Planta Med 2010; 76(11): 1118-1131
DOI: 10.1055/s-0030-1250186
Cancer Therapy
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

The Role of Traditional Chinese Herbal Medicines in Cancer Therapy – from TCM Theory to Mechanistic Insights

W. L. Wendy Hsiao1 , Liang Liu1
  • 1Center for Cancer & Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
Further Information

Prof. W. L. Wendy Hsiao

School of Chinese Medicine
Hong Kong Baptist University

Kowloon Tong

Kowloon

Hong Kong

People's Republic of China

Phone: + 852 34 11 29 59

Fax: + 852 34 11 24 61

Email: bowhsiao@hkbu.edu.hk

Publication History

received May 3, 2010 revised July 1, 2010

accepted July 5, 2010

Publication Date:
15 July 2010 (online)

Table of Contents #

Abstract

Traditional Chinese medicine-based herbal medicines have gained increasing acceptance worldwide in recent years and are being pursued by pharmaceutical companies as rich resources for drug discovery. For many years, traditional Chinese medicines (TCM) have been applied for the treatment of cancers in China and beyond. Herbal medicines are generally low in cost, plentiful, and show very little toxicity or side effects in clinical practice. However, despite the vast interest and ever-increasing demand, the absence of strong evidence-based research and the lack of standardization of the herbal products are the main obstacles toward the globalization of TCM. In recent years, TCM research has greatly accelerated with the advancement of analytical technologies and methodologies. This review of TCM specifically used in the treatment of cancer is divided into two parts. Part one provides an overview of the philosophy, approaches and progress in TCM-based cancer therapy. Part two summarizes the current understanding of how TCM-derived compounds function as anticancer drugs.

#

Abbreviations

AFAP-1: actin filament-associated protein 1

AIF: apoptosis-inducing factor

BAD: Bcl-2-associated death promoter

BAK: BCL2-antagonist/killer

BAX: BCL2-associated X protein

BCL2: B cell leukemia/lymphoma 2

BCL‐XL: B cell leukemia/lymphoma xL

BID: BH3 interacting domain protein

BIM: Bcl-2 interacting mediator

Casp3: caspase 3

Casp6: caspase 6

Casp7: caspase 7

Casp8: caspase 8

Casp10: caspase 10

cytoC: cytochrome C

ERK1/2: extracellular signal-regulated kinase 1/2

FADD: FAS-associated death domain

FASL: FAS ligand

FOXO1: forkhead box 1

Gp130: glycoprotein 130

GRB2: growth factor receptor-bound protein 2

HER2: human epidermal growth factor receptor 2

IκB: IkappaB

IKK: IkappaB kinase

IL-6: interleukin-6

IL-6R: interleukin-6 receptor

JAK: Janus kinase

MCL-1: myeloid cell leukemia sequence 1

MDM2: murine double minute 2

MEK1/2: MAP kinase kinase 1/2

MMP: matrix metalloproteinase

Mule: Mcl-1 ubiquitin ligase E3

NF‐kB: nuclear factor-kappaB

NIK: MEK kinase 14

p90RSK: p90 ribosomal S6 kinase

PARP: poly (ADP-ribose) polymerase

PI3K: phosphoinositide 3-kinase

PIP3: phosphatidylinositol 3,4,5-trisphosphate

PUMA: p53 upregulated modulator of apoptosis

SH2: Src-homology 2

SOS: son of sevenless

STAT3: signal transducer and activator of transcription 3

t-BID: truncated BH3 interacting domain protein

TIMP: tissue inhibitor of matrix metalloproteinase

TNFαR1: TNF-alpha R1

TNFαR2: TNF-alpha R2

Topo I: topoisomerase I

Topo II: topoisomerase II

TRADD: TNFRSF1A-associated death domain

TRAF2: TNF receptor-associated factor 2

TRAIL: TNF-related apoptosis-inducing ligand

TRAILR: TRAIL receptor

VEGF: vascular endothelial growth factor

VEGFR: vascular endothelial growth factor receptor

XIAP: X-linked inhibitor of apoptosis protein

#

Introduction

#

TCM views of cancer and the approach toward cancer treatment

Cancer is one of the major causes of mortality in humans throughout the world. According to a report dealing with the incidence and mortality of cancers in the USA, a total of 1 479 350 new cancer cases and 562 340 deaths from cancer were projected to occur in 2009 [1]. For cancer treatment by conventional medicine, surgery, chemotherapy and radiotherapy have been the primary approaches, but they are not always effective. As of today, cancer is still the most threatening and difficult to treat disease.

