Synlett 2023; 34(05): 483-487
DOI: 10.1055/a-2012-4835
cluster
Special Edition Thieme Chemistry Journals Awardees 2022

Rhodium(III) Iodide Catalyzed Carboamination of Alkynes through C–N Bond Activation

XinXin Li
a   Molecular Synthesis Center and Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. of China
,
Qingxing Yang
a   Molecular Synthesis Center and Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. of China
,
Yuna Zhang
a   Molecular Synthesis Center and Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. of China
,
Tao Xu
a   Molecular Synthesis Center and Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. of China
b   Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, P. R. of China
› Author Affiliations
National Science Foundation of China (Nos. 82122063, 81991522, and 81973232); Shandong Science Fund for Distinguished Young Scholars (ZR2020JQ32); Fundamental Research Funds for the Central Universities (202041003); and Marine S&T Fund of Shandong Province for Pilot NLMST (2022QNLM030003-2).


Abstract

Here, we report a RhI3-catalyzed intramolecular carboamination reaction to access polysubstituted indoles. The protocol features a broad substrate scope (>20 examples), good functional-group compatibility, and a low catalyst loading (5 mol% Rh). Good to excellent yields (up to 98%) were obtained. An unprecedented C–N bond-cleavage mode via a six-membered transition state σ-bond metathesis mechanism was proposed based on control experiments. A series of C3-allylated indole derivatives were accessed, proving that the system provides an alternative catalytic route to polysubstituted indoles.

Supporting Information



Publication History

Received: 21 November 2022

Accepted after revision: 13 January 2023

Accepted Manuscript online:
13 January 2023

Article published online:
09 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Makarieva TN, Ilyin SG, Stonik VA, Lyssenko KA, Denisenko VA. Tetrahedron Lett. 1999; 40: 1591

    • For a review on recent developments of indole-containing antiviral agents, see:
    • 1b Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
    • 1c Hamid H A, Ramli AN. M, Yusoff MM. Front. Pharmacol. 2017; 8: 96
    • 1d Zhang Y, Li X, Xu T. Org. Biomol. Chem. 2021; 19: 9138
    • 1e Yu H, Li X, Jia Y, Zhang D, Xu T. Tetrahedron 2021; 91:  132240
    • 2a Cacchi S, Fabrizi G, Pace P. J. Org. Chem. 1998; 63: 1001
    • 2b Cacchi S. J. Organomet. Chem. 1999; 576: 42
    • 3a Kamijo S, Yamamoto Y. J. Am. Chem. Soc. 2002; 124:  11940
    • 3b Shimada T, Nakamura I, Yamamoto Y. J. Am. Chem. Soc. 2004; 126: 10546 ; and references cited therein
  • 4 For a stoichiometric carboamination using a Cr complex, see: Rudler H, Parlier A, Bezennine-Lafollée S, Vaissermann J. Eur. J. Org. Chem. 1999; 2825

    • For representative reports on carboaminations to access 2,3-difunctionalized indoles through a N to C3 translocation, see (Pd):
    • 5a Zhao F, Zhang D, Nian Y, Zhang L, Yang W, Liu H. Org. Lett. 2014; 16: 5124

    • (Au):
    • 5b Zeng X, Kinjo R, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2010; 49: 942
    • 5c Nakamura I, Yamagishi U, Song D, Konta S, Yamamoto T. Angew. Chem. Int. Ed. 2007; 46: 2284
    • 5d Chong E, Blum SA. J. Am. Chem. Soc. 2015; 137:  10144

    • (Pt):
    • 5e Nakamura I, Sato Y, Konta S, Terada M. Tetrahedron Lett. 2009; 50: 2075
    • 5f Patra SR, Sangma SW, Padhy AK, Bhunia S. J. Org. Chem. 2022; 87: 9714

    • (Ru):
    • 5g Chiang P.-Y, Lin Y.-C, Wang Y, Liu Y.-H. Organometallics 2010; 29:  5776
    • 5h Wu C.-Y, Hu M, Liu Y, Song R.-J, Lei Y, Tang B.-X, Li R.-J, Li J.-H. Chem. Commun. 2012; 48: 3197

    • (Re):
    • 5i Rong M.-G, Qin T.-Z, Zi W. Org. Lett. 2019; 21: 5421

    • (Ir):
    • 5j Badart MP, Hawkins BC. Synthesis 2021; 53: 1683
  • 6 For a benzofuran synthesis by a Rh-mediated enyne cycloisomerization, see: Sakiyama N, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2012; 51: 5976
  • 7 For a representative review, see: Escoubet S, Gastaldi S, Bertrand M. Eur. J. Org. Chem. 2005; 2005: 3855
  • 8 CCDC 2215689 contains the supplementary crystallographic data for compound 7. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 9 Zhang J, Wang X, Xu T. Nat. Commun. 2021; 12: 3022
  • 10 Wang Y, Qiu B, Hu L, Lu G, Xu T. ACS Catal. 2021; 11: 9136
  • 11 Qiu B, Li X.-T, Zhang J.-Y, Zhan J.-L, Huang S.-P, Xu T. Org. Lett. 2018; 20: 7689
  • 12 Wang X, Liu F, Xu T. Chin. Chem. Lett. 2023; 34: 107624
    • 13a Zhang Y, Shen S, Fang H, Xu T. Org. Lett. 2020; 22: 1244
    • 13b Sun T, Zhang Y, Qiu B, Wang Y, Qin Y, Dong G, Xu T. Angew. Chem. Int. Ed. 2018; 57: 2859
  • 14 1-Methyl-3-(2-methylprop-2-en-1-yl)-2-phenyl-1H-indole (2a); Typical Procedure In a nitrogen-filled glove box, an oven-dried 4 mL vial was charged with amine 1a (23.7 mg, 0.091 mmol) and RhI3 (2.3 mg, 0.005 mmol). Toluene (1 mL) was added, and the mixture was stirred at rt for 5 minutes until the solids fully dissolved. The vial was then sealed with a PTFE-lined cap and the mixture was stirred for 12 h on a pie-block preheated to 120 °C. The mixture was then directly filtered through Celite and silica gel, which were washed with EtOAc (20 mL). The solvent was removed under reduced pressure, and the crude residue was purified by flash column chromatography (silica gel) to give a yellow oil; yield: 22.9 mg (98%). IR (FTIR): 3056, 2907, 1647, 1466, 1361, 1014, 890 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.64 (d, J = 7.8 Hz, 1 H), 7.53–7.47 (m, 2 H), 7.47–7.40 (m, 3 H), 7.37 (d, J = 8.2 Hz, 1 H), 7.30–7.24 (m, 1 H), 7.15 (ddd, J = 7.9, 6.9, 1.0 Hz, 1 H), 4.78 (s, 1 H), 4.70 (s, 1 H), 3.64 (s, 3 H), 3.40 (s, 2 H), 1.73 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 145.5, 138.7, 137.4, 132.1, 130.6, 128.4, 128.2, 128.1, 121.7, 119.7, 119.3, 110.8, 110.8, 109.4, 33.4, 31.1, 22.9. HRMS (ESI): m/z [M + Na]+ calcd for C19H19NNa: 284.1410; found: 284.1409.