Synlett 2011(7): 955-958  
DOI: 10.1055/s-0030-1259728
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Palladium-Catalyzed Monoarylation of Aryl Amine with Aryl Tosylates

Xiaomin Xie*a, Gang Nib, Fangfang Maa, Lina Dingc, Sheng Xu*b, Zhaoguo Zhanga
a School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240,P. R. of China
Fax: +86(21)54748925; e-Mail: xiaominxie@sjtu.edu.cn;
b School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road,Shanghai 200237, P. R. of China
Fax: +86(21)64251851; e-Mail: xusheng@ecust.edu.cn;
c School of Chemistry Chemical Engineering & Materials, Heilongjiang University, 74 Xuefu Road, Harbin 150000, P. R. of China
Further Information

Publication History

Received 29 December 2010
Publication Date:
10 March 2011 (online)

Abstract

The bulky and electron-rich MOP-type ligand was efficient for the Pd-catalyzed amination of aryl tosylates. The in situ generated Pd(0) was a more efficient catalyst precursor than Pd(dba)2. In the presence of Pd(OAc)2, PhB(OH)2, and a hindered and electron-rich MOP-type ligand, a variety of primary aryl amines reacted with various aryl tosylates to form the corresponding secondary aryl amines in high yields with high selectivity. Furthermore, the catalyst system was also efficient for the arylation of indoles and hydrazones with aryl tosylates.

    References and Notes

  • 1a Schlummer B. Scholz U. Adv. Synth. Catal.  2004,  346:  1599 
  • 1b Hartwig JF. In Handbook of Organopalladium Chemistry for Organopalladium Chemistry of Organic Synthesis   Vol. 1:  Wiley-Interscience; New York: 2002.  p.1051 
  • 1c Muci A. Buchwald SL. Top. Curr. Chem.  2002,  219:  131 
  • 2a Hartwig JF. Acc. Chem. Res.  2008,  41:  1534 
  • 2b Ikawa T. Barder TE. Biscoe MR. Buchwald SL. J. Am. Chem. Soc.  2007,  129:  13001 
  • 2c Littke AF. Fu GC. Angew. Chem. Int. Ed.  2002,  41:  4176 
  • 2d Christmann U. Vilar R. Angew. Chem. Int. Ed.  2005,  44:  366 
  • 3 Munday RH. Martinelli JR. Buchwald SL. J. Am. Chem. Soc.  2008,  130:  2754 
  • 4a Jutand A. Hii KKM. Thornton-Pett M. Brown JM. Organometallics  1999,  18:  5367 
  • 4b Alcazar-Roman LM. Hartwig JF. Liable-Sands LM. Guzei IA.
    J. Am. Chem. Soc.  2000,  122:  4618 
  • 4c Alcazar-Roman LM. Hartwig JF. Organometallics  2002,  21:  491 
  • 4d Roy AH. Hartwig JF. J. Am. Chem. Soc.  2003,  125:  8704 
  • 5 Hamann BC. Hartwig JF. J. Am. Chem. Soc.  1998,  120:  7369 
  • For C-N bond formation, see:
  • 6a Klapars A. Campos KR. Chen C. Volante RP. Org. Lett.  2005,  7:  1185 
  • 6b Huang X. Anderson KW. Zim D. Jiang L. Klapars A. Buchwald SL. J. Am. Chem. Soc.  2003,  125:  6653 
  • 6c Vo GD. Hartwig JF. J. Am. Chem. Soc.  2009,  131:  11049 
  • For C-C bond formation:
  • 6d Ackermann L. Althammer A. Fenner S. Angew. Chem. Int. Ed.  2009,  48:  201 
  • 6e Gooßen LJ. Rodríguea N. Lange PP. Linder C. Angew. Chem. Int. Ed.  2010,  49:  111 
  • 6f Choy PY. Chow WK. So CM. Lau CP. Kwong FY. Chem. Eur. J.  2010,  16:  9982 
  • 6g Pschierer J. Plenio H. Eur. J. Org. Chem.  2010,  2934 
  • 6h Munday RH. Martnelli JR. Buchwald SL. J. Am. Chem. Soc.  2008,  130:  2754 
  • 6i Zhang L. Wu J. J. Am. Chem. Soc.  2008,  130:  12250 
  • 6j Bhayana B. Fors B. Buchwald SL. Org. Lett.  2009,  11:  3954 
  • 7 Ogata T. Hartwig JF. J. Am. Chem. Soc.  2008,  130:  13848 
  • 8 Xie X. Zhang TY. Zhang Z. J. Org. Chem.  2006,  71:  6522 
  • 9 Belfield AJ. Brown GR. Foubister AJ. Tetrahedron  1999,  55:  11399 
  • 10 Buchwald SL. Mauger C. Mignani G. Scholz U. Adv. Synth. Catal.  2006,  348:  23 
  • 11a Law KY. Chem. Rev.  1993,  93:  449 
  • 11b Ferreira ICFR. Queiroz M.-JRP. Kirsch G. Tetrahedron  2003,  59:  975 
  • 11c Watanabe M. Nishiyama M. Yamamoto T. Koie Y. Tetrahedron Lett.  2000,  41:  481 
  • 12 Roy AH. Hartwig JF. Organometallics  2004,  23:  194 
  • 13a Macé Y. Kapdi AR. Fairlamb IJS. Jutand A. Organometallics  2006,  25:  1795 
  • 13b Fairlamb IJS. Kapdi AR. Lee AF. McGlackem GP. Weissburger F. de Vries AHM. Van de Vondervoort LS. Chem. Eur. J.  2006,  12:  8750 
  • 13c Dooleweerdt K. Fors BP. Buchwald SL. Org. Lett.  2010,  12:  2350 
  • 15 Gao C. Yang L. J. Org. Chem.  2008,  73:  1624 
  • 16a Mann G. Hartwig JF. Driver MS. Fernandez-Rivas C. J. Am. Chem. Soc.  1998,  120:  827 
  • 16b Watanabe M. Nishiyama M. Yamamoto T. Koie Y. Tetrahedron Lett.  2000,  41:  481 
  • 17a Wagaw S. Yang B. Buchwald SL. J. Am. Chem. Soc.  1998,  120:  6621 
  • 17b Mauger C. Mignani G. Org. Process Res. Dev.  2004,  8:  1065 
  • 18 Nguyen HN. Huang X. Buchwald SL. J. Am. Chem. Soc.  2003,  125:  11818 
14

Typical Procedure
A flame-dried Schlenk tube was charged with Pd(OAc)2 (4.5 mg, 0.02 mmol), L1 (13.7 mg, 0.03 mmol), PhB(OH)2 (6.1 mg, 0.05 mmol), and n-BuOH (2 mL) under an atmosphere of nitrogen. The solution was stirred at r.t. for 15 min then K3PO4 (424.5 mg, 2.0 mmol) and ArOTs 1 (1mmol) were added, followed by aryl amine 3 (1.2 mmol). The reaction was heated to 110 ˚C and stirred for 15 h. The reaction mixture was cooled to r.t. and diluted with Et2O (5 mL) and H2O (3 mL). After separation of the layers, the aqueous phase was extracted with Et2O (3 × 5 mL), and the combined organic layers were dried over Na2SO4 and concentrated in vacuo. Purification of the crude product by flash column chromatography (silica gel; PE-Et3N, 99:1) yielded compound 3.