J Cancer. 2005;  113 660-669
  • 89 Kundu J K, Na H K, Chun K S, Kim Y K, Lee S J, Lee S S, Lee O S, Sim Y C, Surh Y J. Inhibition of phorbol ester-induced COX-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells.  J Nutr. 2003;  133 3805S-3810S
  • 90 Plummer S M, Holloway K A, Manson M M, Munks R J, Kaptein A, Farrow S, Howells L. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signaling complex.  Oncogene. 1999;  18 6013-6020
  • 91 Woo K J, Kwon T K. Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter.  Int Immunopharmacol. 2007;  7 1776-1783
  • 92 Chen K H, Weng M S, Lin J K. Tangeretin suppresses IL-1b-induced cyclooxygenase (COX-2) expression through inhibition of p 38 MAPK, JNK, and AKT activation in human lung carcinoma cells.  Biochem Pharmacol. 2007;  73 215-227
  • 93 Hou D E, Yanagita T, Uto T, Masuzaki S, Fujii M. Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structure–activity relationship and molecular mechanisms involved.  Biochem Pharmacol. 2005;  70 417-425
  • 94 Chung E Y, Kim B H, Lee M K, Yun Y P, Lee S H, Min K R, Kim Y. Anti-inflammatory effect of the oligomeric stilbene alpha-viniferin and its mode of the action through inhibition of cyclooxygenase-2 and inducible nitric oxide synthase.  Planta Med. 2003;  69 710-714
  • 95 Hong J, Bose M, Ju J, Ryu J H, Chen X, Sang S, Lee M J, Yang C S. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipooxygenase.  Carcinogenesis. 2004;  25 1671-1679
  • 96 Hong J, Smith T J, Ho C T, August D A, Yang C S. Effects of purified green and black tea polyphenols on cyclooxygenase- and lipooxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues.  Biochem Pharmacol. 2001;  62 1175-1183
  • 97 Reddy D B, Reddanna P. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-jB and MAPK activation in RAW 264.7 macrophages.  Biochem Biophys Res Commun. 2009;  381 112-117
  • 98 Schewe T, Kühn H, Sies H. Flavonoids of cocoa inhibit recombinant human 5-lipoxygenase.  J Nutr. 2002;  132 1825-1829
  • 99 Brouet I, Ohshima H. Curcumin, an anti-tumor promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages.  Biochem Biophys Res Commun. 1995;  206 533-540
  • 100 Dey M, Ribnicky D, Kurmukov A G, Raskin I. In vitro and in vivo anti-inflammatory activity of a seed preparation containing phenethylisothiocyanate.  J Pharmacol Exp Ther. 2006;  317 326-333
  • 101 Ippoushi K, Azuma K, Ito H, Horie H, Higashio H. [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions.  Life Sci. 2003;  73 3427-3437
  • 102 Chen Y H, Dai H J, Chang H P. Suppression of inducible nitric oxide production by indole and isothiocyanate derivatives from Brassica plants in stimulated macrophages.  Planta Med. 2003;  69 696-700
  • 103 Darnell Jr J E, Kerr I M, Stark G R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins.  Science. 1994;  264 1415-1421
  • 104 Grandis J R, Drenning S D, Chakraborty A, Zhou M Y, Zeng Q, Pitt A S, Tweardy D J. Requirement of STAT3 but not STAT1 activation for epidermal growth factor receptor-mediated cell growth in vitro.  J Clin Invest. 1998;  102 1385-1392
  • 105 Carlesso N, Frank D A, Griffin J D. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl.  J Exp Med. 1996;  183 811-820
  • 106 Weber-Nordt R M, Egen C, Wehinger J, Ludwig W, Gouilleux-Gruart V, Mertelsmann R, Finke J. Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines.  Blood. 1996;  83 809-816
