CC BY-NC-ND 4.0 · Laryngorhinootologie 2022; 101(S 01): S79-S89
DOI: 10.1055/a-1671-1825
Referat

Innovative Technologies for Optimized Artificial Vision

Article in several languages: deutsch | English
Peter Walter
 

Abstract

Despite significant advances in the treatment of severe eye diseases, certain forms of blindness cannot be cured or improved to this day. These include, for example, retinitis pigmentosa, a hereditary degeneration of photoreceptors. Technology approaches with implantable visual prostheses based on electrical stimulation of remaining neurons in the retina or cortex, have already been tested in a number of patients with limited results. New findings in the biology of these diseases as well as new technological developments give hope for better results in the future.


#
#

Interessenkonflikt

Die Autorinnen/Autoren geben an, dass kein Interessenkonflikt besteht.

  • Literatur

  • 1 Aghaizu N, Kruczek K, Gonzalez-Cordero A, Ali R, Pearson R, Dunnett S, Bjorklund A. 2017; 231: 191-223 DOI: 10.1016/bs.pbr.2017.01.001.
  • 2 Aisenbrey S, Bartz-Schmidt KU, Walter P, Hilgers RD, Ayertey H, Szurman P, Thumann G. 2007; 125: 1367-1372 DOI: 10.1001/archopht.125.10.1367.
  • 3 Aisenbrey S, Lafaut BA, Szurman P, Hilgers RD, Esser P, Walter P, Thumann G. 2006; 124: 183-188 DOI: 10.1001/archopht.124.2.183.
  • 4 Al-Atabany W, Degenaar P. 2011; 432-435
  • 5 Al-Atabany W, McGovern B, Mehran K, Berlinguer-Palmini R, Degenaar P. 2013; 60: 781-791 DOI: 10.1109/TBME.2011.2177498.
  • 6 ALGVERE P, BERGLIN L, GOURAS P, SHENG Y. 1994; 232: 707-716 DOI: 10.1007/BF00184273.
  • 7 Ayton L, Barnes N, Dagnelie G, Fujikado T, Goetz G, Hornig R, Petoe M. 2020; 131: 1383-1398 DOI: 10.1016/j.clinph.2019.11.029.
  • 8 Ayton L, Blamey P, Guymer R, Luu C, Nayagam D, Sinclair N, Res BVA. 2014 9. 10.1371/journal.pone.0115239
  • 9 Barrett J, Berlinguer-Palmini R, Degenaar P. Optogenetic approaches to retinal prosthesis. Visual Neuroscience 2014; 31: 345-354 DOI: 10.1017/S0952523814000212.
  • 10 Barriga-Rivera A, Suaning G. Visual prostheses, optogenetics, stem cell and gene therapies: splitting the cake. Neural Regeneration Research 2018; 13: 805-806 10.4103/1673-5374.232469
  • 11 Biswas S, Haselier C, Mataruga A, Thumann G, Walter P, Muller F. Pharmacological Analysis of Intrinsic Neuronal Oscillations in rd10 Retina. Plos One. 2014 9. 10.1371/journal.pone.0099075
  • 12 Busskamp V, Roska B. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Current Opinion in Neurobiology 2011; 21: 942-946 DOI: 10.1016/j.conb.2011.06.001.
  • 13 Cideciyan A, Jacobson S. Leber Congenital Amaurosis (LCA): Potential for Improvement of Vision. Investigative Ophthalmology & Visual Science 2019; 60: 1680-1695 10.1167/iovs.19-26672
  • 14 da Cruz L, Dorn J, Humayun M, Dagnelie G, Handa J, Barale P, Grp AIS. Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology 2016; 123: 2248-2254 DOI: 10.1016/j.ophtha.2016.06.049.
  • 15 Diakatou M, Manes G, Bocquet B, Meunier I, Kalatzis V. Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. International Journal of Molecular Sciences. 2019 20. 10.3390/ijms20102542
  • 16 Dong N, Sun X, Degenaar P, Kollias N, Choi B, Zeng H, Mandelis A. IMPLANTABLE OPTRODE DESIGN FOR OPTOGENETIC VISUAL CORTICAL PROSTHESIS. Photonic Therapeutics and Diagnostics Viii, Pts 1 and 2 2012; 82076a 10.1117/12.912386
