Planta Med 2012; 78(5): 440-447
DOI: 10.1055/s-0031-1298229
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

HPLC-based Activity Profiling – Discovery of Sanggenons as GABAA Receptor Modulators in the Traditional Chinese Drug Sang bai pi (Morus alba Root Bark)

Hyun Jung Kim1 [*] , Igor Baburin2 [*] , Janine Zaugg1 , Samad Nejad Ebrahimi1 , 3 , Steffen Hering2 , Matthias Hamburger1
  • 1Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
  • 2Institute of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
  • 3Department of Phytochemistry, Medicinal Plant and Drugs Research Institute, Shahid Beheshti University, G. C., Tehran, Iran
Further Information

Publication History

received October 10, 2011 revised Dec. 5, 2011

accepted Dec. 30, 2011

Publication Date:
31 January 2012 (online)

Abstract

EtOAc extracts from two batches of Morus alba root bark (Sang bai pi) potentiated γ-aminobutyric acid (GABA)-induced chloride influx in Xenopus oocytes, which transiently expressed GABAA receptors of the subunit composition α 1 β 2 γ 2S. With the aid of HPLC-based activity profiling of the extract from the first batch, activity was traced to a peak subsequently identified as sanggenon G (3). The second batch had a different phytochemical profile, and HPLC-based activity profiling led to the identification of sanggenon C (4) and a stereoisomer of sanggenon D (2) as positive GABAA receptor modulators. The structurally related compound kuwanon L (1) was inactive. The sanggenons represent a new scaffold of positive GABAA receptor modulators.