  • 107 Siddiqui I A, Shukla Y, Adhami V M, Sarfaraz S, Asim M, Hafeez B B, Mukhtar H. Suppression of NFkappaB and its regulated gene products by oral administration of green tea polyphenols in an autochthonous mouse prostate cancer model.  Pharm Res. 2008;  25 2135-2142
  • 108 Mackenzie G G, Queisser N, Wolfson M L, Fraga C G, Adamo A M, Oteiza P I. Curcumin induces cell-arrest and apoptosis in association with the inhibition of constitutively active NF-κB and STAT3 pathways in Hodgkin's lymphoma cells.  Int J Cancer. 2008;  123 56-65
  • 109 Blasius R, Reuter S, Henry E, Dicato M, Diederich M. Curcumin regulates signal transducer and activator of transcription (STAT) expression in K562 cells.  Biochem Pharmacol. 2006;  72 1547-1554
  • 110 Wung B S, Hsu M C, Wu C C, Hsieh C W. Resveratrol suppresses IL-6 induced ICAM-1 gene expression in endothelial cells: effects on the inhibition of STAT3 phosphorylation.  Life Sci. 2005;  78 389-397
  • 111 Selvendiran K, Koga H, Ueno T, Yoshida T, Maeyama M, Torimura T, Yano H, Kojiro M, Sata M. Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids.  Cancer Res. 2006;  66 4826-4834
  • 112 Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E. Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages.  Mediators Inflamm. 2007;  DOI: 10.1155/2007/45673
  • 113 Sharma S D, Katiyar S K. Dietary grape-seed proanthocyanidin inhibition of ultraviolet B-induced immune suppression is associated with induction of IL-12.  Carcinogenesis. 2006;  1 95-102
  • 114 Shimizu M, Deguchi A, Lim J T, Moriwaki H, Kopelovich L, Weinstein I B. (−)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells.  Clin Cancer Res. 2005;  11 2735-2746
  • 115 Zhang Q, Tang X, Lu Q, Zhang Z, Rao J, Le A D. Green tea extract and (−)-epigallocatechin-3-gallate inhibit hypoxia- and serum-induced HIF-1α protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells.  Mol Cancer Ther. 2006;  5 1227-1238
  • 116 Masuda M, Suzui M, Lim J T, Weinstein I B. Epigallocatechin-3-gallate inhibits activation of HER-2/neu and downstream signaling pathways in human head and neck and breast carcinoma cells.  Clin Cancer Res. 2003;  9 3486-3491
  • 117 Tang F Y, Nguyen N, Meydani M. Green tea catechins inhibit VEGF-induced angiogenesis in vitro through suppression of VE-cadherin phosphorylation and inactivation of AKT molecule.  Int J Cancer. 2003;  106 871-878
  • 118 Hong R L, Spohn W H, Hung M C. Curcumin inhibits tyrosine kinase activity of p 185neu and also depletes p 185neu.  Clin Cancer Res. 1999;  5 1884-1891
  • 119 Patel B B, Sengupta R, Qazi S, Vachhani H, Yu Y, Rishi A K, Majumdar A P N. Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR and IGF-1R.  Int J Cancer. 2008;  122 267-273
  • 120 Vrieling A, Voskuil D W, Bonfrer J M, Korse C M, van Doorn J, Cats A, Depla A C, Timmer R, Witteman B J, van Leeuwen F E, van't Veer L J, Rookus M A, Kampmen E. Lycopene supplementation elevates circulating insulin-like growth factor binding protein-1 and − 2 concentrations in persons at greater risk of colorectal cancer.  Am J Clin Nutr. 2007;  86 1456-1462
  • 121 Chiang H S, Wu W B, Fang J Y, Chen D F, Chen B H, Huang C C, Chen Y T, Hung C F. Lycopene inhibits PDGF-BB-induced signaling and migration in human dermal fibroblasts through interaction with PDGF-BB.  Life Sci. 2007;  81 1509-1517