Cancerous conditions are well-known in the traditional Chinese medical system. In the classics of TCM, “Huang Di Nei Jing Di” (黃帝內經) published more than 2000 years ago, there are descriptions of the pathogenesis, appearances and treatment principles of tumors (瘤), such as muscle, tendon and bone carcinomas; however, this term does not differentiate between malignant and nonmalignant tumors. It was not until the Sung Dynasty (ca. 1300 AD) that the first reference to cancer – the Chinese word Ai (癌) meaning malignant carcinoma – first appeared in the ancient medical book “Wei Ji Bao Shu” (衛濟寶書). According to the theories of TCM, cancer is caused by imbalances between endogenous physical conditions of the body and exogenous pathogenic factors. The internal condition of the body plays a dominant role in the onset of cancer. In other words, factors can induce cancer only when the body's own defense system fails. Those pathogenic factors, in Chinese medicine terms, include accumulated toxins, heat and blood stasis, and they attack when a person is in a weak physical condition, without the strength to resist. Furthermore, malfunction of the body-mind communication network may also trigger the development of cancer [2]. So, TCM doctors view cancer as a systemic disease associated with the state of the whole body (or disturbance of the signaling network, to use a modern term). “Systemic” in the TCM doctors' views, means “state of the whole body”. “Cancer is the manifestation of a breakdown in the body's ability to handle pathogenic factors, not a local disease of cells or organs.” Accordingly, the treatment philosophy and strategy of TCM emphasizes holistic modulation and improvement of the whole body rather than removing the tumor mass or killing the cancerous cells. This treatment strategy is particularly enforced for cancer patients at the late stages. In these stages, the focus of treatment is extending the life expectancy and improving the quality of life of the patient; in other words, the focus is on the patient not the tumor mass (帶瘤生存).

The other major principle of TCM is the emphasis on an individual therapy. For the same type of cancer in different persons, the diagnosis and treatment schemes could be very different. This is called the principle of “treatment based on symptom pattern differentiation (辨證論治)”. In other words, TCM doctors make the diagnosis and prepare a treatment scheme based on the assessment of the pattern of symptoms manifest in each individual. When herbs are called for, most commonly, several are used together, and the whole herbs are used, not purified compounds. Thus, in the prescription, there will be multiple effective components delivering a comprehensive, integrated treatment of cancer through multiple targets and their associated pathways. This approach is in line with the view of TCM that cancer is a systemic disease that requires a holistic approach and medicines that can produce therapeutic actions through multiple targets. While this approach differs from that of conventional medicine, the effects of treatment still come down to biochemistry. If treatments are effective, then there must be underlying mechanisms that can be investigated and verified scientifically. Understanding these mechanisms can help us expand the efficacy of both Western and Chinese medicines in a logical, rational way.

#

Evaluation of the Therapeutic Effects of TCM Herbal Medicines in Cancer Treatment – The Benefits and the Obstacles

To provide the scientific basis for the effectiveness of TCM against cancer, a number of clinical and laboratory studies have been done in the past decades. However, due to various factors – including inconsistency in treatment schemes, the limited sampling sizes, and lack of quality assurance of the herbal products – well-designed randomized controlled trials (RCT) to prove the effectiveness of TCM as adjuvant therapy for cancer are scarce. In general, most of the published clinical studies are at evidence level III; in other words, they were trials without rigorous randomization or they involved single group pre-post, cohort, time series, or matched case-control studies [3]. As a result, there are a number of contradictory reports regarding the therapeutic effectiveness of TCM on the treatment of cancer.

In TCM prescriptions, herbs are generally used in combination as ‘formulas’, in the belief that the combinations enhance their benefits and simultaneously reduce side effects. With proper diagnosis and understanding of the component herbs, practitioners can adjust or customize the formulas to suit individual cancer patients. Through synergistic interactions between different effective ingredients, the herbal preparation, according to the clinical experiences, can exert its effects in several ways: (i) they can protect the noncancerous cells and tissues in the body from the possible damage caused by chemo/radiotherapy; (ii) they can enhance the potency of chemo/radiotherapy; (iii) they can reduce inflammatory and infectious complications in the tissues surrounding the carcinoma; (iv) they can enhance immunity and body resistance; (v) they can improve general condition and quality of life; and (vi) they can prolong the life span of the patients in the late stages of cancer ([Fig. 1]). So, for an evaluation of the effect and benefit of TCM therapy for cancer patients, all of these above-mentioned aspects need to be considered. A typical example of the synergistic, complex function of the herbs has been given in the study of PHY906, a Chinese herbal preparation made from the herbs of Scutellaria baicalensis, Paeonia lactiflora, Ziziphus jujuba and Glycyrrhiza glabra. PHY906 is derived from a classic herbal formula used for treatment of diarrhea and inflammatory conditions. Based on the properties and functions of Chinese medicinal herbs, each formula has a principle herb and adjuvant herbs. Here, the S. baicalensis acts as a principle herb, while the rest of the herbs in the formula are assistant herbs. The phase I/IIA randomized clinical study of PHY906 demonstrated a reduction of gastrointestinal toxicity and enhancement of the tumoricidal effect of the chemotherapy in patients with advanced colorectal cancer [4]. Recently, it has been also found effective in increasing the therapeutic efficacy and reducing adverse effects of the cytotoxic drug capecitabine in patients with advanced hepatocellular carcinoma in a phase I/II clinical study [5]. Further animal study demonstrates that removing one or three herbs from the PHY906 formulation would dampen the effect of PHY906 in antitumor activity, reduces toxicity, and reduces the bioavailability of the principle herb (personal communication from Y. C. Cheng). Other than this, many studies have demonstrated that specific combinations of medicinal herbs can be synergistic with cytotoxic chemotherapy through both pharmacodynamic and pharmacokinetic interactions. In a cohort study, a combined treatment of traditional Chinese medicine and Western medicine (WM) or treatment with WM alone was conducted on 222 patients with stage II and III colorectal cancer after radical operation. The survival of WM alone and the WM and TCM combined treatment is 16 months and 26.5 months, respectively, in which WM was administrated as the routine protocol while a TCM formula was given according to the treatment principle of differentiation for symptom patterns [6].

