Planta Med 2010; 76(11): 1094-1102
DOI: 10.1055/s-0030-1249898
Cancer Therapy
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

Metabolomics: A Tool for Anticancer Lead-Finding from Natural Products

Hye Kyong Kim1 , Erica G. Wilson1 , Young Hae Choi1 , Robert Verpoorte1
  • 1Section Metabolomics, Institute of Biology, Leiden University, Leiden, Netherlands
Further Information

Publication History

received March 3, 2010 revised April 6, 2010

accepted April 9, 2010

Publication Date:
19 May 2010 (online)

Abstract

Natural products have been the source of many drugs used in modern therapeutics, and particularly in the case of anticancer drugs, more than 50 % originally came from natural products. Their importance as a source of leads for new drugs therefore cannot be underestimated. However, due to the painstaking way of conventional lead-finding, the attention towards natural products has been deviated in the last decades. A new strategy for the detection of active compounds is necessary to get natural product research out of its stalemate. Metabolomics, with its holistic approach and the possibility it provides for the simultaneous detection of all sorts of metabolites, has the potential to be instrumental for this new approach. Therefore, this review aims at providing examples that illustrate the possibilities of using metabolomics as a tool to find active compounds from natural products, specifically anticancer drugs. Two different methods, in silico and in situ, have been introduced as possible approaches. Current methods to detect anticancer activity in natural products have been briefly reviewed and compared in the first section, and various applications of metabolomics in cancer research are mentioned as they can provide comprehensive information of cancer metabolites utilized in the in situ approach. Metabolomics will certainly improve the efficiency of lead-finding from natural products and thus reinstate this prolific source of potential anticancer drugs.