Supporting Information

References

  • 1 Olsen R W, Sieghart W. International union of pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update.  Pharmacol Rev. 2008;  60 243-260
  • 2 Olsen R W, Sieghart W. GABA(A) receptors: subtypes provide diversity of function and pharmacology.  Neuropharmacology. 2009;  56 141-148
  • 3 Rudolph U, Knoflach F. Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes.  Nat Rev Drug Discov. 2011;  10 685-697
  • 4 Tan K R, Rudolph U, Luscher C. Hooked on benzodiazepines: GABAA receptor subtypes and addiction.  Trends Neurosci. 2011;  34 188-197
  • 5 Mohler H. The rise of a new GABA(A) pharmacology.  Neuropharmacology. 2011;  60 1042-1049
  • 6 Rudolph U, Mohler H. GABA-based therapeutic approaches: GABAA receptor subtype functions.  Curr Opin Pharmacol. 2006;  6 18-23
  • 7 Newman D J, Cragg G M. Natural products as sources of new drugs over the last 25 years.  J Nat Prod. 2007;  70 461-477
  • 8 Butler M S. Natural products to drugs: natural product-derived compounds in clinical trials.  Nat Prod Rep. 2008;  25 475-516
  • 9 Johnston G A R, Hanrahan J R, Chebib M, Duke R K, Mewett K N. Modulation of ionotropic GABA receptors by natural products of plant origin.  Adv Pharmacol. 2006;  54 286-316
  • 10 Tsang S Y, Xue H. Development of effective therapeutics targeting the GABA(A) receptor: naturally occuring alternatives.  Curr Pharm Des. 2004;  10 1035-1044
  • 11 Chang H-M, But P P-H. Pharmacology and applications of Chinese Materia Medica. Singapore: World Scientific Publishing Co. Pte. Ltd.; 1987: 1022
  • 12 Tang W, Eisenbrand G. Handbook of Chinese medicinal plants. Chemistry, pharmacology, toxicology. Weinheim: Wiley-VCH; 2011: 777-781
  • 13 Nomura T, Hano Y. Isoprenoid-substituted phenolic compounds of moraceous plants.  Nat Prod Rep. 1994;  11 205-218
  • 14 Potterat O, Hamburger M. Natural products in drug discovery – concepts and approaches for tracking bioactivity.  Curr Org Chem. 2006;  10 899-920
  • 15 Danz H, Stoyanova S, Wippich P, Brattstroem A, Hamburger M. Identification and isolation of the cyclooxygenase-2 inhibitory principle in Isatis tinctoria.  Planta Med. 2001;  67 411-416
  • 16 Dittmann K, Gerhaeuser C, Klimo K, Hamburger M. HPLC-based activity profiling of Salvia miltiorrhiza for MAO A and iNOS inhibitory activities.  Planta Med. 2004;  70 909-913
  • 17 Adams M, Zimmermann S, Kaiser M, Brun R, Hamburger M. A protocol for HPLC-based activity profiling for natural products with activities against tropical parasites.  Nat Prod Commun. 2009;  4 1377-1381
  • 18 Kim H J, Baburin I, Khom S, Hering S, Hamburger M. HPLC-based activity profiling approach for the discovery of GABA(A) receptor ligands using an automated two microelectrode voltage clamp assay on Xenopus oocytes.  Planta Med. 2008;  74 521-526
  • 19 Zaugg J, Baburin I, Strommer B, Kim H J, Hering S, Hamburger M. HPLC-based activity profiling: discovery of piperine as a positive GABA(A) receptor modulator targeting a benzodiazepine-independent binding site.  J Nat Prod. 2010;  73 185-191
  • 20 Zaugg J, Eickmeier E, Ebrahimi S N, Baburin I, Hering S, Hamburger M. Positive GABA(A) receptor modulators from Acorus calamus and structural analysis of (+)-dioxosarcoguaiacol by 1D and 2D NMR and molecular modeling.  J Nat Prod. 2011;  74 1437-1443
  • 21 Zaugg J, Eickmeier E, Rueda D C, Hering S, Hamburger M. HPLC-based activity profiling of Angelica pubescens roots for new positive GABAA receptor modulators in Xenopus oocytes.  Fitoterapia. 2011;  82 434-440
  • 22 Zaugg J, Khom S, Eigenmann D, Baburin I, Hamburger M, Hering S. Identification and characterization of GABA(A) receptor modulatory diterpenes from Biota orientalis that decrease locomotor activity in mice.  J Nat Prod. 2011;  74 1764-1772
  • 23 Yang X, Baburin I, Plitzko I, Hering S, Hamburger M. HPLC-based activity profiling for GABA(A) receptor modulators from the traditional Chinese herbal drug Kushen (Sophora flavescens root).  Mol Divers. 2011;  15 361-372
  • 24 Li Y, Plitzko I, Zaugg J, Hering S, Hamburger M. HPLC-based activity profiling for GABA(A) receptor modulators: a new dihydroisocoumarin from Haloxylon scoparium.  J Nat Prod. 2010;  73 768-770
  • 25 Fluegge J. Grundlagen der Polarimetrie. Berlin: De Gruyter-Verlag; 1970
  • 26 Pharmacopoeia of the People's Republic of China. English edition. Beijing: China Medical Science Press; 2010: 282
  • 27 Khom S, Baburin I, Timin E N, Hohaus A, Sieghart W, Hering S. Pharmacological properties of GABA(A) receptors containing gamma1 subunits.  Mol Pharmacol. 2006;  69 640-649
  • 28 Baburin I, Beyl S, Hering S. Automated fast perfusion of Xenopus oocytes for drug screening.  Pflugers Arch. 2006;  453 117-123
  • 29 Hano Y, Shinkichi S, Kohno H, Nomura T. Absolute configuration of Kuwanon L, a natural Diels-Alder type adduct from the Morus root bark.  Heterocycles. 1988;  27 75-81
  • 30 Fukai T, Hano Y, Fujimoto T, Nomura T. Structure of sanggenon G, a new Diels-Alder adduct from the Chinese crude drug “Sang Bai Pi” (Morus root barks).  Heterocycles. 1983;  20 611-615
  • 31 Hano Y, Shinkichi S, Nomura T, Iitaka Y. Absolute configuration of natural Diels-Alder type adducts from the Morus root bark.  Heterocycles. 1988;  27 2315-2325
  • 32 Gaffield W. Circular dichroism, optical rotatory dispersion and absolute configuration of flavanones, 3-hydroxyflavanones and their glycosides.  Tetrahedron. 1970;  26 4093-4108
  • 33 Nomura T, Fukai T, Hano Y, Uzawa J. Structure of sanggenon D, a natural hypotensive Diels-Alder adduct from Chinese crude drug “Sang-Bai-Pi” (Morus root barks).  Heterocycles. 1982;  17 381-389
  • 34 Nomura T, Fukai T, Hano Y, Uzawa J. Structure of sanggenon C, a natural hypotensive Diels-Alder adduct from Chinese crude drug “Sang Bai-Pi” (Morus root barks).  Heterocycles. 1981;  16 2141-2148
  • 35 Hano Y, Kanzaki R, Fukai T, Nomura T. Revised structure of sanggenon A.  Heterocycles. 1997;  45 867-874
  • 36 Shi Y-Q, Fukai T, Ochiai M, Nomura T. Absolute structures of 3-hydroxy-2-prenylflavanones with an ether linkage between the 2′- and 3-positions from moraceous plants.  Heterocycles. 2001;  55 13-20
  • 37 Hui K M, Huen M S, Wang H Y, Zheng H, Sigel E, Baur R, Ren H, Li Z W, Wong J T, Xue H. Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi.  Biochem Pharmacol. 2002;  64 1415-1424
  • 38 Hansen R S, Paulsen I, Davies M. Determinants of amentoflavone interaction at the GABAA receptor.  Eur J Pharmacol. 2005;  519 199-207
  • 39 Hanrahan J R, Chebib M, Davucheron N L M, Hall B J, Johnston G A R. Semisynthetic preparation of amentoflavone: a negative modulator at GABAA receptors.  Bioorg Med Chem Lett. 2003;  13 2281-2284
  • 40 Hanrahan J R, Chebib M, Johnston G A. Flavonoid modulation of GABA(A) receptors.  Br J Pharmacol. 2011;  163 234-245
  • 41 Khom S, Baburin I, Timin E, Hohaus A, Trauner G, Kopp B, Hering S. Valerenic acid potentiates and inhibits GABA(A) receptors: molecular mechanism and subunit specificity.  Neuropharmacology. 2007;  53 178-187

1 These authors contributed equally to this work.

Prof. Matthias Hamburger

Department of Pharmaceutical Sciences
University of Basel

Klingelbergstrasse 50

4056 Basel

Switzerland

Phone: +41 (0) 6 12 67 14 25

Fax: +41 (0) 6 12 67 14 74

Email: matthias.hamburger@unibas.ch

>