  • 17 Duret F, Brelen M, Lambert V, Gerard B, Delbeke J, Veraart C. Object localization, discrimination, and grasping with the optic nerve visual prosthesis. Restorative Neurology and Neuroscience 2006; 24: 31-40
  • 18 Erbsloh A, Viga R, Walter P, Kokozinski R, Grabmaier A, Soc IC. Implementation of a Charge-Controlled Stimulation Method in a Monolithic Integrated CMOS-Chip for Excitation of Retinal Neuron Cells. 2017
  • 19 Fujikado T, Kamei M, Kishima H, Morimoto T, Kanda H, Sakaguchi H, Ozawa M. One-Year Outcomes of 49-Channel Suprachoroidal-Transretinal Stimulation (STS) Retinal Prosthesis in Patients with Advanced Retinitis Pigmentosa. Investigative Ophthalmology & Visual Science. 2016 57.
  • 20 Garg S, Federman J. Optogenetics, visual prosthesis and electrostimulation for retinal dystrophies. Current Opinion in Ophthalmology 2013; 24: 407-414 DOI: 10.1097/ICU.0b013e328363829b.
  • 21 Gekeler K, Bartz-Schmidt K, Sachs H, MacLaren R, Stingl K, Zrenner E, Gekeler F. Implantation, removal and replacement of subretinal electronic implants for restoration of vision in patients with retinitis pigmentosa. Current Opinion in Ophthalmology 2018; 29: 239-247 DOI: 10.1097/ICU.0000000000000467.
  • 22 Haselier C, Biswas S, Rosch S, Thumann G, Muller F, Walter P. Correlations between specific patterns of spontaneous activity and stimulation efficiency in degenerated retina. Plos One. 2017 12. 10.1371/journal.pone.0190048
  • 23 Lee V, Nau A, Laymon C, Chan K, Rosario B, Fisher C. Successful tactile based visual sensory substitution use functions independently of visual pathway integrity. Frontiers in Human Neuroscience 2014; 8 10.3389/fnhum.2014.00291
  • 24 Lohmann TK, Haiss F, Schaffrath K, Schnitzler AC, Waschkowski F, Barz C, Walter P. The very large electrode array for retinal stimulation (VLARS)?A concept study. Journal of Neural Engineering. 2019 16. 10.1088/1741-2552/ab4113
  • 25 Menzel-Severing J, Laube T, Brockmann C, Bornfeld N, Mokwa W, Mazinani B, Roessler G. Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial. Eye 2012; 26: 502-509 DOI: 10.1038/eye.2012.35.
  • 26 Moisseiev E, Mannis M. Evaluation of a Portable Artificial Vision Device Among Patients With Low Vision. Jama Ophthalmology 2016; 134: 748-752 DOI: 10.1001/jamaophthalmol.2016.1000.
  • 27 Mokwa W, Goertz A, Koch C, Krisch I, Trieu HK, Walter P. Ieee Intraocular Epiretinal Prosthesis to Restore Vision in Blind Humans. In 2008 30th Annual International Conference of the Ieee Engineering in Medicine and Biology Society 2008; Vols 1-8 pp 5790- +) 
  • 28 Montes VR, Gehlen J, Luck S, Mokwa W, Muller F, Walter P, Offenhausser A. Toward a Bidirectional Communication Between Retinal Cells and a Prosthetic Device – A Proof of Concept. Frontiers in Neuroscience 2019; 13: 19 10.3389/fnins.2019.00367
  • 29 Nishida K, Sakaguchi H, Kamei M, Cecilia-Gonzalez C, Terasawa Y, Velez-Montoya R, Quiroz-Mercado H. Visual Sensation by Electrical Stimulation Using a New Direct Optic Nerve Electrode Device. Brain Stimulation 2015; 8: 678-681 DOI: 10.1016/j.brs.2015.03.001.
  • 30 Rizzo J, Wyatt J, Loewenstein J, Kelly S, Shire D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Investigative Ophthalmology & Visual Science 2003; 44: 5362-5369 10.1167/iovs.02-0817
  • 31 Rizzo S, Barale PO, Ayello-Scheer S, Devenyi RG, Delyfer MN, Korobelnik JF, Humayun MS. ADVERSE EVENTS OF THE ARGUS II RETINAL PROSTHESIS Incidence, Causes, and Best Practices for Managing and Preventing Conjunctival Erosion. Retina-the Journal of Retinal and Vitreous Diseases 2020; 40: 303-311 10.1097/iae.0000000000002394