Zoom Image

Fig. 1 Schematic presentation of the actions of TCM as adjuvant cancer therapy based on the theory and clinical practice of TCM.

In the past decade, there have been a few systematic reviews regarding the clinical trials against various cancers treated with a TCM formula. One systematic review on colorectal cancer showed that TCM therapy alone or in combination with chemotherapy is useful during the postoperation period in relieving intestinal obstruction, reducing postoperative ileus symptoms and urinary retention [7]. Another systematic review evaluating randomized clinical trails (RCT) of TCM oral therapy for hepatocellular cancers found that many RCTs, although the herbs they studied were effective, were not randomized [8]. With respect to non-small cell lung cancer (NSCLC), although it is one of the common cancers with the highest death rate, there are few reliable reports assessing TCM therapy. One RCT study done in China analyzing the survival time, Karnofsky score, clinical symptoms and adverse reactions shows that chemotherapy plus Kangliu Zengxiao Decoction (KLZXD) is able to prolong the survival time of patients up to 15.57 months versus 11.17 months in the patients treated with chemotherapy alone. The symptoms of fatigue and dyspnea and the adverse effects of leukopenia and dyspepsia caused by chemotherapy were reduced by treatment with KLZXD [9]. However, another study comparing the efficacy of TCM and chemotherapy against NSCLC found uncertain results. Nevertheless, TCM treatment seems to stabilize the tumor mass, relieve clinical symptoms, and elevate quality of life. It is also inexpensive and more convenient compared with the conventional chemotherapy [10]. With regard to advanced breast cancer, the herbal preparation Shenqi Fuzheng Injection (SFI), was demonstrated to alleviate bone marrow inhibition and cellular immunity suppression caused by chemotherapy, and to relieve clinical symptoms, raise the quality of life and prolong survival time compared to patients receiving only chemotherapy [11]. Similarly, a systematic review on nasopharyngeal carcinoma (NPC) suggests that TCM therapy is efficacious as a concomitant therapy for NPC patients, but rigorous controlled clinical trials are still required to confirm these results [12]. A report on TCM therapy for progressive gastric cancer shows some benefits to the patient but the study was not well designed, hence its conclusions are suspect [13]. Unfortunately, a systematic review on esophageal cancer shows no evidence to support the effectiveness of TCM therapy [14]. Based on the above reports, the efficacy of TCM therapy in cancers is still unproven by the current RCT standards.

Aside from the therapeutic effect of TCM therapy on suppressing cancer growth, other potential benefits to patients, such as enhancement of organ functions, improvement of quality of life, reduction of clinical symptoms including pain, and reduction of adverse effects of chemo-/radiotherapy are the indexes closely associated with the characteristics and advantages of TCM treatment as a supplementary remedy to the conventional chemo-/radiotherapy and those indexes have not always been taken into consideration in assessing the therapeutic outcome of TCM in RCT evaluations. For instance, a review analyzing the effectiveness of TCM for liver protection and chemotherapy completion among cancer patients shows that although there is no significant difference in outcome between the TCM-treated and the control groups, TCM therapy alongside the standard chemotherapy resulted in protection of liver function during the course of chemotherapy, as manifested by lower serum AST and ALT levels [15]. As we know, normal liver function is critical for successful completion of a standard course of chemotherapy. Thus, protection of liver function will not only protect the liver organ itself but will also enhance the cytotoxic potency of chemotherapeutic drugs. A systematic review on huangqi decoction in alleviation of chemotherapy side effects in colorectal cancer patients was recently reported [16]. Despite the low quality of the clinical studies, the results suggest that huangqi decoction may stimulate immunocompetent cells and decrease side effects in patients treated with chemotherapy. In addition to the alleviation of chemotherapy side effects, a reduction in cancer pain may also be a beneficial result from TCM treatment according to a recent systematic reviews of 115 articles on clinical research in TCM treatment for cancer pain management [17].

In recent years, improvement of quality of life and prolongation of survival time of cancer patients, whether the cancerous carcinoma disappears or not in the body, have become important factors for evaluating the benefits of any intervention for cancer patients. Another recent study evaluated the effect of the combined Ganji Recipe therapy with the Fructus Bruceae oil emulsion (FBE) intervention or the transhepatic arterial chemical embolization (TACE) on the quality of life and survival time of patients with advanced primary hepatic cancer. The results showed significant improvements in the quality of life and the life expectancy of the patients receiving Ganji and FBE treatment compared to patients treated with TACE or the Fructus Bruceae oil emulsion intervention alone [18]. Studies on non-small cell lung cancer indicate that TCM therapy is able to markedly reduce the adverse postradiation reactions and improve the quality of life of patients through intensive analysis using QLQ‐C30, LC13, QLQ‐C30 and LC30 questionnaires [19]. In another cohort study, the herbal preparation of Quxie Capsule was demonstrated to be effective in improving significantly the quality of life and in prolonging the survival of advanced colorectal cancer patients in an RCT study [1].

