Horm Metab Res 2003; 35(10): 570-576
DOI: 10.1055/s-2003-43501
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Skeletal Muscle Cells from Insulin-resistant (Non-diabetic) Individuals are Susceptible to Insulin Desensitization by Palmitate

C.  Kausch[*] 1 , H.  Staiger[*] 1 , K.  Staiger1 , J.  Krützfeldt1 , S.  Matthaei1 , H.-U.  Häring1 , M.  Stumvoll1
  • 1Department of Endocrinology, Metabolism and Pathobiochemistry, Eberhard-Karls-University, Tübingen, Germany
Further Information

Publication History

Received 10 December 2002

Accepted after second revision 15 July 2003

Publication Date:
07 November 2003 (online)

Abstract

We recently demonstrated that in vivo insulin resistance is not retained in cultured skeletal muscle cells. In the present study, we tested the hypothesis that treating cultured skeletal muscle cells with fatty acids has an effect on insulin action which differs between insulin-sensitive and insulin-resistant subjects. Insulin effects were examined in myotubes from 8 normoglycemic non-obese insulin-resistant and 8 carefully matched insulin-sensitive subjects after preincubation with or without palmitate, linoleate, and 2-bromo-palmitate. Insulin-stimulated glycogen synthesis decreased by 27 ± 5 % after palmitate treatment in myotubes from insulin-resistant, but not from insulin-sensitive subjects (1.50 ± 0.08-fold over basal vs. 1.81 ± 0.09-fold, p = 0.042). Despite this observation, we did not find any impairment in the PI 3-kinase/PKB/GSK-3 pathway. Furthermore, insulin action was not affected by linoleate and 2-bromo-palmitate. In conclusion, our data provide preliminary evidence that insulin resistance of skeletal muscle does not necessarily involve primary defects in insulin action, but could represent susceptibility to the desensitizing effect of fatty acids and possibly other environmental or adipose tissue-derived factors.

