Planta Med 2015; 81(08): 648-654
DOI: 10.1055/s-0035-1546017
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Effects of the Olive Tree Leaf Constituents on Myocardial Oxidative Damage and Atherosclerosis

Panagiotis Efentakis
1   Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
,
Efstathios K. Iliodromitis
2   Second Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
,
Emmanuel Mikros
1   Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
,
Anastasia Papachristodoulou
1   Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
,
Nikolaos Dagres
2   Second Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
,
Alexios-Leandros Skaltsounis
3   Laboratory of Pharmacognocy and Chemistry of Natural Products, Faculty of Pharmacy, University of Athens, Athens, Greece
,
Ioanna Andreadou
1   Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece
› Author Affiliations
Further Information

Publication History

received 04 August 2014
revised 06 April 2015

accepted 07 April 2015

Publication Date:
27 May 2015 (online)

Abstract

The olive (Olea europaea) leaf is considered an important traditional herbal medicine utilized against infectious diseases, and for the treatment of diabetes and hypertension. Moreover, olive leaf constituents have been related to cardioprotection, probably due to their association with cellular redox modulating effects. The pathogenesis of certain common diseases, including those of the cardiovascular system, involves oxidative stress and tissue inflammation. Olive polyphenolic compounds, such as oleuropein, hydroxytyrosol, or tyrosol, possess antioxidant, anti-inflammatory, antiatherosclerotic, anti-ischemic, and hypolipidemic effects on the myocardium as demonstrated by various in vitro and in vivo studies. In this review article, we summarize the current knowledge on the role of the olive leaf constituents in the prevention of cardiac dysfunction and highlight future perspectives in their use as cardioprotective agents in therapeutics.

 
  • References

  • 1 Bartolini G, Petruccelli R. Classification, origin, diffusion and history of the olive. Rome: Food and Agriculture Organisation of the United Nations; 2002
  • 2 Le Tutour B, Guedon D. Antioxidative activities of Olea europaea leaves and related phenolic compounds. Phytochemistry 1992; 31: 1173-1178
  • 3 Ghisalberti EL. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine 1998; 5: 147-163
  • 4 Khayyal MT, el-Ghazaly MA, Abdallah DM, Nassar NN, Okpanyi SN, Kreuter MH. Blood pressure lowering effect of an olive leaf extract (Olea europaea) in L-NAME induced hypertension in rats. Arzneimittelforschung 2002; 52: 797-802
  • 5 Visioli F, Galli C. The effect of minor constituents of olive oil on cardiovascular disease: new findings. Nutr Rev 1998; 56: 142-147
  • 6 Jänicke C, Grünwald J, Brendler T. Handbuch Phytotherapie. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2003
  • 7 Zarzuelo A, Duarte J, Jimenez J, Gonzalez M, Utrilla MP. Vasodilator effect of olive leaf. Planta Med 1991; 57: 417-419
  • 8 Gonzalez M, Zarzuelo A, Gamez MJ, Utrilla MP, Jimenez J, Osuna I. Hypoglycemic activity of olive leaf. Planta Med 1992; 58: 513-515
  • 9 Flemmig J, Rusch D, Czerwinska ME, Rauwald HW, Arnhold J. Components of a standardised olive leaf dry extract (Ph. Eur.) promote hypothiocyanite production by lactoperoxidase. Arch Biochem Biophys 2014; 549: 17-25
