Rofo 2017; 189(01): 63-70
DOI: 10.1055/s-0042-119686
Neuroradiology
© Georg Thieme Verlag KG Stuttgart · New York

Increase in FLAIR Signal of the Fluid Within the Resection Cavity as Early Recurrence Marker: Also Valid for Brain Metastases?

FLAIR-Signalanstieg der Flüssigkeit in der Resektionshöhle als früher Rezidivparameter: auch gültig für Hirnmetastasen?
Stefanie Bette
1   Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Germany
,
Jens Gempt
2   Department of Neurosurgery, Klinikum rechts der Isar, Technical University Munich, Germany
,
Benedikt Wiestler
1   Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Germany
,
Thomas Huber
1   Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Germany
,
Hanno Specht
3   Department of Radiation Oncology, Klinikum rechts der Isar, Technical University Munich, Germany
,
Bernhard Meyer
2   Department of Neurosurgery, Klinikum rechts der Isar, Technical University Munich, Germany
,
Claus Zimmer
1   Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Germany
,
Jan S. Kirschke
1   Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Germany
,
Tobias Boeckh-Behrens
1   Department of Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Germany
› Author Affiliations
Further Information

Publication History

10 August 2016

04 October 2016

Publication Date:
21 December 2016 (online)

Abstract

Purpose Increase in FLAIR signal of the fluid within the resection cavity is described as a highly specific and early sign for tumor recurrence in gliomas. The aim of this study was to assess the prognostic value of FLAIR signal increase in partially or completely resected brain metastases.

Materials and Methods 209 cases of surgery for brain metastases were assessed. 41 cases with at least two follow-up MRIs were retrospectively included in this study. Quantitative and qualitative assessment of the FLAIR signal intensity of the fluid within the resection cavity was performed in the MRI examination at recurrent disease/last contact and in the previous MRI examination.

Results 3 of 6 cases with local tumor recurrence showed a FLAIR signal increase (sensitivity 50.0 %, specificity 100.0 %). In one case, this sign was observed even about 3 months before tumor recurrence. The specificity of FLAIR signal increase for overall tumor recurrence (local and distant) was also 100.0 %, but with a lower sensitivity of 13.0 %. Quantitative analysis showed significant differences for signal intensity of the resection cavity as well as for the change of signal intensity of the resection cavity in cases with or without local tumor recurrence.

Conclusion An increase in FLAIR signal of the fluid within the resection cavity might be a highly specific and early sign of local tumor recurrence/tumor progression also for brain metastases.

Key points:

  • An increase in FLAIR signal intensity of the fluid within the resection cavity is also observed in previously resected brain metastases.

  • The pathophysiology of this sign might be due to a cell-proliferative process.

Citation Format

  • Bette S, Gempt J, Wiestler B et al. Increase of the FLAIR Signal of the Fluid within the Resection Cavity as Early Recurrence Marker: Also Valid for Brain Metastases?. Fortschr Röntgenstr 2017; 189: 63 – 70

Zusammenfassung

Ziel Ein FLAIR Signalanstieg der Flüssigkeit in der Resektionshöhle wurde als spezifisches und frühes Zeichen für einen Tumorprogress/ein Tumorrezidiv beschrieben. Ziel dieser Studie war es, die Wertigkeit dieses Zeichens bei zuvor operierten Hirnmetastasen zu untersuchen.

Material und Methoden 209 Fälle mit zuvor operierten zerebralen Metastasen wurden retrospektiv untersucht, 41 Fälle mit mindestens zwei MRT-Verlaufskontrollen wurden in die Studie eingeschlossen. Die FLAIR-Signalintensität wurde sowohl qualitativ als auch quantitativ in der MRT mit einem Tumorrezidiv/in der letzten MRT als auch in der vorherigen MRT erfasst.

