Planta Med 2015; 81(01): 20-25
DOI: 10.1055/s-0034-1383304
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Inhibitory Effect of Oleanolic Acid from the Rhizomes of Cyperus rotundus on Transient Receptor Potential Vanilloid 1 Channel

Joo Hyun Nam
1   Department of Physiology, Dongguk University College of Medicine, Kyungju, Republic of Korea
2   Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, Republic of Korea
,
Dong-Ung Lee
3   Division of Bioscience, Dongguk University, Gyeongju, Republic of Korea
› Author Affiliations
Further Information

Publication History

received 09 July 2014
revised 12 September 2014

accepted 17 October 2014

Publication Date:
17 November 2014 (online)

Abstract

Cyperus rotundus is used as an analgesic and sedative in oriental medicine and has been reported to exhibit antinociceptive and anti-inflammatory effects. On the other hand, the transient receptor potential vanilloid 1 channel is a nonselective cation channel that senses various noxious chemical and thermal stimuli. However, it has recently been reported that the epidermally expressed transient receptor potential vanilloid 1 channel is involved in heat- and UV-induced skin aging. The aim of this study was to evaluate whether C. rotundus extract and its constituents can inhibit this channel. Ethylacetate and hexane fractions of the methanol extract were found to partially inhibit transient receptor potential vanilloid 1 channel activity, and at a concentration of 90 µM, oleanolic acid, which was one of three constituents isolated from the ethylacetate fraction, inhibited this activity by 61.4 ± 8.0 %. This is first electrophysiological study to be conducted on the effects of C. rotundus extract and its constituents on the transient receptor potential vanilloid 1 channel. The results obtained provide insight of the potential therapeutic effects of C. rotundus in the contexts of analgesia and UV-induced photoaging.