  • 10 Flemmig J, Kuchta K, Arnhold J, Rauwald HW. Olea europaea leaf (Ph.Eur.) extract as well as several of its isolated phenolics inhibit the gout-related enzyme xanthine oxidase. Phytomedicine 2011; 18: 561-566
  • 11 Briante R, Patumi M, Terenziani S, Bismuto E, Febbraio F, Nucci R. Olea europaea L. leaf extract and derivatives: antioxidant properties. J Agric Food Chem 2002; 50: 4934-4940
  • 12 Barbaro B, Toietta G, Maggio R, Arciello M, Tarocchi M, Galli A, Balsano C. Effects of the olive-derived polyphenol oleuropein on human health. Int J Mol Sci 2014; 15: 18508-18524
  • 13 Saija A, Uccella N. Olive Biophenols: functional effects on human wellbeing. Trends Food Sci Tech 2001; 11: 357-363
  • 14 Rahmani AH, Albutti AS, Aly SM. Therapeutics role of olive fruits/oil in the prevention of diseases via modulation of anti-oxidant, anti-tumour and genetic activity. Int J Clin Exp Med 2014; 7: 799-808
  • 15 Calixto JB, Campos MM, Otuki MF, Santos AR. Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 2004; 70: 93-103
  • 16 Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 2003; 26: 2599-2608
  • 17 Sofi F, Abbate R, Gensini GF, Casini A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr 2010; 92: 1189-1196
  • 18 Roman B, Carta L, Martínez-González MA, Serra-Majem L. Effectiveness of the Mediterranean diet in the elderly. Clin Interv Aging 2008; 3: 97-109
  • 19 Davidson SM, Duchen MR. Endothelial mitochondria: contributing to vascular function and disease. Circ Res 2007; 100: 1128-1141
  • 20 Davidson SM. Endothelial mitochondria and heart disease. Cardiovasc Res 2010; 88: 58-66
  • 21 Manson JE, Greenland P, LaCroix AZ, Stefanick ML, Mouton CP, Oberman A, Perri MG, Sheps DS, Pettinger MB, Siscovick DS. Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N Engl J Med 2002; 347: 716-725
  • 22 Calvert JW, Condit ME, Aragón JP, Nicholson CK, Moody BF, Hood RL, Sindler AL, Gundewar S, Seals DR, Barouch LA, Lefer DJ. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of β3-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res 2011; 108: 1448-1458
  • 23 Roof SR, Ho HT, Little SC, Ostler JE, Brundage EA, Periasamy M, Villamena FA, Gyorke S, Biesiadecki BJ, Heymes C, Houser SR, Davis JP, Ziolo MT. Obligatory role of neuronal nitric oxide synthase in the heartʼs anti-oxidant adaptation with exercise. J Mol Cell Cardiol 2015; 81: 54-61
  • 24 Landmesser U, Spiekermann S, Dikalov S, Tatge H, Wilke R, Kohler C, Harrison DG, Horning B, Drexler H. Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 2002; 106: 3073-3078
  • 25 Landmesser U, Merten R, Spiekermann S, Buttner K, Drexler H, Horning B. Vascular endothelial superoxide desmutase activity in patients with coronary artery disease. Relation to endothelium-dependent vasodilation. Circulation 2000; 101: 2264-2270
  • 26 Andreadou I, Iliodromitis EK, Farmakis D, Kremastinos DT. To prevent, protect and save the ischemic heart: antioxidants revisited. Expert Opin Ther Targets 2009; 13: 945-956
  • 27 Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005; 111: 3481-3488
  • 28 Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, Shih DM, Van Lenten BJ, Frank JS, Demer LL, Edwards PA, Fogelman AM. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler Thromb Vasc Biol 1996; 16: 831-842
