Synlett
DOI: 10.1055/s-0043-1774865
letter

Ultrasound-Assisted, BF3·OEt2-Promoted, Multicomponent Synthesis of Chromene-Based Podophyllotoxin Analogues

Fernanda A. Santos
,
The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, process 2018/00544-4), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 313660/2020-4), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their scholarships and financial support.


Abstract

A novel method was developed to synthesise chromene-lactone analogues of podophyllotoxin using an ultrasound-assisted multicomponent reaction (MCR). The MCR involved tetronic acid, phenols, and aromatic aldehydes and was promoted by BF3·OEt2, resulting in the production of ten derivatives with different substituents on the aromatic rings in yields ranging from 32% to 93%. These compounds are of interest due to their reported activity against tumour cells. Their ease of synthesis through the MCR may allow for more in-depth studies on anticancer activity, as well as investigations of other biological targets. The synthesised derivatives contain important pharmacophoric groups for potential applications in medicinal chemistry.

Supporting Information



Publication History

Received: 12 January 2024

Accepted after revision: 29 April 2024

Article published online:
16 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Török B, Schäfer C, Kokel A. Heterogeneous Catalysis in Sustainable Synthesis, 1st ed. Elsevier; Amsterdam: 2021: 443
  • 2 John SE, Gulati S, Shankaraiah N. Org. Chem. Front. 2021; 8: 4237
  • 3 Ma K, Zhao L, Yue Y, Yin C. Chem. Phys. Rev. 2022; 3: 11302
  • 4 Tagliapietra S, Gaudino EC, Cravotto G. Power Ultrasonics: Applications of High-Intensity Ultrasound . Elsevier Ltd; Amsterdam: 2015: 997
  • 5 Pagadala R, Kasi V, Shabalala NG, Jonnalagadda SB. Arabian J. Chem. 2022; 15: 103544
  • 6 Auria-Luna F, Fernández-Moreira V, Marqués-López E, Gimeno MC, Herrera RP. Sci. Rep. 2020; 10: 11594
  • 7 Chaudhary A, Singh K, Verma N, Kumar S, Kumar D, Sharma PP. Mini-Rev. Med. Chem. 2022; 22: 2736
  • 8 Mhiri C, Boubakri L, Ternane R, Mansour L, Harrath AH, Al-Tamimi J, Baklouti L, Hamdi N. J. Heterocycl. Chem. 2020; 57: 291
  • 9 Vinit R, Jintae L. Front. Chem. 2020; 623
  • 10 Zhang Z, Wang C, Ma L, Jiang X, Wu C, Wang Y, Jiang Y, Zheng W, Yang Y, Ma Y, Yang J. Biochem. Biophys. Res. Commun. 2019; 511: 381
  • 11 Abdelall EK. A, Elshemy HA. H, Labib MB, Mohamed FE. A. Bioorg. Chem. 2022; 120: 105591
  • 12 Boukattaya F, Daoud A, Boeda F, Pearson-Long MS. M, Gharsallah N, Kadri A, Bertus P, Ammar H. Med. Chem. 2019; 15: 257
  • 13 Conti C, Proietti Monaco L, Desideri N. Bioorg. Med. Chem. 2014; 22: 1201
  • 14 Semenova MN, Tsyganov DV, Malyshev OR, Ershov OV, Bardasov IN, Semenov RV, Kiselyov AS, Semenov VV. Bioorg. Med. Chem. Lett. 2014; 24: 3914
  • 15 Santoso H, Casana MI, Donner CD. Org. Biomol. Chem. 2014; 12: 171
  • 16 Jin L, Song Z, Cai F, Ruan L, Jiang R. Molecules 2022; 28: 302