  • 122 Mai Z, Blackburn G L, Zhou J R. Soy phytochemicals synergistically enhance the preventive effect of tamoxifen on the growth of estrogen-dependent human breast carcinoma in mice.  Carcinogenesis. 2007;  28 1217-1223
  • 123 Folkman J. Tumor angiogenesis: therapeutic implications.  N Engl J Med. 1971;  285 1182-1186
  • 124 Dvorak H F, Brown L F, Detmar M, Dvorak A M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis.  Am J Pathol. 1995;  146 1029-1039
  • 125 Polette M, Nawrocki-Raby B, Gilles C, Clavel C, Birembaut P. Tumor invasion and matrix metalloproteinases.  Crit Rev Oncol Hematol. 2004;  49 179-186
  • 126 Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer.  Cancer Metastasis Rev. 2004;  23 101-117
  • 127 Lin M T, Yen M L, Lin C Y, Kuo M L. Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation.  Mol Pharmacol. 2003;  64 1029-1036
  • 128 Vayalil P K, Mittal A, Katiyar S K. Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells which is associated with the inhibition of activation of MAPK and NF-κB.  Carcinogenesis. 2004;  25 987-995
  • 129 Strek M, Gorlach S, Podsedek A, Sosnowska D, Koziolkiewicz M, Hrabec Z. Procyanidin oligomers from Japanese quince (Chaenomeles japonica) fruit inhibit activity of MMP-2 and MMP-9 metalloproteinases.  J Agric Food Chem. 2007;  16 6447-6452
  • 130 Xiao H, Hao X, Simi B, Ju J, Jiang H, Reddy B S, Yang C S. Green tea polyphenols inhibit colorectal aberrant crypt foci (ACF) formation and prevent oncogenic changes in dysplastic ACF in azoxymethane-treated F344 rats.  Carcinogenesis. 2008;  29 113-119
  • 131 Garbisa S, Sartor L, Biggin S, Salvato B, Benelli R, Albini A. Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate.  Cancer. 2001;  91 822-832
  • 132 Lee H S, Seo E Y, Kang N E, Kim W K. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells.  J Nutr Biochem. 2008;  19 313-319
  • 133 Chen H W, Yu S L, Chen J J, Li H N, Lin Y C, Yao P L, Chao H Y, Chien C T, Chen W J, Lee Y T, Yang P C. Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis.  Mol Pharmacol. 2004;  65 99-110
  • 134 Leu T H, Su S L, Chuang Y C, Maa M C. Direct inhibitory effect of curcumin on Src and focal adhesion kinase activity.  Biochem Pharmacol. 2003;  66 2323-2331
  • 135 Xiao D, Singh S V. Phenethyl isothiocyanate inhibits angiogenesis in vitro and ex vivo.  Cancer Res. 2007;  67 2239-2246
  • 136 Staniforth V, Chiu L T, Yang N S. Caffeic acid suppresses UVB radiation-induced expression of interleukin-10 and activation of mitogen-activated protein kinases in mouse.  Carcinogenesis. 2006;  27 1803-1811
  • 137 Kim J H, Xu C, Keum Y S, Reddy B, Conney A, Kong A N. Inhibition of EGFR signaling in human prostate cancer PC-3 cells by combination treatment with beta-phenylethyl isothiocyanate and curcumin.  Carcinogenesis. 2006;  27 475-482
  • 138 Dorai T, Cao Y C, Dorai B, Buttyan R, Katz A E. Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LnCap prostate cancer cells in vivo.  Prostate. 2001;  47 293-303
  • 139 Conney A H. Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: the seventh DeWitt S. Goodman lecture.  Cancer Res. 2003;  63 7005-7031
  • 140 Li M, Chen X, Liao J, Yang G, Wang S, Josephson Y, Han C, Chen J, Huang M T, Yang C S. Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin.  Carcinogenesis. 2002;  23 1307-1313
  • 141 Rao C V, Simi B, Reddy B S. Inhibition by dietary curcumin of azoxymethane-induced ornithine decarboxylase, tyrosine protein kinase, arachidonic acid metabolism and aberrant crypt foci formation in the rat colon.  Carcinogenesis. 1993;  14 2219-2225