  • 29 Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 2006; 6: 508-519
  • 30 Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25: 29-38
  • 31 Boveris A, Cadenas E, Stoppani AO. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 1975; 156: 435-444
  • 32 Laursen JB, Somers M, Kurz S, McCann L, Warnholtz A, Freeman BA, Tarpey M, Fukai T, Harrison DG. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 2001; 103: 1282-1288
  • 33 Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003; 111: 1201-1209
  • 34 Kang JJ, Shu L, Park JL, Shayman JA, Bodary PF. Endothelial nitric oxide synthase uncoupling and microvascular dysfunction in the mesentery of mice deficient in α-galactosidase A. Am J Physiol Gastrointest Liver Physiol 2014; 306: G140-G146
  • 35 Young S, McEneny J. Lipoprotein oxidation and atherosclerosis. Biochem Soc Trans 2001; 29: 358-362
  • 36 Li D, Mehta JL. Oxidized LDL, a critical factor in atherogenesis. Cardiovasc Res 2005; 68: 353-354
  • 37 Holvoet P. Oxidized LDL and coronary heart disease. Acta Cardiol 2004; 59: 479-484
  • 38 Yost CC, Weyrich AS, Zimmerman GA. The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. Biochimie 2010; 92: 692-697
  • 39 Speroni E, Guerra MC, Minghetti A, Crespi-Perellino N, Pasini P, Piazza F. Oleuropein evaluated in vitro and in vivo as an anti-oxidant. Phytother Res 1998; 12: 98-100
  • 40 Visioli F, Bellomo G, Galli C. Free radical scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 1998; 247: 60-64
  • 41 Chimi H, Cillard J, Cillard P, Rahmani M. Peroxyl and hydroxyl radical scavenging activity of some natural phenolic anti-oxidants. J Am Oil Chem Soc 1991; 68: 307-312
  • 42 Visioli F, Galli C. The effect of minor constituents of olive oil on cardiovascular disease: new findings. Biochem Biophys Res Commun 1998; 56: 142-147
  • 43 Manna C, Migliardi V, Golino P, Scognamiglio A, Galletti P, Chiariello M, Zappia V. Oleuropein prevents oxidative myocardial injury induced by ischemia and reperfusion. J Nutr Biochem 2004; 15: 461-466
  • 44 Andreadou I, Iliodromitis EK, Mikros E, Constantinou M, Agalias A, Magiatis P, Skaltsounis AL, Kamber E, Tsantili-Kakoulidou A, Kremastinos DT. The olive constituent oleuropein exhibits anti-Ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J Nutr 2006; 136: 2213-2219
  • 45 Andreadou I, Sigala F, Iliodromitis EK, Papaefthimiou M, Sigalas C, Aligiannis N, Savvari P, Gorgoulis V, Papalabros E, Kremastinos DT. Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. J Mol Cell Cardiol 2007; 42: 549-558
  • 46 Andreadou I, Mikros E, Ioannidis K, Sigala F, Naka K, Kostidis S, Farmakis D, Tenta R, Kavantzas N, Bibli SI, Gikas E, Skaltsounis L, Kremastinos DT, Iliodromitis EK. Oleuropein prevents doxorubicin-induced cardiomyopathy interfering with signaling molecules and cardiomyocyte metabolism. J Mol Cell Cardiol 2014; 69: 4-16
  • 47 Andreadou I, Papaefthimiou M, Zira A, Constantinou M, Sigala F, Skaltsounis AL, Tsantili-Kakoulidou A, Iliodromitis EK, Kremastinos DT, Mikros E. Metabonomic identification of novel biomarkers in doxorubicin cardiotoxicity and protective effect of the natural anti-oxidant oleuropein. NMR Biomed 2009; 22: 585-592