  • 32 Roessler G, Laube T, Brockmann C, Kirschkamp T, Mazinani B, Goertz M, Walter P. Implantation and Explantation of a Wireless Epiretinal Retina Implant Device: Observations during the EPIRET3 Prospective Clinical Trial. Investigative Ophthalmology & Visual Science 2009; 50: 3003-3008 10.1167/iovs.08-2752
  • 33 Rosenfeld J. The Development of a Wireless Multi-electrode Cortical Prosthesis for Restoration of Vision in Blind Individuals. Journal of Neurosurgery 2015; 123: A486-A486
  • 34 Russell S, Bennett J, Wellman J, Chung D, Yu Z, Tillman A, Maguire A. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 2017; 390: 849-860 DOI: 10.1016/S0140-6736(17)31868-8.
  • 35 Schaffrath K, Schellhase H, Walter P, Augustin A, Chizzolini M, Kirchhof B, Rizzo S. One-Year Safety and Performance Assessment of the Argus II Retinal Prosthesis: A Postapproval Study. Jama Ophthalmology 2019; 137: 896-902 DOI: 10.1001/jamaophthalmol.2019.1476.
  • 36 Shivdasani M, Sinclair N, Dimitrov P, Varsamidis M, Ayton L, Luu C, Consortium BVA. Factors Affecting Perceptual Thresholds in a Suprachoroidal Retinal Prosthesis. Investigative Ophthalmology & Visual Science 2014; 55: 6467-6481 DOI: 10.1167/iovs.14-14396.
  • 37 Stingl K, Bartz-Schmidt K, Besch D, Chee C, Cottriall C, Gekeler F, Zrenner E. Subretinal Visual Implant Alpha IMS – Clinical trial interim report. Vision Research 2015; 111: 149-160 DOI: 10.1016/j.visres.2015.03.001.
  • 38 Stingl K, Schippert R, Bartz-Schmidt KU, Besch D, Cottriall CL, Edwards TL, Zrenner E. Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. Frontiers in Neuroscience. 2017 11. 10.3389/fnins.2017.00445
  • 39 Thumann G, Aisenbrey S, Schraermeyer U, Lafaut B, Esser P, Walter P, Bartz-Schmidt KU. Transplantation of autologous iris pigment epithelium after removal of choroidal neovascular membranes. Archives of Ophthalmology 2000; 118: 1350-1355
  • 40 Tibbetts M, Samuel M, Chang T, Ho A. Stem cell therapy for retinal disease. Current Opinion in Ophthalmology 2012; 23: 226-234 DOI: 10.1097/ICU.0b013e328352407d.
  • 41 Trieu HK, Goertz M, Koch C, Mokwa W, Walter P. Implants for Epiretinal Stimulation of Retinitis Pigmentosa Patients. In: O. Dossel & W. C. Schlegel (Eds.), World Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 11: Biomedical Engineering for Audiology, Ophthalmology, Emergency and Dental Medicine 2009; Vol. 25 pp. 80-+
  • 42 Veraart C, Duret F, Brelen M, Delbeke J. ieee Vision rehabilitation with the optic nerve visual prosthesis. Proceedings of the 26th Annual International Conference of the Ieee Engineering in Medicine and Biology Society 2004; Vols 1-7: 4163-4164
  • 43 Veraart C, Duret F, Brelen M, Oozeer M, Delbeke J. Vision rehabilitation in the case of blindness. Expert Review of Medical Devices 2004; 1: 139-153 10.1586/17434440.1.1.139
  • 44 Walter P. 2016. A fully intraocular approach for a bi-directional retinal prosthesis. In V. P. Gabel (Ed.), Artificial Vision. pp. 151-161 Springer; Heidelberg, New York:
  • 45 Walter P. Future Developments in Retinal Prostheses. Klinische Monatsblatter Fur Augenheilkunde 2016; 233: 1238-1243 DOI: 10.1055/s-0042-115411.
  • 46 Waschkowski F, Hesse S, Rieck AC, Lohmann T, Brockmann C, Laube T, Roessler G. Development of very large electrode arrays for epiretinal stimulation (VLARS). Biomedical Engineering Online. 2014 13. 1110.1186/1475-925x-13-11