  • 142 Lakshman M, Xu L, Ananthanarayanan V, Cooper J, Takimoto C H, Helenowski I, Pelling J C, Bergan R C. Dietary genistein inhibits metastasis of human prostate cancer in mice.  Cancer Res. 2008;  68 2024-2032
  • 143 Wang Y, Raffoul J J, Che M, Doerge D R, Joiner M C, Kucuk O, Sarkar F H, Hillman G G. Prostate cancer treatment is enhanced by genistein in vitro and in vivo in a syngeneic orthotopic tumor model.  Radiat Res. 2006;  166 73-80
  • 144 Liu L Z, Fang J, Zhou Q, Hu X, Shi X, Jiang B H. Apigenin inhibits expression of vascular endothelial growth factor and angiogenesis in human lung cancer cells: implication of chemoprevention of lung cancer.  Mol Pharmacol. 2005;  68 635-643
  • 145 Mantena S K, Baliga M S, Katiyar S K. Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells.  Carcinogenesis. 2006;  27 1682-1691
  • 146 Kaur M, Singh R P, Gu M, Agarwal R, Agarwal C. Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells.  Clin Cancer Res. 2006;  12 6194-6202
  • 147 Davis C D, Hord N G. Nutritional “omics” technologies for elucidating the role(s) of bioactive food components in colon cancer prevention.  J Nutr. 2005;  11 2694-2697
  • 148 Manju V, Nalini N. Protective role of luteolin in 1,2-dimethylhydrazine induced experimental colon carcinogenesis.  Cell Biochem Funct. 2007;  25 189-194
  • 149 Kim D J, Takasuka N, Nishino H, Tsuda H. Chemoprevention of lung cancer by lycopene.  Biofactors. 2000;  13 95-102
  • 150 Sahin K, Ozercan R, Onderci M, Sahin N, Gursu M F, Khachik F, Sarkar F H, Munkarah A, Ali-Fehmi R, Kmak D, Kucuk O. Lycopene supplementation prevents the development of spontaneous smooth muscle tumors of the oviduct in Japanese quail.  Nutr Cancer. 2004;  50 181-189
  • 151 Xu C, Huang M T, Shen G, Yuan X, Lin W, Khor T O, Conney A H, Kong A N T. Inhibition of 7,12-dimethylbenz[a]anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2.  Cancer Res. 2006;  66 8293-8296
  • 152 Baliga M S, Meleth S, Katiyar S K. Growth inhibitory and antimetastatic effect of green tea polyphenols on metastasis-specific mouse mammary carcinoma 4T1 cells in vitro and in vivo systems.  Clin Cancer Res. 2005;  11 1918-1927
  • 153 Thomasset S C, Berry D P, Garcea G, Marczylo T, Steward W P, Gescher A J. Dietary polyphenolic phytochemicals – promising cancer chemopreventive agents in humans? A review of their clinical properties.  Int J Cancer. 2006;  120 451-458
  • 154 Russo G L. Ins and outs of dietary phytochemicals in cancer chemoprevention.  Biochem Pharmacol. 2007;  74 533-544
  • 155 Zhang Y. Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action.  Mutat Res. 2004;  555 173-190
  • 156 Yang Y M, Conaway C C, Chiao J W, Wang C X, Amin S, Whysner J, Dai W, Reinhardt J, Chung F L. Inhibition of benzo[a]pyrene-induced lung tumorigenesis in A/J mice by dietary N-acetylcysteine conjugates of benzyl and phenethyl isothiocyanates during the post initiation phase is associated with activation of mitogen-activated protein kinases and p 53 activity and induction of apoptosis.  Cancer Res. 2002;  62 2-7
  • 157 Verstraeten S V, Hammerstone J F, Keen C L, Fraga C G, Oteiza P I. Antioxidant and membrane effects of procyanidin dimers and trimers isolated from peanut and cocoa.  J Agric Food Chem. 2005;  53 5041-5048