References

  • 1 DeFronzo R A, Bonadonna R C, Ferranini E. Pathogenesis of NIDDM: a balanced overview.  Diabetes Care. 1992;  15 318-368
  • 2 Häring H U, Mehnert H. Pathogenesis of type 2 (non-insulin-dependent) diabetes mellitus: candidates for signal transmitter defect causing insulin resistance of skeletal muscle.  Diabetologia. 1993;  36 176-182
  • 3 Ferranini E. Insulin resistance and disease.  Bailliere’s Clin Endocrinol Metab. 1993;  7 785-1105
  • 4 Blau H M, Webster C. Isolation and characterization of human muscle cells.  Proc Natl Acad Sci USA. 1981;  78 5623-5627
  • 5 Sarabia V, Lam L, Burdett E, Leiter L A, Klip A. Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin.  J Clin Invest. 1992;  90 1386-1395
  • 6 Henry R R, Abrams L, Nikoulina S, Ciaraldi T P. Insulin action and glucose metabolism in nondiabetic control and NIDDM subjects. Comparison using human skeletal muscle cell cultures.  Diabetes. 1995;  44 936-946
  • 7 Ciaraldi T P, Abrams L, Nikoulina S, Mudaliar S, Henry R R. Glucose transport in cultured human skeletal muscle cells. Regulation by insulin and glucose in nondiabetic and non-insulin-dependent diabetes mellitus subjects.  J Clin Invest. 1995;  96 2820-2827
  • 8 Henry R R, Ciaraldi T P, Abrams-Carter L, Mudaliar S, Park K S, Nikoulina S E. Glycogen synthase activity is reduced in cultured skeletal muscle cells of non-insulin-dependent diabetes mellitus subjects. Biochemical and molecular mechanisms.  J Clin Invest. 1996;  98 1231-1236
  • 9 Ciaraldi T P, Carter L, Mudaliar S, Kern P A, Henry R R. Effects of tumor necrosis factor-alpha on glucose metabolism in cultured human muscle cells from nondiabetic and type 2 diabetic subjects.  Endocrinology. 1998;  139 4793-4800
  • 10 Mott D M, Pratley R E, Bogardus C. Postabsorptive respiratory quotient and insulin-stimulated glucose storage rate in nondiabetic Pima Indians are related to glycogen synthase fractional activity in cultured myoblasts.  J Clin Invest. 1998;  101 2251-2256
  • 11 Jackson S, Bagstaff S M, Lynn S, Yeaman S J, Turnbull D M, Walker M. Decreased insulin responsiveness of glucose uptake in cultured human skeletal muscle cells from insulin-resistant nondiabetic relatives of type 2 diabetic families.  Diabetes. 2000;  49 1169-1177
  • 12 Halse R, Bonavaud S M, Armstrong J L, McCormack J G, Yeaman S J. Control of glycogen synthesis by glucose, glycogen, and insulin in cultured human muscle cells.  Diabetes. 2001;  50 720-726
  • 13 Krützfeldt J, Kausch C, Volk A, Klein H H, Rett K, Häring H U, Stumvoll M. Insulin signaling and action in cultured skeletal muscle cells from lean healthy humans with high and low insulin sensitivity.  Diabetes. 2000;  49 992-998
  • 14 Matthaei S, Stumvoll M, Kellerer M, Häring H U. Pathophysiology and pharmacological treatment of insulin resistance.  Endocr Rev. 2000;  21 585-618
  • 15 Kelley D E, Goodpaster B H. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance.  Diabetes Care. 2001;  24 933-941
  • 16 Karam J H. Reversible insulin resistance in non-insulin-dependent diabetes mellitus.  Horm Metab Res. 1996;  28 440-444
  • 17 Stefan N, Wahl H G, Fritsche A, Häring H, Stumvoll M. Effect of the pattern of elevated free fatty acids on insulin sensitivity and insulin secretion in healthy humans.  Horm Metab Res. 2001;  33 432-438
  • 18 Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM.  Diabetes. 1997;  46 3-10
  • 19 Boden G. Free fatty acids, insulin resistance, and type 2 diabetes mellitus.  Proc Assoc Am Physicians. 1999;  111 241-248
  • 20 Volk A, Renn W, Overkamp D, Mehnert B, Maerker E, Jacob S, Balletshofer B, Häring H U, Rett K. Insulin action and secretion in healthy, glucose tolerant first degree relatives of patients with type 2 diabetes mellitus. Influence of body weight.  Exp Clin Endocrinol Diabetes. 1999;  107 107-110
  • 21 Svedberg J, Björntorp P, Smith U, Lönnroth P. Free-fatty acid inhibition of insulin binding, degradation, and action in isolated rat hepatocytes.  Diabetes. 1990;  39 570-574
  • 22 Kausch C, Krützfeldt J, Witke A, Rettig A, Bachmann O, Rett K, Matthaei S, Machicao F, Häring H U, Stumvoll M. Effects of troglitazone on cellular differentiation, insulin signaling, and glucose metabolism in cultured human skeletal muscle cells.  Biochem Biophys Res Commun. 2001;  280 664-674