#

Molecular Mechanisms of TCM-Based Herbal Medicines as Anticancer Drugs

Proponents of Chinese traditional medicines point out that these medicines, unlike Western drugs in which the therapeutic effects are derived from a single compound with a well-defined target, have synergistic pharmacological effects because each herbal formula consists of several herbs, each with specific therapeutic activities toward the disease or symptoms. Nonetheless, the majority of reports in the literature have taken a reductionist approach, namely working on mostly the TCM-derived pure compounds; few have studied extracts derived from a single herb, and very few have studied TCM formulations which are the form that have historically given the most benefit. At the time of this review, there were two comprehensive reviews published in 2003 on antitumor agents from TCM, focusing on both the chemical properties and the mechanisms of action of those compounds [20], [21]. Therefore, this second part of the review will only touch upon a few studies in or before 2003, and will mainly cover reports after 2003 that appeared in the databases, including Ovid MEDLINE®, AMED, CDSR, ACP Journal Club, DARE, CCTR, CLCMR, CLHTA, CLEED, EMBASE‐DP, Global Health, restricted to TCM-based herbal medicines. [Table 1] summarizes the articles selected out of ∼ 500 original works on anticancer herbal medicines that meet the criteria mentioned above, i.e., (i) the article describes work on TCM-derived herbal medicine(s), and (ii) it is a mechanistic study at the molecular level. Due to the enormous volume of reports on apoptosis, this review in this area of study will mainly cover reports since 2006. In the review, we will also try to link the current understanding of anticancer TCM herbs based on the experimental and clinical studies with the understanding of the functions of the herbs based on TCM theory and concepts as developed during more than a thousand years of clinical experiences.

Zoom Image

Fig. 2 The altered protein molecules (shown in [Table 1]) upon treatments of TCM herbal medicines and the associated cellular signaling networks.

Zoom Image

Fig. 3 Chemical structures of the TCM-derived active components shown in [Table 1].

Table 1 Examples of anticancer compounds or extracts derived from traditional Chinese herbal medicines with known molecular mechanism of action.

Affected molecules and pathways

In vitro and/or in vivo system

Main TCM herbs

Active component*

Type of compound

Ref.

Topoisomerase I & II inhibitors

  • ↓Topo I

cancer cells

Camptotheca acuminata 5

camptothecins

alkoloid

[22], [52]

  • ↓Topo II

CHO cells

Chan'su5

bufalin

cardiac steroid

[53]

  • ↓Topo I & II & other targets

low molecular weight

[20]

  • ↓Topo II

Poria cocos 3

dehydroebriconic acid

triterpenoid

[54]

  • ↓Topo I & II; ↑ERK, JNK; → apoptosis

hepatoma cells

Ganoderma 3

genodermic acid

triterpenoid

[55]

  • ↓Topo I

in vitro assays

Daphne genkwa 5

yuanhuacines

diterpenoid

[56]

  • ↓Topo II, ROS

cells, & xenografts

salvicine

diterpenoid

[57]

  • HER2, TNFR, Fas; ↓DNA synthesis; → apoptosis

lung cancer cell lines

Solanum 1

alkaloid

[58]

  • Antioxidant; ↓NF-kappaB, Cox-2, PLase C & Ca++ signaling

various cancer cell lines

Scutellaria 1

wogonin, baicalein, baicalin

flavones

[59]

  • ↓Topo I & II, NF-kappaB, AP-1; ↑p53; ↓STAT3, IGF1R, HER2

Many

luteolin

flavonoids

[60]

Apoptosis

  • ↑p21 & ↓cyclin D1

breast cancer cells MDA‐MB‐231

Coriolus versicolor 3

polysaccharides peptide

polysaccharides

[61]

  • Microarrays-detected genes

H lung cancer A549 cells

Scutellaria barbata 1

crude extract

naphthoquinone

[62]

  • ↓Telomerase & Bcl-2, ↑Bax

leukemia K562

Rabdosia rebescens 1

oridonin

diterpene

[63]

  • ↓Bcl-2

Hep3B

Scutellaria barbata 1

pheophrbide

[64]

  • ↓Bcl-2, ↑p53 & PARP-1

MCF-7

Curcuma xanthorrhiza 2

xanthorrhizol

sesquiterpenoid

[65]

  • ↓Bcl-2/Bcl-XL

MCF-7

Patrinia scabiosaefolia 1

not known

crude extract

[66]

  • ↑Caspases & Bax

prostate PC-3

Alismatis rhizoma 4

alisol B acetate

triterpene

[67]

  • ↓Bcl-2, ↑Caspases & Bax

lung cancer cells

Rabdosia rebescens 1

ponicidin

diterpenoid

[68]

  • ↑PARP, caspase-3

leukemia K562

Sophora flarescens Ait.1

matrine

alkaloid

[69]