Korrespondenzadresse

Prof. Dr. Peter Walter
Klinik für Augenheilkunde
Uniklinik RWTH Aachen
Pauwelsstr. 30
52074 Aachen
Deutschland
Phone: +49/241/8088191   
Fax: +49/241/8082408   

Publication History

Article published online:
23 May 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • Literatur

  • 1 Aghaizu N, Kruczek K, Gonzalez-Cordero A, Ali R, Pearson R, Dunnett S, Bjorklund A. 2017; 231: 191-223 DOI: 10.1016/bs.pbr.2017.01.001.
  • 2 Aisenbrey S, Bartz-Schmidt KU, Walter P, Hilgers RD, Ayertey H, Szurman P, Thumann G. 2007; 125: 1367-1372 DOI: 10.1001/archopht.125.10.1367.
  • 3 Aisenbrey S, Lafaut BA, Szurman P, Hilgers RD, Esser P, Walter P, Thumann G. 2006; 124: 183-188 DOI: 10.1001/archopht.124.2.183.
  • 4 Al-Atabany W, Degenaar P. 2011; 432-435
  • 5 Al-Atabany W, McGovern B, Mehran K, Berlinguer-Palmini R, Degenaar P. 2013; 60: 781-791 DOI: 10.1109/TBME.2011.2177498.
  • 6 ALGVERE P, BERGLIN L, GOURAS P, SHENG Y. 1994; 232: 707-716 DOI: 10.1007/BF00184273.
  • 7 Ayton L, Barnes N, Dagnelie G, Fujikado T, Goetz G, Hornig R, Petoe M. 2020; 131: 1383-1398 DOI: 10.1016/j.clinph.2019.11.029.
  • 8 Ayton L, Blamey P, Guymer R, Luu C, Nayagam D, Sinclair N, Res BVA. 2014 9. 10.1371/journal.pone.0115239
  • 9 Barrett J, Berlinguer-Palmini R, Degenaar P. Optogenetic approaches to retinal prosthesis. Visual Neuroscience 2014; 31: 345-354 DOI: 10.1017/S0952523814000212.
  • 10 Barriga-Rivera A, Suaning G. Visual prostheses, optogenetics, stem cell and gene therapies: splitting the cake. Neural Regeneration Research 2018; 13: 805-806 10.4103/1673-5374.232469
  • 11 Biswas S, Haselier C, Mataruga A, Thumann G, Walter P, Muller F. Pharmacological Analysis of Intrinsic Neuronal Oscillations in rd10 Retina. Plos One. 2014 9. 10.1371/journal.pone.0099075
  • 12 Busskamp V, Roska B. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Current Opinion in Neurobiology 2011; 21: 942-946 DOI: 10.1016/j.conb.2011.06.001.
  • 13 Cideciyan A, Jacobson S. Leber Congenital Amaurosis (LCA): Potential for Improvement of Vision. Investigative Ophthalmology & Visual Science 2019; 60: 1680-1695 10.1167/iovs.19-26672
  • 14 da Cruz L, Dorn J, Humayun M, Dagnelie G, Handa J, Barale P, Grp AIS. Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology 2016; 123: 2248-2254 DOI: 10.1016/j.ophtha.2016.06.049.
  • 15 Diakatou M, Manes G, Bocquet B, Meunier I, Kalatzis V. Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. International Journal of Molecular Sciences. 2019 20. 10.3390/ijms20102542
  • 16 Dong N, Sun X, Degenaar P, Kollias N, Choi B, Zeng H, Mandelis A. IMPLANTABLE OPTRODE DESIGN FOR OPTOGENETIC VISUAL CORTICAL PROSTHESIS. Photonic Therapeutics and Diagnostics Viii, Pts 1 and 2 2012; 82076a 10.1117/12.912386
  • 17 Duret F, Brelen M, Lambert V, Gerard B, Delbeke J, Veraart C. Object localization, discrimination, and grasping with the optic nerve visual prosthesis. Restorative Neurology and Neuroscience 2006; 24: 31-40
  • 18 Erbsloh A, Viga R, Walter P, Kokozinski R, Grabmaier A, Soc IC. Implementation of a Charge-Controlled Stimulation Method in a Monolithic Integrated CMOS-Chip for Excitation of Retinal Neuron Cells. 2017