  • 17 Jurd L. J. Heterocycl. Chem. 1997; 34: 601
  • 18 Frackenpohl J, Adelt I, Antonicek H, Arnold C, Behrmann P, Blaha N, Böhmer J, Gutbrod O, Hanke R, Hohmann S, Van Houtdreve M, Lösel P, Malsam O, Melchers M, Neufert V, Peschel E, Reckmann U, Schenke T, Thiesen HP, Velten R, Vogelsang K, Weis HC. Bioorg. Med. Chem. 2009; 17: 4160
  • 19 Charif IE, Mekelleche SM, Villemin D. J. Theor. Comput. Chem. 2010; 9: 1021
  • 20 Gao S, Tsai CH. Synlett 2009; 949
  • 21 Shitole NV, Sapkal SB, Shingate BB, Shingare MS. Bull. Korean Chem. Soc. 2011; 32: 35
  • 22 Khurana JM, Lumb A, Pandey A, Magoo D. Synth. Commun. 2012; 42: 1796
  • 23 Nikoofar K, Yielzoleh FM. J. Saudi Chem. Soc. 2018; 22: 715
  • 24 Javahershenas R, Nikzat S. RSC Adv. 2023; 13: 16619
  • 25 Synthesis of 5a–j; General Procedure: A mixture of tetronic acid (1.0 mmol), a phenol derivative (1.0 mmol), an aromatic aldehyde (1.0 mmol) and BF3·OEt2 (2 equiv) in dichloroethane (2 mL) was placed in an ultrasound bath (40 MHz) and subjected to ultrasound for 30 minutes at 0 °C, followed by heating to 50 °C. The reaction progress was monitored by TLC (20% ethyl acetate in hexane). After the reaction, the mixture was cooled to room temperature, and the solvent was removed under vacuum. The crude product was then purified by washing with a mixture of hexane-ethyl acetate (8:2) or by chromatography on a silica gel column using the same eluent.
  • 26 3-((4-Chlorophenyl)(2-hydroxy-4,5-dimethoxyphenyl)methyl)-4-hydroxyfuran-2(5H)-one (4a): Yield: 7.2 mg (20%); white solid; mp 209–210 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 12.00 (br s, OH), 9.04 (br s, OH), 7.27 (d, J = 8.7 Hz, 2 H, arom), 7.08 (d, J = 8.7 Hz, 2 H, arom), 6.87 (s, 1 H, arom), 6.44 (s, 1 H, arom), 5.35 (s, 1 H), 4.70 (d, J = 16.0 Hz, 1 H), 4.65 (d, J = 16.0 Hz, 1 H, arom), 3.68 (s, 3 H, OCH3), 3.56 (s, 3 H, OCH3). 13C NMR (150 MHz, DMSO-d 6): δ = 174.5, 174.4, 148.7, 148.2, 141.6, 141.3, 130.2, 129.8, 127.7, 118.6, 115.1, 101.1, 100.5, 66.3, 56.5, 55.3, 36.2. HRMS (ESI+): m/z [M+H]+ C19H18ClO6: 377.0792; found: 377.0909. 9-(4-Chlorophenyl)-6,7-dimethoxy-3,9-dihydro-1H-furo[3,4-b]chromen-1-one (5a): Yield: 30.4 mg (85%); white solid; mp 189–190 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 7.38 (d, J = 8.5 Hz, 2 H, arom), 7.31 (d, J = 8.5 Hz, 2 H, arom), 6.93 (s, 1 H, arom), 6.61 (s, 1 H, arom), 5.13 (d, J = 16.2 Hz, 1 H), 5.06 (dd, J = 16.2, 1.6 Hz, 1 H), 4.96 (s, 1 H), 3.79 (s, 3 H, OCH3), 3.62 (s, 3 H, OCH3). 13C NMR (100 MHz, DMSO-d 6): δ = 171.6, 169.7, 148.8, 146.5, 143.0, 142.5, 131.5, 129.9, 128.4, 113.4, 112.2, 101.5, 101.2, 65.7, 55.8, 55.8, 36.0. HRMS (ESI+): m/z [M+H+ H2O]+ C19H18ClO6: 377.0792; found: 377.0790. Characterization data for the other compounds are given in the Supporting Information.
  • 27 Pissurno AP. R, Laurentiz RS. Synth. Commun. 2017; 47: 1874
  • 28 Finêncio BM, Santos FA, Laurentiz RS. Synlett 2023; 34: 77