References

  • 1 Newman D J, Cragg G M. Natural products as sources of new drugs over the last 25 years.  J Nat Prod. 2007;  70 461-477
  • 2 Verpoorte R, Choi Y H, Kim H K. Ethnopharmacology and systems biology: a perfect holistic match.  J Ethnopharmacol. 2005;  100 53-56
  • 3 Ulrich-Merzenich G, Zeitler H, Jobst D, Panek D, Vetter H, Wagner H. Application of the ‘‘-omic- technologies in phytomedicine.  Phytomedicine. 2007;  14 70-82
  • 4 Rochfort S. Metabolomics reviewed: a new “omic” platform technology for systems biology and implications for natural products research.  J Nat Prod. 2005;  68 1813-1820
  • 5 Craige Trenerry V, Rochfort S J. Natural products research and metabolomics. Mander L, Liu H – W Comprehensive natural products II: chemistry and biology. Amsterdam; Elsevier 2010: 595-628
  • 6 Roos G, Röseler C, Berger-Bűter K, Simmen U. Classification and correction of St. John's wort extracts by nuclear magnetic resonance spectroscopy, multivariate data analysis and pharmacological activity.  Planta Med. 2004;  70 771-777
  • 7 Kim H K, Choi Y H, Erkelens C, Lefeber A W M, Verpoorte R. Metabolic fingerprinting of Ephedra species using 1H-NMR spectroscopy and principal component analysis.  Chem Pharm Bull. 2005;  53 105-109
  • 8 Yang S Y, Kim H K, Lefeber A W M, Erkelens C, Angelova N, Choi Y H, Verpoorte R. Application of two-dimensional nuclear magnetic resonance spectroscopy to quality control of ginseng commercial products.  Planta Med. 2006;  72 364-369
  • 9 Choi Y H, Tapias E C, Kim H K, Lefeber A W M, Erkelens C, Verhoeven J T J, Brzin J, Zel J, Verpoorte R. Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis.  Plant Physiol. 2004;  135 2398-2410
  • 10 Liang Y-S, Choi Y H, Kim H K, Linthorst H J M, Verpoorte R. Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by two dimensional NMR spectroscopy and multivariate analysis.  Phytochemistry. 2006;  67 2503-2511
  • 11 Leiss K A, Choi Y H, Abdel-Farid I B, Verpoorte R, Klinkhamer P G L. NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids.  J Chem Ecol. 2009;  35 219-229
  • 12 Choi H K, Choi Y H, Verberne M, Lefeber A W M, Erkelens C, Verpoorte R. Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique.  Phytochemistry. 2004;  65 857-864
  • 13 Le Gall G, Metzdorff S B, Pedersen J, Bennett R N, Colquhoun I J. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene.  Metabolomics. 2005;  1 181-198
  • 14 Sumner L W, Mendes P, Dixon R A. Plant metabolomics: large-scale phytochemistry in the functional genomics era.  Phytochemistry. 2003;  62 817-836
  • 15 Nicholson J K, Lindon J C, Holmes E. ‘Metabonomics : understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data.  Xenobiotica. 1999;  29 1181-1189
  • 16 Nicholson J K, Lindon J C. Systems biology – metabonomics.  Nature. 2008;  455 1054-1056
  • 17 Verpoorte R, Choi Y H, Mustafa N R, Kim H K. Metabolomics: back to basics.  Phytochem Rev. 2008;  7 525-537
  • 18 Beckonert O, Keun H C, Ebbels T M D, Bundy J, Holmes E, Lindon J C, Nicholson J K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts.  Nat Protoc. 2007;  2 2692-2703
  • 19 Broberg A, Kenne L. Use of high-resolution magic angle spinning nuclear magnetic resonance spectroscopy for in situ studies of low-molecular-mass compounds in red algae.  Anal Biochem. 2000;  284 367-374
  • 20 Suggitt M, Bibby M C. 50 years of preclinical anticancer drug screening: Empirical to target-driven approaches.  Clin Cancer Res. 2005;  11 971-981
  • 21 Gibbs J B. Mechanism-based target identification and drug discovery in cancer research.  Science. 2000;  287 1969-1972
  • 22 Damia G, D'Incalci M. Contemporary pre-clinical development of anticancer agents – what are the optimal preclinical models?.  Eur J Cancer. 2009;  45 2768-2781
  • 23 Holbeck S L. Update on NCI in vitro drug screen utilities.  Eur J Cancer. 2004;  40 785-793
  • 24 Kinghorn A D, Farnsworth N R, Soejarto D D, Cordell G A, Swanson S M, Pezzuto J M, Wani M C, Wall M E, Oberlies N H, Kroll D J, Kramer R A, Rose W C, Vite G D, Fairchild C R, Peterson R W, Wild R. Novel strategies for the discovery of plant-derived anticancer agents.  Pharm Biol. 2003;  41 53-67
  • 25 Lin R Z, Chang H Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research.  Biotechnol J. 2008;  3 1172-1184