  • 19 Fujikado T, Kamei M, Kishima H, Morimoto T, Kanda H, Sakaguchi H, Ozawa M. One-Year Outcomes of 49-Channel Suprachoroidal-Transretinal Stimulation (STS) Retinal Prosthesis in Patients with Advanced Retinitis Pigmentosa. Investigative Ophthalmology & Visual Science. 2016 57.
  • 20 Garg S, Federman J. Optogenetics, visual prosthesis and electrostimulation for retinal dystrophies. Current Opinion in Ophthalmology 2013; 24: 407-414 DOI: 10.1097/ICU.0b013e328363829b.
  • 21 Gekeler K, Bartz-Schmidt K, Sachs H, MacLaren R, Stingl K, Zrenner E, Gekeler F. Implantation, removal and replacement of subretinal electronic implants for restoration of vision in patients with retinitis pigmentosa. Current Opinion in Ophthalmology 2018; 29: 239-247 DOI: 10.1097/ICU.0000000000000467.
  • 22 Haselier C, Biswas S, Rosch S, Thumann G, Muller F, Walter P. Correlations between specific patterns of spontaneous activity and stimulation efficiency in degenerated retina. Plos One. 2017 12. 10.1371/journal.pone.0190048
  • 23 Lee V, Nau A, Laymon C, Chan K, Rosario B, Fisher C. Successful tactile based visual sensory substitution use functions independently of visual pathway integrity. Frontiers in Human Neuroscience 2014; 8 10.3389/fnhum.2014.00291
  • 24 Lohmann TK, Haiss F, Schaffrath K, Schnitzler AC, Waschkowski F, Barz C, Walter P. The very large electrode array for retinal stimulation (VLARS)?A concept study. Journal of Neural Engineering. 2019 16. 10.1088/1741-2552/ab4113
  • 25 Menzel-Severing J, Laube T, Brockmann C, Bornfeld N, Mokwa W, Mazinani B, Roessler G. Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial. Eye 2012; 26: 502-509 DOI: 10.1038/eye.2012.35.
  • 26 Moisseiev E, Mannis M. Evaluation of a Portable Artificial Vision Device Among Patients With Low Vision. Jama Ophthalmology 2016; 134: 748-752 DOI: 10.1001/jamaophthalmol.2016.1000.
  • 27 Mokwa W, Goertz A, Koch C, Krisch I, Trieu HK, Walter P. Ieee Intraocular Epiretinal Prosthesis to Restore Vision in Blind Humans. In 2008 30th Annual International Conference of the Ieee Engineering in Medicine and Biology Society 2008; Vols 1-8 pp 5790- +) 
  • 28 Montes VR, Gehlen J, Luck S, Mokwa W, Muller F, Walter P, Offenhausser A. Toward a Bidirectional Communication Between Retinal Cells and a Prosthetic Device – A Proof of Concept. Frontiers in Neuroscience 2019; 13: 19 10.3389/fnins.2019.00367
  • 29 Nishida K, Sakaguchi H, Kamei M, Cecilia-Gonzalez C, Terasawa Y, Velez-Montoya R, Quiroz-Mercado H. Visual Sensation by Electrical Stimulation Using a New Direct Optic Nerve Electrode Device. Brain Stimulation 2015; 8: 678-681 DOI: 10.1016/j.brs.2015.03.001.
  • 30 Rizzo J, Wyatt J, Loewenstein J, Kelly S, Shire D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Investigative Ophthalmology & Visual Science 2003; 44: 5362-5369 10.1167/iovs.02-0817
  • 31 Rizzo S, Barale PO, Ayello-Scheer S, Devenyi RG, Delyfer MN, Korobelnik JF, Humayun MS. ADVERSE EVENTS OF THE ARGUS II RETINAL PROSTHESIS Incidence, Causes, and Best Practices for Managing and Preventing Conjunctival Erosion. Retina-the Journal of Retinal and Vitreous Diseases 2020; 40: 303-311 10.1097/iae.0000000000002394