  • 158 Ho S C, Hwang L S, Shen Y J, Lin C C. Suppressive effect of a proanthocyanidin-rich extract from longan (Dimocarpus longan Lour.) flowers on nitric oxide production in LPS-stimulated macrophage cells.  J Agric Food Chem. 2007;  55 10664-10670
  • 159 El-Alfy A T, Ahmed A A, Fatani A J. Protective effect of red grape seeds proanthocyanidins against induction of diabetes by alloxan in rats.  Pharmacol Res. 2005;  52 264-270
  • 160 Kempuraj D, Madhappan B, Christodoulou S, Boucher W, Cao J, Papadopoulou N, Cetrulo C L, Theoharides T C. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells.  Br J Pharmacol. 2005;  145 934-944
  • 161 Dechsupa S, Kothan S, Vergote J, Leger G, Martineau A, Berangeo S, Kosanlavit R, Moretti J L, Mankhetkorn S. Quercetin, siamois 1 and siamois 2 induce apoptosis in human breast cancer MDA-MB-435 cells xenograft in vivo.  Cancer Biol Ther. 2007;  6 48-54
  • 162 Ujiki M B, Ding X Z, Salabat M R, Bentrem D J, Golkar L, Milam B, Talamonti M S, Bell R H, Iwamura T, Adrian T E. Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest.  Mol Cancer. 2006;  5 76
  • 163 Shukla S, Gupta S. Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-AKT, and loss of Cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells.  Cell Cycle. 2007;  6 1102-1115
  • 164 Pan M H, Chen W J, Lin-Shiau S Y, Ho C T, Lin J K. Tangeretin induces cell-cycle G1 arrest through inhibiting cyclin-dependent kinases 2 and 4 activities as well as elevating Cdk inhibitors p 21 and p 27 in human colorectal carcinoma cells.  Carcinogenesis. 2002;  23 1677-1684
  • 165 Baliga M, Meleth S, Katiyar S K. Growth inhibitory and antimetastatic effect of green tea polyphenols on metastasis-specific mouse mammary carcinoma 4T1 cells in vitro and in vivo systems.  Clin Cancer Res. 2005;  11 1918-1927
  • 166 Na H K, Surh Y H. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG.  Food Chem Toxicol. 2008;  46 1271-1278
  • 167 Park S S, Kim Y N, Jeon Y K, Kim Y A, Kim J E, Kim H, Kim C W. Genistein-induced apoptosis via AKT signaling pathway in anaplastic large-cell lymphoma.  Cancer Chemother Pharmacol. 2005;  56 271-278
  • 168 Shim H Y, Park J H, Paik H D, Nah S Y, Kim D S, Han Y S. Genistein-induced apoptosis of human breast cancer MCF-7 cells involves calpain-caspase and apoptosis signaling kinase 1-p 38 mitogen-activated protein kinase activation cascades.  Anticancer Drugs. 2007;  18 649-657
  • 169 Lazzè M C, Savio M, Pizzala R, Cazzalini O, Perucca P, Scovassi A I, Stivala L A, Bianchi L. Anthocyanins induce cell cycle perturbations and apoptosis in different human cell lines.  Carcinogenesis. 2004;  25 1427-1433
  • 170 Gu M, Singh R P, Dhanalakshmi S, Agarwal C, Agarwal R. Silibinin inhibits inflammatory and angiogenic attributes in photocarcinogenesis in SKH-1 hairless mice.  Cancer Res. 2007;  67 3483-3491
  • 171 Palombo P, Fabrizi G, Ruocco V, Ruocco E, Fluhr J, Roberts R, Morganti P. Beneficial long-term effects of combined oral/topical antioxidant treatment with the carotenoids lutein and zeaxanthin on human skin: a double-blind, placebo-controlled study.  Skin Pharmacol Physiol. 2007;  20 199-210
  • 172 Chucair A J, Rotstein N P, Sangiovanni J P, During A, Chew E Y, Politi L E. Lutein and zeaxanthin protect photoreceptors from apoptosis induced by oxidative stress: relation with docosahexaenoic acid.  Invest Ophthalmol Vis Sci. 2007;  48 5168-5177