Supporting Information

 
  • References

  • 1 Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997; 389: 816-824
  • 2 Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 2001; 24: 487-517
  • 3 Julius D. TRP channels and pain. Annu Rev Cell Dev Biol 2013; 29: 355-384
  • 4 Caterina M. TRP channel cannabinoid receptors in skin sensation, homeostasis, and inflammation. ACS Chem Neurosci 2014; DOI: 10.1021/cn5000919.
  • 5 Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 2012; 166: 510-521
  • 6 Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol 2008; 17: 1063-1072
  • 7 Radtke C, Sinis N, Sauter M, Jahn S, Kraushaar U, Guenther E, Rodemann HP, Rennekampff HO. TRPV channel expression in human skin and possible role in thermally induced cell death. J Burn Care Res 2011; 32: 150-159
  • 8 Yun JW, Seo JA, Jeong YS, Bae IH, Jang WH, Lee J, Kim SY, Shin SS, Woo BY, Lee KW, Lim KM, Park YH. TRPV1 antagonist can suppress the atopic dermatitis-like symptoms by accelerating skin barrier recovery. J Dermatol Sci 2011; 62: 8-15
  • 9 Lee YM, Kang SM, Chung JH. The role of TRPV1 channel in aged human skin. J Dermatol Sci 2012; 65: 81-85
  • 10 Lee YM, Kim YK, Kim KH, Park SJ, Kim SJ, Chung JH. A novel role for the TRPV1 channel in UV-induced matrix metalloproteinase (MMP)-1 expression in HaCaT cells. J Cell Physiol 2009; 219: 766-775
  • 11 Ardestani A, Yazdanparast R. Cyperus rotundus suppresses AGE formation and protein oxidation in a model of fructose-mediated protein glycoxidation. Int J Biol Macromol 2007; 41: 572-578
  • 12 Kilani-Jaziri S, Neffati A, Limem I, Boubaker J, Skandrani I, Sghair MB, Bouhlel I, Bhouri W, Mariotte AM, Ghedira K, Dijoux Franca MG, Chekir-Ghedira L. Relationship correlation of antioxidant and antiproliferative capacity of Cyperus rotundus products towards K562 erythroleukemia cells. Chem Biol Interact 2009; 181: 85-94
  • 13 Kilani-Jaziri S, Ledauphin J, Bouhlel I, Ben Sghaier M, Boubaker J, Skandrani I, Mosrati R, Ghedira K, Barillier D, Chekir-Ghedira L. Comparative study of Cyperus rotundus essential oil by a modified GC/MS analysis method. Evaluation of its antioxidant, cytotoxic, and apoptotic effects. Chem Biodiver 2008; 5: 729-742
  • 14 Ha JH, Lee KY, Choi HC, Cho JS, Kang BS, Lim JC, Lee DU. Modulation of radioligand binding to the GABAA-benzodiazepine receptor complex by a new component from Cyperus rotundus . Biol Pharm Bull 2002; 25: 128-130
  • 15 Singh N, Kulshrestha VK, Gupta MB, Bhargava KP. A pharmacological study of Cyperus rotundus . Indian J Med Res 1970; 58: 103-109
  • 16 Hikino H, Aota K, Takemoto T. Structure of cyperotundone. Chem Pharm Bull 1965; 13: 628-630
  • 17 Komai K, Tang CS. A chemotype of Cyperus rotundus in Hawaii. Phytochem 1989; 28: 1883-1886
  • 18 Trivedi B, Motl O, Herout V, Sorm F. Terpenes. CLXIV. Composition of the oil from Cyperus rotundus. Structure of patchoulenone. Coll Czech Chem Commun 1964; 29: 1675-1688
  • 19 Singh PN, Singh SB. A new saponin from mature tubers of Cyperus rotundus . Phytochem 1980; 19: 2056
  • 20 Higuchi R, Kawasaki T. Pericarp saponins of Akebia quinata Decne. I. Glycosides of hederagenin and oleanolic acid. Chem Pharm Bull 1976; 24: 1021-1032
  • 21 Zhao L, Chen WM, Fang QC. Triterpenoid saponins from Anemone flaccida . Planta Med 1990; 56: 92-93
  • 22 Jeong SJ, Miyamoto T, Inagaki M, Kim YC, Higuchi R. Rotundines A–C, three novel sesquiterpene alkaloids from Cyperus rotundus . J Nat Prod 2000; 63: 673-675
  • 23 Shin DH, Nam JH, Lee ES, Zhang Y, Kim SJ. Inhibition of Ca2+ release-activated Ca2+ channel (CRAC) by curcumin and caffeic acid phenethyl ester (CAPE) via electrophilic addition to a cysteine residue of Orai1. Biochem Biophys Res Commun 2012; 428: 56-61
  • 24 Shin DH, Seo EY, Pang B, Nam JH, Kim HS, Kim WK, Kim SJ. Inhibition of Ca2+-release-activated Ca2+ channel (CRAC) and K+ channels by curcumin in Jurkat-T cells. J Pharmacol Sci 2011; 115: 144-154
  • 25 Nam JH, Shin DH, Zheng H, Kang JS, Kim WK, Kim SJ. Inhibition of store-operated Ca2+ entry channels and K+ channels by caffeic acid phenethylester in T lymphocytes. Eur J Pharmacol 2009; 612: 153-160