  • 32 Roessler G, Laube T, Brockmann C, Kirschkamp T, Mazinani B, Goertz M, Walter P. Implantation and Explantation of a Wireless Epiretinal Retina Implant Device: Observations during the EPIRET3 Prospective Clinical Trial. Investigative Ophthalmology & Visual Science 2009; 50: 3003-3008 10.1167/iovs.08-2752
  • 33 Rosenfeld J. The Development of a Wireless Multi-electrode Cortical Prosthesis for Restoration of Vision in Blind Individuals. Journal of Neurosurgery 2015; 123: A486-A486
  • 34 Russell S, Bennett J, Wellman J, Chung D, Yu Z, Tillman A, Maguire A. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 2017; 390: 849-860 DOI: 10.1016/S0140-6736(17)31868-8.
  • 35 Schaffrath K, Schellhase H, Walter P, Augustin A, Chizzolini M, Kirchhof B, Rizzo S. One-Year Safety and Performance Assessment of the Argus II Retinal Prosthesis: A Postapproval Study. Jama Ophthalmology 2019; 137: 896-902 DOI: 10.1001/jamaophthalmol.2019.1476.
  • 36 Shivdasani M, Sinclair N, Dimitrov P, Varsamidis M, Ayton L, Luu C, Consortium BVA. Factors Affecting Perceptual Thresholds in a Suprachoroidal Retinal Prosthesis. Investigative Ophthalmology & Visual Science 2014; 55: 6467-6481 DOI: 10.1167/iovs.14-14396.
  • 37 Stingl K, Bartz-Schmidt K, Besch D, Chee C, Cottriall C, Gekeler F, Zrenner E. Subretinal Visual Implant Alpha IMS – Clinical trial interim report. Vision Research 2015; 111: 149-160 DOI: 10.1016/j.visres.2015.03.001.
  • 38 Stingl K, Schippert R, Bartz-Schmidt KU, Besch D, Cottriall CL, Edwards TL, Zrenner E. Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. Frontiers in Neuroscience. 2017 11. 10.3389/fnins.2017.00445
  • 39 Thumann G, Aisenbrey S, Schraermeyer U, Lafaut B, Esser P, Walter P, Bartz-Schmidt KU. Transplantation of autologous iris pigment epithelium after removal of choroidal neovascular membranes. Archives of Ophthalmology 2000; 118: 1350-1355
  • 40 Tibbetts M, Samuel M, Chang T, Ho A. Stem cell therapy for retinal disease. Current Opinion in Ophthalmology 2012; 23: 226-234 DOI: 10.1097/ICU.0b013e328352407d.
  • 41 Trieu HK, Goertz M, Koch C, Mokwa W, Walter P. Implants for Epiretinal Stimulation of Retinitis Pigmentosa Patients. In: O. Dossel & W. C. Schlegel (Eds.), World Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 11: Biomedical Engineering for Audiology, Ophthalmology, Emergency and Dental Medicine 2009; Vol. 25 pp. 80-+
  • 42 Veraart C, Duret F, Brelen M, Delbeke J. ieee Vision rehabilitation with the optic nerve visual prosthesis. Proceedings of the 26th Annual International Conference of the Ieee Engineering in Medicine and Biology Society 2004; Vols 1-7: 4163-4164
  • 43 Veraart C, Duret F, Brelen M, Oozeer M, Delbeke J. Vision rehabilitation in the case of blindness. Expert Review of Medical Devices 2004; 1: 139-153 10.1586/17434440.1.1.139
  • 44 Walter P. 2016. A fully intraocular approach for a bi-directional retinal prosthesis. In V. P. Gabel (Ed.), Artificial Vision. pp. 151-161 Springer; Heidelberg, New York:
  • 45 Walter P. Future Developments in Retinal Prostheses. Klinische Monatsblatter Fur Augenheilkunde 2016; 233: 1238-1243 DOI: 10.1055/s-0042-115411.
  • 46 Waschkowski F, Hesse S, Rieck AC, Lohmann T, Brockmann C, Laube T, Roessler G. Development of very large electrode arrays for epiretinal stimulation (VLARS). Biomedical Engineering Online. 2014 13. 1110.1186/1475-925x-13-11