  • 173 Hantz H, Young L F, Martin K R. Physiologically attainable concentrations of lycopene induce mitochondrial apoptosis in LNCaP human prostate cancer cells.  Exp Biol Med. 2005;  230 171-179
  • 174 Liu C, Russell R M, Wang X D. Lycopene supplementation prevents smoke-induced changes in p 53, p 53 phosphorylation, cell proliferation, and apoptosis in the gastric mucosa of ferrets.  J Nutr. 2006;  136 106-111
  • 175 Srinivasan M, Sudheer A R, Pillai K R, Kumar P R, Sudhakaran P R, Menon V P. Lycopene as a natural protector against gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes in vitro.  Biochim Biophys Acta. 2007;  1770 659-665
  • 176 Yang S C, Huang C C, Chu J S, Chen J R. Effects of β-carotene on cell viability and antioxidant status of hepatocytes from chronically ethanol-fed rats.  Br J Nutr. 2004;  92 209-215
  • 177 Kim Y, Chongviriyaphan N, Liu C, Russell R M, Wang X D. Combined antioxidant (β-carotene, α-tocopherol and ascorbic acid) supplementation increases the levels of lung retinoic acid and inhibits the activation of mitogen-activated protein kinase in the ferret lung cancer model.  Carcinogenesis. 2006;  27 1410-1419
  • 178 Chew B P, Brown C M, Park J S, Mixter P F. Dietary lutein inhibits mouse mammary tumor growth by regulating angiogenesis and apoptosis.  Anticancer Res. 2003;  23 3333-3339
  • 179 Lu X G, Zhan L B, Feng B A, Qu M Y, Yu L H, Xie J H. Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene.  World J Gastroenterol. 2004;  10 2140-2144
  • 180 McNally S J, Harrison E M, Ross J A, Garden O J, Wigmore S J. Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p 38 activation and phosphatase inhibition.  Int J Mol Med. 2007;  19 165-172
  • 181 Aziz M H, Shaw S R, Wu J, Longley B J, Ahmad N. Chemoprevention of skin cancer by grape constituent resveratrol: relevance to human disease?.  FASEB J. 2005;  19 1193-1195
  • 182 Kode A, Rajendrasozhan S, Caito S, Yang S R, Megson I L, Rahman I. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells.  Am J Physiol. 2008;  294 L478-L488
  • 183 Miyoshi N, Nakamura Y, Ueda Y, Abe M, Ozawa Y, Uchida K, Osawa T. Dietary ginger constituents, galanals A and B, are potent apoptosis inducers in human T lymphoma Jurkat cells.  Cancer Lett. 2003;  199 113-119
  • 184 Takada Y, Andreeff M, Aggarwal B B. Indole-3-carbinol suppresses NF-kappaB and Ikappa Balpha kinase activation, causing inhibition of expression of NF-kappaB regulated antiapoptotic and metastatic gene products and enhancement of apoptosis in myeloid and leukemia cells.  Blood. 2005;  106 641-649
  • 185 Zhang S, Shen H M, Ong C M. Down-regulation of c-FLIP contributes to the sensitization effect of 3,3′-diindolylmethane on TRAIL-induced apoptosis in cancer cells.  Mol Cancer Ther. 2005;  4 1972-1981
  • 186 Herman-Antosiewicz A, Singh S V. Signal transduction pathways leading to cell cycle arrest and apoptosis induction in cancer cells by Allium vegetable derived organosulfur compounds: a review.  Mutat Res. 2004;  555 121-131
  • 187 Rose D P, Connolly J M. Omega-3 fatty acids as cancer chemopreventive agents.  Pharmacol Ther. 1999;  83 217-244

Dr. Ning-Sun Yang

Agricultural Biotechnology Research Center
Agricultural Technology Building
Academia Sinica

No. 128, Sec. 2, Academia Road

Nankang

Taipei 11529

Taiwan

Republic of China

Phone: + 88 62 27 87 20 67

Fax: + 88 62 26 51 11 27

Email: nsyang@gate.sinica.edu.tw

    >