  • 26 Kinghorn A D, Farnsworth N R, Beecher C W W, Soejarto D D, Cordell G A, Pezzuto J M, Wall M E, Wani M C, Brown D M, O'Neill M J, Lewis J A, Besterman J M. Novel strategies for plant-derived anticancer agents.  Int J Pharmacognosy. 1995;  33 48-58
  • 27 Kinghorn A D, Farnsworth N R, Soejarto D D, Cordell G A, Pezzuto J M, Udeani G O, Wani M C, Wall M E, Navarro H A, Kramer R A, Menendez A T, Fairchild C R, Lane K E, Forenza S, Vyas D M, Lam K S, Shu Y-S. Novel strategies for the discovery of plant-derived anticancer agents.  Pure Appl Chem. 1999;  71 1611-1618
  • 28 Kinghorn A D, Farnsworth N R, Soejarto D D, Cordell G A, Swanson S M, Pezzuto J M, Wani M C, Wall M E, Oberlies N H, Kroll D J, Kramer R A, Rose W C, Vite G D, Fairchild C R, Peterson R W, Wild R. Novel strategies for the discovery of plant-derived anticancer agents.  Pharm Biol. 2003;  41 53-67
  • 29 Kinghorn A D, Su B N, Jang D S, Chang L C, Lee D, Gu J Q, Carcache-Blanco E J, Pawlus A D, Lee S K, Park E J, Cuendet M, Gills J J, Bhat K, Park H S, Mata-Greenwood E, Song L L, Jang M, Pezzuto J M. Natural inhibitors of carcinogenesis.  Planta Med. 2004;  70 691-705
  • 30 Balunas M J, Kinghorn A D. Drug discovery from medicinal plants.  Life Sci. 2005;  78 431-441
  • 31 Boros L G, Brackett D J, Harrigan G G. Metabolic biomarker and kinase drug target discovery in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP).  Curr Cancer Drug Targets. 2003;  3 445-453
  • 32 Brindle J T, Antti H, Holmes E, Tranter G, Nicholson J K, Bethell H W L, Clarkec S, Schofield P M, McKilligin E, Mosedale D E, Grainger D J. Rapid and non-invasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics.  Nat Med. 2002;  8 1439-1444
  • 33 Lindskog M, Spenger C, Jarvet J, Gräslund A, Kogner P. Predicting resistance or response to chemotherapy by proton magnetic resonance spectroscopy in neuroblastoma.  J Natl Cancer Inst. 2004;  96 1457-1466
  • 34 Robertson D G. Metabonomics in toxicology: a review.  Toxicol Sci. 2005;  85 809-822
  • 35 Leo A D, Claudino W, Colangiuli D, Bessi S, Pestrin M, Biganzoli L. New strategies to identify molecular markers predicting chemotherapy activity and toxicity in breast cancer.  Ann Oncol. 2007;  18 8-14
  • 36 Lindon J C, Holmes E, Nicholson J K. Metabonomics and its role in drug development and disease diagnosis.  Expert Rev Mol Diagn. 2004;  4 189-199
  • 37 Gribbestad I S, Sitter B, Lundgren S, Krane J, Axelson D. Metabolite composition in breast tumors examined by proton nuclear magnetic resonance spectroscopy.  Anticancer Res. 1999;  19 1737-1746
  • 38 Sitter B, Lundgren S, Bathen T F, Halgunset J, Fjosne H E, Gribbestadl I S. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters.  NMR Biomed. 2006;  19 30-40
  • 39 Spratlin J L, Serkova N J, Eckhardt S G. Clinical applications of metabolomics in oncology: a review.  Clin Cancer Res. 2009;  15 431-440
  • 40 Yang C, Richardson A D, Smith J W, Osterman A. Comparative metabolomics of breast cancer.  Pac Symp Biocomput. 2007;  181-192
  • 41 Swanson M G, Zektzer A S, Tabatabai Z L, Simko J, Jarso S, Keshari K R, Schmitt L, Carroll P R, Shinohara K, Vigneron D B, Kurhanewicz J. Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy.  Magn Reson Med. 2006;  55 1257-1264
  • 42 Yang J, Xu G, Zheng Y, Kong H, Pang T, Lva S, Yang Q. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases.  J Chromatogr B. 2004;  813 59-65
  • 43 Griffin J L, Shockcor J P. Metabolic profiles of cancer cells.  Nat Rev Cancer. 2004;  4 551-561
  • 44 Odunsi K, Wollman R M, Ambrosone C B, Hutson A, McCann S E, Tammela J, Geisler J P, Miller G, Sellers T, Cliby W, Qian F, Keitz B, Intengan M, Lele S, Alderfer J L. Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics.  Int J Cancer. 2005;  113 782-788
  • 45 Robertson D G, Reily M D, Sigler R E, Wells D F, Paterson D A, Braden T K. Metabonomics: Evaluation of nuclear magnetic resonance and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants.  Toxicol Sci. 2000;  57 326-337
  • 46 Claudino W M, Quattrone A, Biganzoli L, Pestrin M, Bertini I, Di Leo A. Metabolomics: available results, current research projects in breast cancer, and future applications.  J Clin Oncol. 2007;  25 2840-2846