Ergebnisse 3 von 6 Fällen mit einem lokalen Tumorrezidiv zeigten einen FLAIR-Signalanstieg (Sensitivität 50,0 %, Spezifität 100,0 %). In einem Fall wurde dieses Zeichen sogar ca. 3 Monate vor Diagnose des Tumorrezidivs beobachtet. Die Spezifität für ein Tumorrezidiv (lokal und distant) lag ebenfalls bei 100,0 % mit einer jedoch niedrigeren Sensitivität (13,0 %). Die quantitative Analyse zeigte signifikante Unterschiede der Signalintensität in der Resektionshöhle bei Patienten mit und ohne lokales Tumorrezidiv, ebenso für die Änderung der Signalintensität.

Schlussfolgerung Ein FLAIR-Signalanstieg der Flüssigkeit in der Resektionshöhle könnte auch bei zuvor operierten Hirnmetastasen ein spezifisches und frühes Zeichen für einen Tumorprogress / ein Tumorrezidiv sein.

Kernaussagen

  • Ein FLAIR-Signalanstieg der Flüssigkeit in der Resektionshöhle wird nicht nur bei Gliomen, sondern auch bei Hirnmetastasen beobachtet

  • Die Pathophysiologie dieses Zeichens könnte auf einen proliferativen Prozess zurückzuführen sein