  • ↑Caspase-8, with trail

cholangiocarcinoma TRAIL-resistant cells

Tripterygium wilfordii 5

triepolide

diterpene

[70]

  • Cdk inhibitor

chronic myelocytic leukemia

Danggui longhui Wan#

indirubin

alkaloid

[71]

  • ↓ JAK & STAT phosphorylation

HTLV-1-T leukemia cells

Curcuma longa 2

curcumin

diarylheptanoid

[72]

  • ↑Caspase-8, ↓ Bcl-XL

Hep G2, Hep 3B

Justicia procumbens 7

justicidin

[73]

  • ↑Caspase-3, ↓MMP

HL-60

Curcuma longa 2

curcumin

diarylheptanoid

[74]

  • ↑p53 and Bax, ↓ Bcl-2

lung cancer cells

Ganoderma lucidum 3

ganoderic acid T

triterpenoid

[75]

  • ↑Caspase-3 & -8, cleavage of PARP

pancreatic carcinoma PANC-1 & HeLa cells

Tripterygium wilfordii 5

triptolide

diterpene

[76]

  • ↑Caspase-3 & -9, PARP-1

Jurkat T cells

Albizia julibrissin 6

crude extract

NA

[77]

  • ↑Caspase-2 & -3

HL-60

Oldenlandia diffusa 1

crude extract

NA

[78]

  • ↑Caspase-3 & PARP

MCF-7

Antrodia camphorata 3

crude extract

NA

[79]

  • ↑p53, ↓Bcl-2, ↑Bax, ↓NF-kappaB

in vitro & in vivo

Artemisia annua L 1

artemisinin

sesquiterpene

[31]

  • ↓PI3K/AKT, ↓FOXO & GSK3 pathways

osteosarcoma cells

Albatrellus confluens 7

grifolin

[80]

  • ↑ROS, ↓p-Rb, ↓p27

H HepG2

Zizyphus jujuba fruit 3

organic crude extract

[81]

  • ↑Caspase-3 & PARP

colon cancer cells HT-29

pseudolaric acid B

diterpenoid

[82]

  • ↑Fas-mediated pathway

MCF-7

Pterocarya stenoptera 7

pterocamin A

[83]

  • ↑Caspases

HeLa, A549, HepG2 & SW480

Cremanthodium humile 7

crude extract

NA

[84]

  • ↑Caspase-3, ‐9, ‐4. BIP & CHOP (ER)

HL-60

trichosanthin

[85]

  • ↑Caspase-3 & -7

thyroid carcinoma cells

Stemona tuberosa Lour4

organic fraction

NA

[86]

  • ↑Bax, ↓Bcl-2, p53-independent

glioma cells

Tripterygium wilfordii 5

triptolide

diterpene

[87]

  • ↓Survivin

lung cancer cells

Artemisia annua 1

dihydroartemisinin

sesquiterpene

[88]

  • ↑Caspase-3 & -9

neuroblastoma

Angelica keiskei 7

isobavachalcone

chalcones

[89]

  • not clear

HL-60

Oroxylum indicum 1

baiclein

flavonoid

[90]

  • ↑Bax, ↓Bcl-2, caspase-8

HL-60

Garcinia hanburyi 5

gambogic acid derivative

[91]

  • ↑PARP cleavage

HepG2

Schisandra propinqua 7

schisandrolic acid

triterpenoid

[92]

  • ↑Caspase-3, cleavage of PARP

HT-29 colon cancer cells

Astragalus membranaceus 1

Astragalus saponins

saponins

[30]

  • → Differentiation, GFAP, ↓nestin

glioma cells

Danshen2

tanshinone IIA

phenanthraquinone

[93]

  • Caspase-3, PARP& p38, ↓MAPK

HepG2

Curcuma wenyujin 2

furanodiene

[94]

  • ↑Capspase-like activities

Bcap37

Trichosanthes kirilowlii 5

23,24-dihydrocucurbitancin B

[95]

  • ↓Glutathione, enhance As2O3 toxicity

leukemia cells, HL-60

Isodon melissoides 7

melissoidesin G

diterpenoid

[96]

  • ↑p38,↑capases-9, ‐8, ‐3, -2

leukemia cells

Aglaia 7

rocaglamide

rocaglamide

[97]

  • ↑PLCγ, Ca++ overload

T-lymphocytes, in vitro & xenograft

Scutellaria baicalensis 1

wogonin

flavenoid

[37]

  • Synergize with TRAIL via ↓XIAP & DR5

AML

triptolide

diterpene

[98]

  • via DNA damage & AIF pathway

HCT-116

Ephemerantha lonchophylla 3

denbinobin

phenanthraquinone

[99]

  • ↑Bax/Bcl-2 ratio, caspase-9, ‐3, & PARP-1

glioblastoma cells

berberine

isoquinoline alkaloid

[100]

  • ↑Bax, Bak, & Bad; ↓Bcl-xL & Mcl-1

prostate PC-3 xenograft

Magnolia officinalis 4

honokiol

lignan

[101]

  • ↓ERK & MAPK phosphorylation

PC3 prostate cancer cells

Antrodia camphorata 3

crude extract

NA

[102]