Zoom Image
Abb. 1 Generelles Prinzip einer telemetrischen visuellen Prothese. Auf eine direkte Kabelverbindung zwischen Körperhöhlen oder Organen und der Außenwelt möchte man möglichst verzichten.
Zoom Image
Abb. 2 Übersicht über die möglichen Implantationsorte für Sehprothesen, die in verschiedenen Projekten weltweit entwickelt werden. A. Sehprothesen mit direktem oder indirektem Kontakt zur Netzhaut: Retina Implantate. B. Sehprothese mit Reizelektroden am Sehnerven. C. Stimulationselektroden am Corpus geniculatum laterale. D. Cortexprothese.
Zoom Image
Abb. 3 Implantation technischer Sehprothesen und ihrer Stimulationselektroden in verschiedene Zielregionen der Retina. A: epiretinal. B: subretinal. C: suprachoroidal. GZS: Ganglienzellschicht. IKS: Innere Körnerschicht. EZ: Elipsoide Zone. RPE: retinales Pigmentepithel. AH: Aderhaut.
Zoom Image
Abb. 4 Typisches Bild der klinischen Funduskopie bei einem Patienten mit Retinitis pigmentosa (RP). Man erkennt die namensgebenden Pigmentverklumpungen, eine Engstellung der Blutgefäße, die Abblassung der temporalen Papille des Sehnerven sowie eine Atrophie des Netzhautzentrums.
Zoom Image
Abb. 5 Optische Kohärenztomografie (OCT)- Scan bei einer atrophischen Läsion im Rahmen der altersbedingten Makula-degeneration (AMD) mit geografischer Atrophie. Man erkennt im Bereich der Fovea eine Aufhebung der normalen Schichtung ([▶Abb. 1]) vor allem im Bereich der über der Aderhaut liegenden äußeren Netzhaut. Hier findet sich ein Bereich, der wie ausgestanzt wirkt. Tatsächlich erkennt man hier kein RPE mehr.
Zoom Image
Abb. 6 Oben normaler Informationsfluss von der Retina mit retinalen Pigmentepithel (RPE) und Photorezptoren (PR), Bipolarzellen (BIP) und retinalen Ganglienzellen (RGZ) sowie dem Corpus geniculatum laterale (CGL) und dem visuellen Kortex (V1). Die roten Kreuze zeigen den Ort der Läsion bei typischen Erkrankungen. Stimulationskonzepte machen nur dann Sinn, wenn die Stimulation auf der linken Seite des Ausfalls erfolgt. Das bedeutet, das Blindheit beim Glaukom oder nach einem Apoplex nicht mit einem Retina Implantat behandelt werden kann.
Zoom Image
Abb. 7 Fundusbild nach Implantation eines Argus II Retina Prothesen Systems. Man erkennt die auf der Netzhautoberfläche aufliegende Folie mit den 60 Reizelektroden.
Zoom Image
Abb. 8 Perforation einer Argus II Empfangsspule durch die Bindehaut im unteren Fornix. Trotz mehrfacher Deckungen mußte das Implantat später entfernt werden.
Zoom Image
Abb. 9 Links: EPIRET III Konzept. Die Stimulatorfolie sitzt epiretinal und ist hier mit einem Netzhautnagel fixiert (‚retina tack‘). Die Daten der Stimulations-Puls-Folgen erhält das System über eine flexible Kabelverbindung von einem anstelle der Linse dort implantierten Empfänger. Dieser wiederum wird durch eine Sendespule mit Energie versorgt sowie mit den Daten, die ein visueller Neuroprozessor aus dem Kamerabild errechnet hat und festlegt, an welcher Elektrode zu welcher Zeit welcher Puls abgegeben wird. Rechts: Layout des EPIRET III Prothesensystems mit Empfangsspule, darauf gefalteten miniaturisierten ASIC Bausteinen und der sich rechts daran anschließenden Kabelverbindung zum eigentlichen Stimulator.
Zoom Image
Abb. 10 Links: EPIRET III System nach der Verkapselung mit Polydimethylsiloxan (PDMS). Rechts: EPIRET III Stimulator mit 2 Netzhautnägeln auf der Netzhautoberfläche eines Patienten fixiert.