  • 48 Masella R, Varı R, DʼArchivio M, Di Benedetto R. Extra virgin olive oil biophenols inhibit cell-mediated oxidation of LDL by increasing the mRNA transcription of glutathione-related enzymes. J Nutr 2004; 134: 785-791
  • 49 Coni E, Di Benedetto R, Di Pasquale M, Masella R, Modesti D, Mattei R, Carlini EA. Protective effect of oleuropein, an olive oil biophenol, on low density lipoprotein oxidizability in rabbits. Lipids 2000; 35: 45-54
  • 50 DellʼAgli M, Maschi O, Galli GV, Fagnani R, Dal Cero E, Caruso D, Bosisio E. Inhibition of platelet aggregation by olive oil phenols via cAMP-phosphodiesterase. Br J Nutr 2008; 99: 945-951
  • 51 Masella R, Cantafora A, Modesti D, Cardilli A, Gennaro L, Bocca A, Coni E. Anti-oxidant activity of 3,4-DHPEA-EA and protocatechuic acid: a comparative assessment with other olive oil biophenols. Redox Rep 1999; 4: 113-121
  • 52 Gonzalez-Santiago M, Martin-Bautista E, Carrero JJ, Fonolla J, Baro L, Bortolome MV, Gil-Loyzaga P, Lopez-Huertas E. One month administration of hydroxytyrosol, a phenolic anti-oxidant present in olive oil, to hyperlipemic rabbits inproves blood lipid profile, anti-oxidant status and reduces atherosclerosis development. Atherosclerosis 2006; 188: 35-42
  • 53 OʼDowd Y, Driss F, Dang PM, Elbim C, Gougerot-Pocidalo MA, Pasquier C, El-Benna J. Anti-oxidant effect of hydroxytyrosol, a polyphenol from olive oil: scavenging of hydrogen peroxide but not superoxide anion produced by human neutrophils. Biochem Pharmacol 2004; 68: 2003-2008
  • 54 Rafehi H, Smith AJ, Balcerczyk A, Ziemann M, Ooi J, Loveridge SJ, Baker EK, El-Osta A, Karagiannis TC. Investigation into the biological properties of the olive polyphenol, hydroxytyrosol: mechanistic insights by genome-wide mRNA-Seq analysis. Genes Nutr 2012; 7: 343-355
  • 55 Zrelli H, Matsuoka M, Kitazaki S, Zarrouk M, Miyazaki H. Hydroxytyrosol reduces intracellular reactive oxygen species levels in vascular endothelial cells by upregulating catalase expression through the AMPK-FOXO3a pathway. Eur J Pharmacol 2011; 660: 275-282
  • 56 Granados-Principal S, El-Azem N, Pamplona R, Ramirez-Tortosa C, Pulido-Moran M, Vera-Ramirez L, Quiles JL, Sanchez-Rovira P, Naudí A, Portero-Otin M, Perez-Lopez P, Ramirez-Tortosa M. Hydroxytyrosol ameliorates oxidative stress and mitochondrial dysfunction in doxorubicin-induced cardiotoxicity in rats with breast cancer. Biochem Pharmacol 2014; 90: 25-33
  • 57 Salami M, Galli C, De Angelis L, Visioli F. Formation of F2-isoprostanes in oxidized low density lipoprotein: inhibitory effect of hydroxytyrosol. Pharmacol Res 1995; 31: 275-279
  • 58 Andreadou I, Farmakis D, Prokovas E, Sigala F, Zoga A, Spyridaki K, Papalois A, Papapetropoulos A, Anastasiou-Nana M, Kremastinos DT, Iliodromitis EK. Short-term statin administration in hypercholesterolaemic rabbits resistant to postconditioning: effects on infarct size, endothelial nitric oxide synthase, and nitro-oxidative stress. Cardiovasc Res 2012; 94: 501-509
  • 59 Schmitt CA, Handler N, Heiss EH, Erker T, Dirsch VM. No evidence for modulation of endothelial nitric oxide synthase by the olive oil polyphenol hydroxytyrosol in human endothelial cells. Atherosclerosis 2007; 195: e58-e64
  • 60 Carluccio MA, Siculella L, Ancora MA, Massaro M, Scoditti E, Storelli C, Visioli F, Distante A, De Caterina R. Olive oil and red wine anti-oxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Τhromb Vasc Biol 2003; 23: 622-629