  • ↓Bcl-2

HepG2

Solanum nigrum Linn.1

solanine

steroid alkaloid

[28]

  • ↑Caspase-3; ↓AKT pathway

breast cancer cells

Cordyceps militaris 7

crude extract

NA

[103]

  • ↑p53 & p21; ↑caspase-3; ↓Bcl-2, p-Rb, cdk 2/4 & E2F

uterine leiomyoma cells

isoliquiritigenin

flavonoid

[104]

  • ↑Caspase-8, ‐9, ‐7 & -3; ↑PARP; ↓Bcl-xL,

prostate cancer cells DU145

Saussurea lappa 6

dehydrocostus lactone

[105]

  • ↑Caspase-3, AIF & Bad; ↓AKT

lung adenocarcinoma A549

Ephemerantha lonchophylla 3

denbinobin

[106]

  • ↑Caspase-3

pancreatic PANC-1

Brucea javanica 1

Fructus Bruceae

[107]

  • ↑p53 & p21; caspase-3 & PARP

gastric carcinoma AGS cells

Strychni semen5

water extract

[108]

  • ↑Caspase-3 & -9; PARP

HL-60 cells

Schizandrae chinensis 3

deoxy- & gamma-schizandrin

lignan

[109]

  • ↑p21, caspase-3 & -9

prostate LNCaP cancer cells

Stellera chamaejasme L.5

neochamaejasmin A

flavonoid

[110]

  • ↑Caspases-8, ‐9, ‐3; ↓Bcl-2 & NF-kappaB

oral squamous carcinoma cells

shikonin

naphthoquinone

[111]

  • ↑Ca++ & p38

lung cancer PC-14 cells

Artemisia annua 1

dihydroartemisinin

sesquiterpene

[112]

  • ↓NF-kappaB pathway via ↓IκBα kinase (IKK)

jurkat leukemic cells

berberine

isoquinoline alkaloid

[33]

  • ↓JAK/STAT pathway; ↑caspase-3, ‐8 & -9

U266 multiple myeloma cells

Mylabria phalerata Pallas (insect)

cantharidin

monoterpene

[113]

  • ↑Bax; ↓Bcl-2; stimulate IL-2 & TNF-α

hepatocellular carcinoma HepA cells

Paeonia moutan 1

paeonol

phenolic compound

[38]

  • ↓IKK kinase activity; ↓NFkappaB

carcinoma KB cells

Euphorbia fischeriana 5

17-acetoxyjolkinolide B

[114]

  • ↑Caspase-3 & -9, PARP; ↓Bcl-2; ↑Bax

multiple myeloma cells

Alpinia pricei Hayata7

crude extract

NA

[115]

  • ↓PI3k/AKT & NF-kappaB; enhance Dex-effectiveness

HeLa

Tripterygium wilfordii 5

triptolide

diterpenoid

[116]

  • ↑Caspase-3

HCT116 colon cancer cells

Zingiber zerumbet 7

zerumbone

[117]

  • Enhance 5-FU-induced caspase-6 & apoptosis

gastric carcinoma SCG-7901cells

Erigeron breviscapus 1

scutellarin

flavonoid

[118]

  • ↑Fas/FasL; caspase-3

oral squamous cell carcinoma

Sophora flavescens Ait1

matrine

alkaloid

[119]

  • ↑Caspases, PARP; ↑ROS

tongue cancer SCC-4 cells

Anisomeles indica (L) Kuntze7

ovatodiolide

diterpenoid

[120]

  • ↑Bax/Bcl-2 ratio; ↑ROS

colon cancer HCT116 cells

rhubarb2

rhein

anthraquinone

[121]

  • Enhance trail-cytotoxicity through ↑ p53 & puma mediated by ROS

breast MDA‐MB‐453 cancer cells

wogonin

flavonoid

[122]

  • ↓ ErbB-2 pathway;↑caspase-3 & PARP;↑proapoptotic Bim

MDA‐MB‐453 breast cancer cells

Cleistocalyx operculatus 7

on-III

[123]

  • ↑MAC-related mitochondrial pathway

HepG2 liver cancer cells

Scutellaria baicalensis 1

oroxylin A

flavonoid

[124]

  • ↑Caspase-3

lung adenocarcinoma ASTC cells

Artemisia annua 1

dihydroartemisinin

sesquiterpene

[125]

  • ↑Bax/Bcl-2 ratio

prostate cancer PC-3 & DU-145 cells & xenograft mouse model

Lycium barbarum 3

polysaccharide fraction

polysaccharides

[126]

  • ↓Bcl-2; caspase-3; ↑ PARP cleavage

lung carcinoma A549 cells

Panax notoginseng 2

water extract

NA

[127]

  • ↓TNFα & NF-kappaB; ↑ROS, caspases

leukemia U937 cells

Dendrobium moniliforme 3

denbinobin

phenanthraquinone

[128]

  • ↑p21 & p27; ↑caspase-3 & PARP cleavage

leukemia K562 cells

Vitex rotundifolia 1

casticin

[129]

  • ↑ROS, Egr-1 & caspase-3

human leukemia U937 cells

Platycodon grandiflorum 4

platycodon D

triterpenoid

[130]