  • 23 Eitel K, Staiger H, Rieger J, Mischak H, Brandhorst H, Brendel M D, Bretzel R G, Häring H U, Kellerer M. Protein kinase C σ activation and translocation to the nucleus are required for fatty acid-induced apoptosis of insulin-secreting cells.  Diabetes. 2003;  52 991-997
  • 24 Boden G, Chen X, Ruiz J, White J V, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake.  J Clin Invest. 1994;  93 2438-2446
  • 25 Roden M, Price T B, Perseghin G, Petersen K F, Rothman D L, Cline G W, Shulman G I. Mechanism of free fatty acid-induced insulin resistance in humans.  J Clin Invest. 1996;  97 2859-2865
  • 26 Mott D M, Hoyt C, Caspari R, Stone K, Pratley R, Bogardus C. Palmitate oxidation rate and action on glycogen synthase in myoblasts from insulin-resistant subjects.  Am J Physiol Endocrinol Metab. 2000;  279 E561-569
  • 27 Montell E, Turini M, Marotta M, Roberts M, Noe V, Ciudad C J, Mace K, Gomez-Foix A M. DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells.  Am J Physiol Endocrinol Metab. 2001;  280 E229-237
  • 28 Sarabia V, Lam L, Burdett E, Leiter L A, Klip A. Glucose transport in human skeletal muscle cells in culture: stimulation by insulin and metformin.  SJ Clin Invest. 1992;  90 1386-1395
  • 29 Nikoulina S E, Ciaraldi T P, Abrams-Carter L, Mudaliar S, Park K S, Henry R R. Regulation of glycogen synthase activity in cultured skeletal muscle cells from subjects with type II diabetes. Role of chronic hyperinsulinemia and hyperglycemia.  Diabetes. 1997;  46 1017-1024
  • 30 Roques M, Vidal H. A phosphatidylinositol 3-kinase/p70 ribosomal S6 protein kinase pathway is required for the regulation by insulin of the p85α regulatory subunit of phosphatidylinositol 3-kinase gene expression in human muscle cells.  J Biol Chem. 1999;  274 34 005-34 010
  • 31 Gaster M, Petersen I, Hojlund K, Poulsen P, Beck-Nielsen H. The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity.  Diabetes. 2002;  51 921-927
  • 32 Veestergard H, Bjorbaek C, Hansen T, Larsen F S, Granner D K, Pedersen O. Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients.  J Clin Invest. 1995;  96 2639-2645
  • 33 Krebs M, Krssak M, Nowotny P, Weghuber D, Gruber S, Mlynarik V, Bischof M, Stingl H, Fürnsinn C, Waldhäusl W, Roden M. Free fatty acids inhibit the glucose-stimulated increase of intramuscular glucose-6-phosphate concentration in humans.  J Clin Endocrinol Metab. 2001;  86 2153-2160
  • 34 Saltiel A R, Kahn C R. Insulin signaling and the regulation of glucose and lipid metabolism.  Nature. 2001;  414 799-806
  • 35 Shulman G I. Cellular mechanisms of insulin resistance.  J Clin Invest. 2000;  106 171-176
  • 36 Kim J K, Fillmore J J, Chen Y, Yu C, Moore I K, Pypaert M, Velez-Carrasco W, Goldberg I J, Breslow J L, Shulman G I. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance.  Proc Natl Acad Sci USA. 2001;  98 7522-7527
  • 37 Dresner A, Laurent D, Marcucci M, Griffin M E, Dufour S, Cline G W, Slezak L A, Andersen D K, Hundal R S, Rothman D L, Petersen K F, Shulman G I. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity.  J Clin Invest. 1999;  103 253-259
  • 38 Kruszynska Y T, Worrall D S, Ofrecio J, Frias J P, Macaraeg G, Olefsky J M. Fatty acid-induced insulin resistance: decreased muscle PI3K activation but unchanged Akt phophorylation.  J Clin Endocrinol Metab. 2002;  87 226-234
  • 39 Schmitz-Pfeiffer C, Craig D L, Biden T J. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate.  J Biol Chem. 1999;  274 24 202-24 210
  • 40 Storgaard H, Song X M, Jensen C B, Madsbad S, Bjornholm M, Vaag A, Zierath J R. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives with type 2 diabetes.  Diabetes. 2001;  50 2770-2778
  • 41 Kim Y B, Shulman G I, Kahn B B. Fatty acid infusion selectively impairs insulin action on Akt1 and protein kinase C lambda/zeta but not on glycogen synthase kinase-3.  J Biol Chem. 2002;  277 32 915-32 922
  • 42 Chalfant C E, Ciaraldi T P, Watson J E, Nikoulina S, Henry R R, Cooper D R. Protein kinase Cθ expression is increased upon differentiation of human skeletal muscle cells: dysregulation in type 2 diabetic patients and a possible role for protein kinase Cθ in insulin-stimulated glycogen synthase activity.  Endocrinology. 2000;  141 2773-2778

1 These authors contributed equally.

Dr. M. Stumvoll

Medizinische Klinik IV · Eberhard-Karls-Universität Tübingen

Otfried-Müller-Straße 10 · 72076 Tübingen · Germany

Phone: + 49 (7071) 298 03 90

Fax: + 49 (7071) 29 52 77 ·

Email: michael.stumvoll@med.uni-tuebingen.de

    >