  • 61 Acin S, Navarro MA, Arbones-Mainar JM, Guillen N, Sarria AJ, Carnicer R, Surra JC, Orman I, Segovia JC, Torre Rde L, Covas MI, Fernandez-Bolanos J, Ruiz-Gutierrez V, Osada J. Hydroxytyrosol administration enhances atherosclerotic lesion development in apo E deficient mice. J Biochem 2006; 140: 383-391
  • 62 Pan S, Liu L, Pan H, Ma Y, Wang D, Kang K, Wang J, Sun B, Sun X, Jiang H. Protective effects of hydroxytyrosol on liver ischemia/reperfusion injury in mice. Mol Nutr Food Res 2013; 57: 1218-1227
  • 63 Czerwińska M, Kiss AK, Naruszewicz M. A comparison of anti-oxidant activities of oleuropein and its dialdehydic derivative from olive oil, oleacein. Food Chem 2012; 131: 940-947
  • 64 Morello JR, Vuorela S, Romero MP, Motilva MJ, Heinonen M. Anti-oxidant activity of olive pulp and olive oil phenolic compounds of the arbequina cultivar. J Agric Food Chem 2005; 53: 2002-2008
  • 65 Rosignoli P, Fuccelli R, Fabiani R, Servili M, Morozzi G. Effect of olive oil phenols on the production of inflammatory mediators in freshly isolated human monocytes. J Nutr Biochem 2013; 24: 1513-1519
  • 66 Angelino D, Gennari L, Blasa M, Selvaggini R, Urbani S, Esposto S, Servili M, Ninfali P. Chemical and cellular anti-oxidant activity of phytochemicals purified from olive mill waste waters. J Agric Food Chem 2011; 59: 2011-2018
  • 67 Paiva-Martins F, Fernandes J, Rocha S, Nascimento H, Vitorino R, Amado F, Borges F, Belo L, Santos-Silva A. Effects of olive oil polyphenols on erythrocyte oxidative damage. Mol Nutr Food Res 2009; 53: 609-616
  • 68 Vougogiannopoulou K, Lemus C, Halabalaki M, Pergola C, Werz O, Smith AB, Michel S, Skaltsounis L, Deguin B. One-step semisynthesis of oleacein and the determination as a 5-lipoxygenase inhibitor. J Nat Prod 2014; 77: 441-445
  • 69 Czerwinska ME, Kiss AK, Naruszewicz M. Inhibition of human neutrophils NEP activity, CD11b/CD18 expression and elastase release by 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde, oleacein. Food Chem 2014; 153: 1-8
  • 70 Sindona G, Caruso A, Cozza A, Fiorentini S, Lorusso B, Marini E, Nardi M, Procopio A, Zicari S. Anti-inflammatory effect of 3,4-DHPEA-EDA [2-(3,4-hydroxyphenyl) ethyl (3S,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate] on primary human vascular endothelial cells. Curr Med Chem 2012; 19: 4006-4013
  • 71 Di Benedetto R, Varì R, Scazzocchio B, Filesi C, Santangelo C, Giovannini C, Matarrese P, DʼArchivio M, Masella R. Tyrosol, the major extra virgin olive oil compound, restored intracellular anti-oxidant defences in spite of its weak antioxidative effectiveness. Nutr Metab Cardiovasc Dis 2007; 17: 535-545
  • 72 Cañuelo A, Peragón J. Proteomics analysis in Caenorhabditis elegans to elucidate the response induced by tyrosol, an olive phenol that stimulates longevity and stress resistance. Proteomics 2013; 13: 3064-3075
  • 73 Vivancos M, Moreno JJ. Effect of resveratrol, tyrosol and beta-sitosterol on oxidised low-density lipoprotein-stimulated oxidative stress, arachidonic acid release and prostaglandin E2 synthesis by RAW 264.7 macrophages. Br J Nutr 2008; 99: 1199-1207