  • ↑ROS, ↓MMP, ↓Bax/Bcl-2 ratio

HT-29 colon cancer cells

Houttuynia cordata 1

crude extract

NA

[131]

  • ↓Rho GTPases, ↓metastasis

nasopharyngeal carcinoma, HONE1

Coptidis rhizoma

berberine

alkaloid

[132]

  • ↓IL‐6 & JAK/STAT3

prostate LNCap cells

Euphorbia fischeriana 5

17-hydroxyjolkinolide B

diterpenoid

[133]

  • ↑Bax, ↑p53, AKT & JNK

TRAMP prostate mouse model & LNCaP cells

Scutellaria barbata 1

crude extract

NA

[134]

  • ↑Caspase-3, ‐9; ↑PARP cleavage; ↓Bcl-2

ovarian cancer cell iline SKOV3 & in vivo SKOV3 xenograft in mice

Rhizoma Paridis1

paris saponin 1

saponin

[135]

  • ↑Caspase-8, -9; ↑Bax; ↓Bcl-2

HL-60 cells

Garcinia hanburyi 5

gambogic acid

[136]

  • ↑Caspase-8, -9; ↑Bax; ↓Bcl-2

melanoma A375 cells

Garcinia hanburyi 5

gambogic acid

[137]

  • ↓Bcl-2; Fas ligand and receptor

lung carcinoma A549 cells

Venenum bufonis (Chansu)5

crude extract

NA

[138]

  • ↓Bcl-2/Bax ratio; ↑caspases

macrophage RAW 264.7 & THP-1 cells

Vitex negundo 1

vitexins

lignans

[139]

Others

  • ↓PKA & PKC, ↓cdc2&CKII

leukimia cells

Chan'su5

bufalin

cardiac steroid

[140]

  • ↓PKC, ↓NFkappaB-related transcription from microarray data

breast cancer cells & xenograft

Coix lachryma jobi L.3

not known

crude emusion

[141]

  • Induce senescence;↑ p21 & ↓p-Rb; ↓cdc2 & cyclin B1, cell death

RT4, TSGH-8302 & T24 carcinoma

Antrodia camphorata (fungi)3

crude extract

[29]

  • Antiangiognesis; ↓VEGF, VEGFR, MVC

running II

[142]

  • Stronger than tamoxifen in ER+ & ER− cells

MCF-10A & -7 breast cells

Salvia miltiorrhiza 2

tanshinone IIA

phenanthraquinone

[143]

  • Cytotoxicity through non-apoptosis mean

ER + MDA‐MB‐231 & MCF-7 cells

Leonurus japonicus 2

organic extract

NA

[144]

  • Induce autophagy & autophage-related cell death; ↓Bcl-2 and mTOR

LNCaP prostate cancer cells

Glycyrrhiza glabra 3

licorice & licochalcone-A

[145]

NA: not applied; ↑: activation; ↓: inhibition; →: induction; * Chemical structures of the active components are shown in [Fig. 3]; #Aloe vera (15 g), Angelica sinensis (30 g), Coptis chinensis (30 g), Gardenia jasminoides (30 g), Gentiana scabra Bge. (15 g), Moschus berezovskii (1.5 g), Phellodendron amurense (30 g), Rheum officinale Baill (15 g), Saussurea lappa (4.5 g), Scutellaria baicalensis (30 g); Classification of medicinal herbs based on the properties and actions of Chinese medicinal herbs (see [Table 2] for details): 1 Medicine for heat clearance and detoxification; 2 Medicinal for promoting blood circulation and eliminating stasis; 3 Medicinal for strengthening qi; 4 Medicinal for resolving phlegm and removing stasis; 5 Medicinal with cytotoxic function; 6 Medicinal for dispersing edema and relieving pain; 7 Others

#

Anticancer Effects and Underlying Mechanisms of TCM-Derived Compounds or Herbal Extracts

The anticancer herbal drugs can be divided into three categories based on their target: (i) drugs that uniquely target topoisomerases (Topos) and perturb DNA replication; (ii) drugs that kill tumor cells through apoptotic pathways; and (iii) drugs that alter signaling pathway(s) required for the maintenance of transforming phenotypes of the tumor cells. It is known that many natural products extracted from medicinal herbs show a direct killing effect on tumor cells. There is no exception for the compounds isolated from various traditional Chinese medicines claimed to have anticancer effects. Drugs targeting topoisomerase I & II (Topo I & II) as well as on pro-apoptotic pathways are known to induce cell death. Camptotheca acuminata (Xi Shu) is a TCM herb commonly used for cancer treatment in China. The compound camptothecin (CPT) isolated from the plant has been found to uniquely target Topo I, an enzyme which produces a DNA single-strand break in DNA replication. Interference of Topo I induces apoptosis and cell cycle perturbations [22], [23], [24], [25]. This finding along with the discovery of natural product-derived taxol have been considered as historic achievements in natural products and have subsequently led to the identification of a series of TCM-derived compounds targeting Topo I & II ([Table 1]).