Ergänzendes Material/Supplement

 
  • References

  • 1 Fink KR. Fink JR. Imaging of brain metastases. Surgical neurology international 2013; 4: S209-S219
  • 2 Soffietti R. Cornu P. Delattre JY. et al. EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. European journal of neurology: the official journal of the European Federation of Neurological Societies 2006; 13: 674-681
  • 3 Bertolini F. Spallanzani A. Fontana A. et al. Brain metastases: an overview. CNS oncology 2015; 4: 37-46
  • 4 Kalkanis SN. Kondziolka D. Gaspar LE. et al. The role of surgical resection in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 2010; 96: 33-43
  • 5 Lin X. DeAngelis LM. Treatment of Brain Metastases. J Clin Oncol 2015; 33: 3475-3484
  • 6 Lukas RV. Gabikian P. Garza M. et al. Treatment of brain metastases. Oncology 2014; 87: 321-329
  • 7 Obermueller T. Schaeffner M. Gerhardt J. et al. Risks of postoperative paresis in motor eloquently and non-eloquently located brain metastases. BMC cancer 2014; 14: 21
  • 8 Bette S. Gempt J. Huber T. et al. FLAIR signal increase of the fluid within the resection cavity after glioma surgery: Generally valid as early recurrence marker?. Journal of Neurosurgery 2016; ; accepted DOI: ###.
  • 9 Ito-Yamashita T. Nakasu Y. Mitsuya K. et al. Detection of tumor progression by signal intensity increase on fluid-attenuated inversion recovery magnetic resonance images in the resection cavity of high-grade gliomas. Neurologia medico-chirurgica 2013; 53: 496-500
  • 10 Winterstein M. Munter MW. Burkholder I. et al. Partially resected gliomas: diagnostic performance of fluid-attenuated inversion recovery MR imaging for detection of progression. Radiology 2010; 254: 907-916
  • 11 General Assembly of the World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. The Journal of the American College of Dentists 2014; 81: 14-18
  • 12 Lin NU. Lee EQ. Aoyama H. et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol 2015; 16: e270-e278
  • 13 Lu S. Ahn D. Johnson G. et al. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 2004; 232: 221-228
  • 14 Siam L. Bleckmann A. Chaung HN. et al. The metastatic infiltration at the metastasis/brain parenchyma-interface is very heterogeneous and has a significant impact on survival in a prospective study. Oncotarget 2015; 6: 29254-29267
  • 15 Jha R. Battey TW. Pham L. et al. Fluid-attenuated inversion recovery hyperintensity correlates with matrix metalloproteinase-9 level and hemorrhagic transformation in acute ischemic stroke. Stroke; a journal of cerebral circulation 2014; 45: 1040-1045
  • 16 Noguchi K. Ogawa T. Inugami A. et al. Acute subarachnoid hemorrhage: MR imaging with fluid-attenuated inversion recovery pulse sequences. Radiology 1995; 196: 773-777
  • 17 Della Puppa A. Zustovich F. Gardiman M. et al. Haemorrhagic presentation of low-grade glioma in adults. Acta neurochirurgica 2007; 149: 1151-1155 ; discussion 1155
  • 18 Licata B. Turazzi S. Bleeding cerebral neoplasms with symptomatic hematoma. J Neurosurg Sci 2003; 47: 201-210 ; discussion 210
  • 19 Meyding-Lamade U. Forsting M. Albert F. et al. Accelerated methaemoglobin formation: potential pitfall in early postoperative MRI. Neuroradiology 1993; 35: 178-180
  • 20 Gempt J. Gerhardt J. Toth V. et al. Postoperative ischemic changes following brain metastasis resection as measured by diffusion-weighted magnetic resonance imaging. Journal of Neurosurgery 2013; 119: 1395-1400
  • 21 Mishra AM. Reddy SJ. Husain M. et al. Comparison of the magnetization transfer ratio and fluid-attenuated inversion recovery imaging signal intensity in differentiation of various cystic intracranial mass lesions and its correlation with biological parameters. J Magn Reson Imaging 2006; 24: 52-56
  • 22 Reiche W. Schuchardt V. Hagen T. et al. Differential diagnosis of intracranial ring enhancing cystic mass lesions--role of diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI). Clinical neurology and neurosurgery 2010; 112: 218-225
  • 23 Xu XX. Li B. Yang HF. et al. Can diffusion-weighted imaging be used to differentiate brain abscess from other ring-enhancing brain lesions? A meta-analysis. Clinical radiology 2014; 69: 909-915
  • 24 Galldiks N. Dunkl V. Stoffels G. et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging 2015; 42: 685-695
  • 25 Hatzoglou V. Yang TJ. Omuro A. et al. A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neuro Oncol 2015; DOI: 10.1093/neuonc/nov301.
  • 26 Suh CH. Kim HS. Choi YJ. et al. Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. AJNR Am J Neuroradiol 2013; 34: 2278-2286
  • 27 Thomas AA. Arevalo-Perez J. Kaley T. et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neurooncol 2015; 125: 183-190
  • 28 Zach L. Guez D. Last D. et al. Delayed contrast extravasation MRI: a new paradigm in neuro-oncology. Neuro Oncol 2015; 17: 457-465
  • 29 Zakaria R. Das K. Bhojak M. et al. The role of magnetic resonance imaging in the management of brain metastases: diagnosis to prognosis. Cancer imaging: the official publication of the International Cancer Imaging Society 2014; 14: 8
  • 30 Hsieh J. Elson P. Otvos B. et al. Tumor progression in patients receiving adjuvant whole-brain radiotherapy vs localized radiotherapy after surgical resection of brain metastases. Neurosurgery 2015; 76: 411-420
  • 31 Cohen JV. Alomari AK. Vortmeyer AO. et al. Melanoma Brain Metastasis Pseudoprogression after Pembrolizumab Treatment. Cancer immunology research 2015; DOI: 10.1158/2326-6066.CIR-15-0160.
  • 32 Zach L. Guez D. Last D. et al. Delayed contrast extravasation MRI for depicting tumor and non-tumoral tissues in primary and metastatic brain tumors. PloS one 2012; 7: e52008
  • 33 Pyka TGJ. Ringel F. Hüttinger S. et al. Prediction of glioma recurrence using dynamic ¹⁸F-fluoroethyltyrosine PET. AJNR Am J Neuroradiol 2014; 35: 1924-1929
  • 34 Wang S. Martinez-Lage M. Sakai Y. et al. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI. AJNR Am J Neuroradiol 2015; DOI: 10.3174/ajnr.A4474.