  • 74 Lamuela-Raventos RM, Gimeno E, Fito M, Castellote AI, Covas M, de la Torre-Boronat MC, Lopez-Sabater MC. Interaction of olive oil phenol anti-oxidant components with low-density lipoprotein. Biol Res 2004; 37: 247-252
  • 75 Samuel SM, Thirunavukkarasu M, Penumathsa SV, Paul D, Maulik N. Akt/FOXO3a/SIRT1 mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: switching gears towards survival and longevity. J Agric Food Chem 2008; 56: 9692-9698
  • 76 Thirunavukkarasu M, Mathews Samuel S, Penumathsa SV, Zhan L, Bertelli AAE, Maulik N. Pharmacological preconditioning with tyrosol, a white wine component, depends on the activation of PI-3 kinase pathway in ischemic reperfused rat myocardium. FASEB J 2008; 22: 705.1
  • 77 Sun L, Isaak CK, Zhou Y, Petkau JC, O K. Liu Y, Siow YL. Salidroside and tyrosol from Rhodiola protect H9c2 cells from ischemia/reperfusion-induced apoptosis. Life Sci 2012; 91: 151-158
  • 78 Bali EB, Ergin V, Rackova L, Bayraktar O, Küçükboyaci N, Karasu Ç. Olive leaf extracts protect cardiomyocytes against 4-hydroxynonenal-induced toxicity in vitro: comparison with oleuropein, hydroxytyrosol, and quercetin. Planta Med 2014; 80: 984-992
  • 79 Paiva-Martins F, Fernandes J, Santos V, Silva L, Borges F, Rocha S, Belo L, Santos-Silva A. Powerful protective role of 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde against erythrocyte oxidative-induced hemolysis. J Agric Food Chem 2010; 58: 135-140
  • 80 Rietjens SJ, Bast A, de Vente J, Haenen GRMM. The olive oil anti-oxidant hydroxytyrosol efficiently protects against the oxidative stress-induced impairment of the NObullet response of isolated rat aorta. Am J Physiol Heart Circ Physiol 2007; 292: H1931-H1936
  • 81 Fabiani R, Rosignoli P, De Bartolomeo A, Fuccelli R, Servili M, Montedoro GF, Morozzi G. Oxidative DNA damage is prevented by extracts of olive oil, hydroxytyrosol, and other olive phenolic compounds in human blood mononuclear cells and HL60 cells. J Nutr 2008; 138: 1411-1416
  • 82 Parzonko A, Czerwinska ME, Kiss AK, Naruszewicz M. Oleuropein and oleacein may restore biological functions of endothelial progenitor cells impaired by angiotensin II via activation of Nrf2/heme oxygenase-1 pathway. Phytomedicine 2013; 20: 1088-1094
  • 83 Bayram B, Ozcelik B, Grimm S, Roeder T, Schrader C, Ernst IMA, Wagner AE, Grune T, Frank J, Rimbach G. A diet rich in olive oil phenolics reduces oxidative stress in the heart of SAMP8 mice by induction of Nrf2-dependent gene expression. Rejuvenation Res 2012; 15: 71-81
  • 84 Fitó M, Covas MI, Lamuela-Raventósc RM, Vilaa J. Protective effect of olive oil and its phenolic compounds against low density lipoprotein oxidation. Lipids 2000; 35: 633-638
  • 85 Poudyal H, Campbell F, Brown L. Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J Nutr 2010; 140: 946-953
  • 86 Wang L, Geng C, Jiang L, Gong D, Liu D, Yoshimura H, Zhong L. The anti-atherosclerotic effect of olive leaf extract is related to suppressed inflammatory response in rabbits with experimental atherosclerosis. Eur J Nutr 2008; 47: 235-243
  • 87 Ahmadvand H, Bagheri S, Khosrobeigi A, Boshtam M, Abdolahpour F. Effects of olive leaves extract on LDL oxidation induced-CuSO(4) in vitro . Pak J Pharm Sci 2012; 25: 571-575
  • 88 Singh I, Mok M, Christensen AM, Turner AH, Hawley JA. The effects of polyphenols in olive leaves on platelet function. Nutr Metab Cardiovasc Dis 2008; 18: 127-132