  • 47 Morse D L, Raghunand N, Sadarangani P, Murthi S, Job C, Day S, Howison C, Gillies R J. Response of choline metabolites to docetaxel therapy is quantified in vivo by localized 31P MRS of human breast cancer xenografts and in vitro by high-resolution 31P NMR spectroscopy of cell extracts.  Magn Reson Med. 2007;  58 270-280
  • 48 Negendank W G. Studies of human tumors by MRS: a review.  NMR Biomed. 1992;  5 303-324
  • 49 Sterin M, Cohen J S, Mardor Y, Berman E, Ringel I. Levels of phospholipids metabolites in breast cancer cells treated with antimitotic drugs: a 31P-magetic resonance spectroscopy study.  Cancer Res. 2001;  61 7536-7543
  • 50 Chung Y L, Griffiths J R. Using metabolomics to monitor anticancer drugs. Kroemer G, Mumberg D, Keun K, Riefke B, Steger-Hartmann T, Petersen K Oncogenes meet metabolism. Ernst Schering Foundation Symposium Procedings. Heidelberg; Springer-Verlag 2008: 55-78
  • 51 Dixon R A, Sumner L W. Legume natural producs: understanding and manipulating complex pathways for human and animal health.  Plant Physiol. 2003;  131 878-885
  • 52 Zhi Biao-Yi, Yan Yu Y, Yi Zeng-Liang. Investigation of antimicrobial model of Hemsleya pengxianensis W.J. Chang and its main active component by metabolomics technique.  J Ethnopharmacol. 2008;  116 89-95
  • 53 Liu Y, Wen J, Wang Y, Li Y, Xu W. Postulating modes of action of compounds with antimicrobial activities through metabolomics analysis.  Chromatographia. 2010;  71 253-258
  • 54 Cardoso-Taketa A T, Pereda-Miranda R, Choi Y H, Verpoorte R, Villarreal M L. Metabolic profiling of the Mexican anxiolytic and sedative plant Galphimia glauca using nuclear magnetic resonance spectroscopy and multivariate data analysis.  Planta Med. 2008;  74 1295-1301
  • 55 Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics.  Chemometrics Intell Lab Syst. 2001;  58 109-130
  • 56 Holmes E, Antti H. Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterizing and interpreting complex biological NMR spectra.  Analyst. 2002;  127 1549-1557
  • 57 Trygg J, Wold S. O2-PLS, a two-block (X–Y) latent variable regression (LVR) method with an integrated OSC filter.  J Chemom. 2003;  17 53-64
  • 58 Rantalainen M, Cloarec O, Beckonert O, Wilson I D, Jackson D, Tonge R, Rowlinson R, Rayner S, Nickson J, Wilkinson R W, Mills J D, Trygg J, Nicholson J K, Holmes E. Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice.  J Proteom Res. 2006;  5 2642-2655
  • 59 Ebbels T M D, Rachel Cavill R. Bioinformatic methods in NMR-based metabolic profiling.  Prog Nucl Magn Reson Spectr. 2009;  55 361-374
  • 60 Dunn W B. Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes.  Phys Biol. 2008;  5 1-24
  • 61 Kell D B, Brown M, Hazel M, Davey H M, Dunn W B, Spasic I, Oliver S G. Metabolic footprinting and systems biology: the medium is the message.  Nat Rev Microbiol. 2005;  3 557-565
  • 62 Allen J, Davey H M, Broadhurst D, Rowland J J, Oliver S G, Kell D B. Discrimination of modes of action of antifungal substances by use of metabolic footprinting.  Appl Environ Microbiol. 2004;  70 6157-6165
  • 63 Verhoeckx K C M, Bijlsma S, Jespersen S, Ramaker R, Verheij E R, Witkamp R F, van der Greef J, Rodenburg R J T. Characterization of anti-inflammatory compounds using transcriptomics, proteomics, and metabolomics in combination with multivariate data analysis.  Int Immunopharmacol. 2004;  4 1499-1514
  • 64 Xi Y, De Ropp J S, Viant M R, Woodruff D L, Yu P. Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy.  Anal Chim Acta. 2008;  614 127-133
  • 65 Kim H K, Saifullah, Khan S, Wilson E G, Prat Kricun S D, Meissner A, Goraler S, Deelder A M, Choi Y H, Verpoorte R. Metabolic classification of South American Ilex species by NMR-based metabolomics.  Phytochemistry. 2010;  71 773-784
  • 66 Lewis I A, Schommer S C, Hodis B, Robb K A, Tonelli M, Westler W M, Sussman M R, Markley J L. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.  Anal Chem. 2007;  79 9385-9390

Dr. Hye Kyong Kim

Section Metabolomics
Institute of Biology
Leiden University

Einsteinweg 55

P. O. Box 9502

2300RA Leiden

The Netherlands

Phone: + 31 7 15 27 45 10

Fax: + 31 7 15 27 45 11

Email: h.k.kim@chem.leidenuniv.nl

    >