  • 26 Imam MZ, Sumi CD. Evaluation of antinociceptive activity of hydromethanol extract of Cyperus rotundus in mice. BMC Complement Altern Med 2014; 14: 83
  • 27 Soumaya KJ, Dhekra M, Fadwa C, Zied G, Ilef L, Kamel G, Leila CG. Pharmacological, antioxidant, genotoxic studies and modulation of rat splenocyte functions by Cyperus rotundus extracts. BMC Complement Altern Med 2013; 13: 28
  • 28 Bannon AW, Malmberg AB. Models of nociception: hot-plate, tail-flick, and formalin tests in rodents. Curr Protoc Neurosci 2007; Chapter 8: Unit 8.9 DOI: 10.1002/0471142301.ns0809s41.
  • 29 Aguirre MC, Delporte C, Backhouse N, Erazo S, Letelier ME, Cassels BK, Silva X, Alegria S, Negrete R. Topical anti-inflammatory activity of 2alpha-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae . Bioorg Med Chem 2006; 14: 5673-5677
  • 30 Gainok J, Daniels R, Golembiowski D, Kindred P, Post L, Strickland R, Garrett N. Investigation of the anti-inflammatory, antinociceptive effect of ellagic acid as measured by digital paw pressure via the Randall-Selitto meter in male Sprague-Dawley rats. AANA J 2011; 79: S28-S34
  • 31 Lopes LS, Marques RB, Fernandes HB, Pereira SS, Ayres MC, Chaves MH, Almeida FR. Mechanisms of the antinociceptive action of (−)-epicatechin obtained from the hydroalcoholic fraction of Combretum leprosum Mart & Eic in rodents. J Biomed Sci 2012; 19: 68
  • 32 Maia JL, Lima-Junior RC, David JP, David JM, Santos FA, Rao VS. Oleanolic Acid, a pentacyclic triterpene attenuates the mustard oil-induced colonic nociception in mice. Biol Pharm Bull 2006; 29: 82-85
  • 33 Maia JL, Lima-Junior RC, Melo CM, David JP, David JM, Campos AR, Santos FA, Rao VS. Oleanolic acid, a pentacyclic triterpene attenuates capsaicin-induced nociception in mice: possible mechanisms. Pharmacol Res 2006; 54: 282-286
  • 34 Ojewole JA. Antiinflammatory and analgesic effects of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract in rats and mice. Methods Find Exp Clin Pharmacol 2006; 28: 441-446
  • 35 Park SH, Sim YB, Kang YJ, Kim SS, Kim CH, Kim SJ, Suh HW. Mechanisms involved in the antinociceptive effects of orally administered oleanolic acid in the mouse. Arch Pharm Res 2013; 36: 905-911
  • 36 Quinonez-Bastidas GN, Cervantes-Duran C, Rocha-Gonzalez HI, Murbartian J, Granados-Soto V. Analysis of the mechanisms underlying the antinociceptive effect of epicatechin in diabetic rats. Life Sci 2013; 93: 637-645
  • 37 Taghi Mansouri M, Naghizadeh B, Ghorbanzadeh B, Farbood Y. Central and peripheral antinociceptive effects of ellagic acid in different animal models of pain. Eur J Pharmacol 2013; 707: 46-53
  • 38 Gees M, Alpizar YA, Boonen B, Sanchez A, Everaerts W, Segal A, Xue F, Janssens A, Owsianik G, Nilius B, Voets T, Talavera K. Mechanisms of transient receptor potential vanilloid 1 activation and sensitization by allyl isothiocyanate. Mol Pharmacol 2013; 84: 325-334
  • 39 Stander S, Moormann C, Schumacher M, Buddenkotte J, Artuc M, Shpacovitch V, Brzoska T, Lippert U, Henz BM, Luger TA, Metze D, Steinhoff M. Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol 2004; 13: 129-139
  • 40 Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: A Potential Drug Target for Treating Various Diseases. Cells 2014; 3: 517-545
  • 41 Moran MM, McAlexander MA, Biro T, Szallasi A. Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 2011; 10: 601-620
  • 42 Southall MD, Li T, Gharibova LS, Pei Y, Nicol GD, Travers JB. Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 2003; 304: 217-222
  • 43 Schmelz M, Schmidt R, Bickel A, Handwerker HO, Torebjork HE. Specific C-receptors for itch in human skin. J Neurosci 1997; 17: 8003-8008
  • 44 Schmelz M, Schmidt R, Weidner C, Hilliges M, Torebjork HE, Handwerker HO. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol 2003; 89: 2441-2448
  • 45 Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, Lee CH, Kim M, Oh U. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci 2007; 27: 2331-2337
  • 46 Bai N, He K, Rolle M, Zheng B, Chen X, Shao Z, Peng T, Zheng Q. Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3 T3-L1 cells. J Agric Food Chem 2008; 56: 11668-11674
  • 47 Watanabe M. Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. J Agric Food Chem 1998; 46: 839-845