Zoom Image
Fig. 1 Basic principle of telemetric visual prosthesis. A direct cable connection between body cavities or organs and the environment should possibly be avoided.
Zoom Image
Fig. 2 Overview about possible implantation sites for visual prostheses that are being developed internationally in different projects. a Visual prostheses with direct or indirect contact to the retina: retinal implants. b Visual prostheses with stimulation electrode at the visual nerve. c Stimulation electrodes at the lateral geniculate nucleus. d Cortical prosthesis.
Zoom Image
Fig. 3 Implantation of technical visual prostheses and their stimulation electrodes in different target regions of the retina. a epiretinal. b subretinal. c suprachoroidal. GZS: ganglion cell layer. IKS: inner nuclear layer. EZ: ellipsoid zone. PRE: retinal pigment epithelium. AH: choroid.
Zoom Image
Fig. 4 Typical image of clinical funduscopy of a patient suffering from retinitis pigmentosa (RP). The name-giving pigment clumping is visible, stenosis of the vessels, paling of the temporal papilla of the optic nerve as well as atrophic retinal center.
Zoom Image
Fig. 5 Optic coherence tomography (OCT) scan in case of an atrophic lesion performed in the context of age-related macular degeneration (AMD) with geographic atrophy. The imaging reveals a resolution of the normal layers in the area of the fovea (see [Fig. 1]) mainly in the area of the external retina located above the choroid. An area is seen that looks like punched. In fact, RPE is no longer identified.
Zoom Image
Fig. 6 Above, normal information flow from the retina with the retinal pigment epithelium (PRE), and photoreceptors (PR), bipolar cells (BIP) and retinal ganglion cells (RGZ) as well as lateral geniculate nuclei (CGL) and the visual cortex (V1). The red X show the sites of the lesion in the respective diseases. Stimulation concepts only make sense when the stimulation occurs on the left side of the failure. This means that blindness in cases of glaucoma or after apoplexy cannot be treated with a retinal implant.
Zoom Image
Fig. 7 Image of the fundus after implantation of an ARGUS II retinal prosthesis system. The sheet with 60 stimulus electrodes is seen on the retinal surface.
Zoom Image
Fig. 8 Perforation of an Argus II receiver coil through the conjunctiva in the lower fornix. Despite multiple coverages, the implant had to be removed.
Zoom Image
Fig. 9 On the left: EPIRET III concept. The stimulator foil is located epiretinally and is fixed with a retina tack. The data of the stimulation-pulse sequences are transmitted to the system via a flexible cable connection by an implanted receiver instead of the lens. A transmitter coil provides the receiver with energy and data that a visual neuroprocessor has calculated from a camera picture. The neuroprocessor determines which pulse is released at which electrode at which time. On the right: Layout of the EPIRET III system with receiver coil, miniaturized ASIC components fold on it and the following cable connection to the actual stimulator.
Zoom Image
Fig. 10 On the left: EPIRET III system after encapsulation with polydimethylsiloxane (PDMS). On the right: EPIRET III stimulator fixed on the retinal surface of a patient with two retinal tacks.