Apoptosis is a common mode of action of chemotherapeutic agents, including the natural product-derived drugs [26], [27]. It appears that this is true for TCM-derived compounds and their extracts. As shown in [Table 1], 85 out of 104 independent studies of herbal medicines derived from 62 different TCM-based herbal plants revealed that apoptosis is the key mode for cell killing in a wide variety of cancer cells upon the treatment with various tested herbal medicines. For example, solanine, a steroid alkaloid isolated from Solanum nigrum Linn. that is a TCM commonly used in treating digestive system cancer, was found to possess anticancer effects and induce apoptosis mediated by the inhibition of the expression of Bcl-2 pro-apoptotic protein [28]. The Antrodia camphorata crude extract (ACCE), an extract obtained from a rare traditional Chinese herbal medicine Zhan-Ku (a camphor tree mushroom), has shown rather significant inhibitory effects on the growth of various transitional cell carcinomas (TCC) including RT4, TSGH-8301, and T24 cell lines. Interestingly, at high concentrations, ACCE causes p53-independent overexpression of p21 with simultaneous down-alteration of pRb and senescence in RT4 cells. On the other hand, ACCE at a low concentration simultaneously downregulated Cdc2 and Cyclin B1 with suppression of the absolute migrating capability of the two cell lines TSGH-8301 and T24, and eventually caused cell death [29]. The concentration-dependent cellular responses seem to provide a new avenue to explore the anticancer effects of TCM, especially at nontoxic dosages. The dried root of Astragalus membranaceus (Huangqi) has a long history of medicinal use for immunodeficiency diseases and a relatively short history of equal effectivity for alleviating the adverse effects of chemotherapeutic drugs. Total Astragalus saponins induce growth inhibition and apoptosis in colon cancer cell line HT-29 and the xenograft [30]. Artemisinin is the active principle isolated from a well-known TCM herb, Artimisia annua L. an effective antimalaria drug. Later, studies showed that artemisinin and its derivatives have profound anticancer effects as assessed both in in vitro and in vivo models [31]. Artesunate, a derivative of artemisinin was found to inhibit angiogenesis and induce apoptosis through p53-dependent and independent pathways. The drug also inhibits NF-kappaB and downregulates the anti-apoptotic Bcl-2 while it activates the pro-apoptotic Bax. Coptidis rhizoma (huanglian) and its major active component, berberine, were the most extensively studied herb of the last decade. Berberine as well as Huanglian show diverse biological activities, including antibacterial, anti-inflammatory, antiangiogenesis and pro-apoptotic activities [32]. A recent study elegantly demonstrated that berberine directly targets and modifies cysteine 179 of IkappaB kinase (IKK), leading to the downregulation of NFkappaB and its series of target genes in anti-apoptosis, cell proliferation, inflammation and invasion [33].

There are two major pathways by which chemotherapeutic agents can induce apoptosis of the treated cells. One is known as the mitochondria-mediated pathway, which is activated by cytochrome c, followed by the release of cytochrome c and Apaf-1, and activation of caspases-9 and − 3. The caspase-3 then induces degradation of many signaling molecules, including a DNA repair molecule and poly-ADP-ribose polymerase (PARP), and leads to irreversible cell death. The second pathway, the extrinsic receptor-mediated pathway involves death receptors, such as FAS, TNFαR1 & R2, and TrailR. The latter pathway plays a major role in immune responses, but a lesser role in the response to genotoxic stress. As shown in [Table 1], there are only a small number of TCM-derived compounds that cause apoptosis via the extrinsic pathway. For example, matrine, an alkaloid purified from the Chinese herb Sophora flavescens Ait that is known as an anti-inflammation, antifibrotic and anticancer drug from TCM, activates caspase-3 through Fas/FasL in a gastric cancer cell line [34]. Triptolide is a purified component isolated from Tripterygium wilfordii that has been effective in treating a variety of inflammatory and autoimmune diseases. Tripolide also shows potent antitumor properties [35]. A study has demonstrated that triptolide not only inhibits XIAP, a potent cellular caspase inhibitor elevated in acute myeloid leukemia (AML) and a factor causing resistance to TNFα-related apoptosis-inducing ligand (TRAIL), but also activates p53 signaling and promotes apoptosis of AMLs. In a separate study [36], tripolide was also found to overcome desmethasone-resistance and to enhance bortezomib/PS‐341-induced apoptosis. It is believed that tripolide acts through multiple signaling pathways, including the PI3K/Akt/NF-kappaB observed in human myeloma cells. Wogonin isolated from Huang-Qin (Scutellaria baicalensia Georgl.) showed phospholipaseCγ1- and Ca++-dependent apoptosis [37]. Paeonol from the root bark of the TCM herb Peoinia moutan is a TCM herb used to activate blood flow and remove blood stasis. Treatment of mice with a series of concentrations of paeonol induced apoptosis of the HepA-xenograft, and meanwhile caused elevation of blood IL-2 and TNF-α in the tumor-bearing mice [38].

Summarizing data from more than 80 independent research papers, it appears that herbal medicines predominately affect apoptotic signaling molecules, including increasing the ratio of Bax/Bcl-2, and upregulating caspases-3, ‐8, ‐9 and p53/p21 signals. An intriguing observation is that the elevation of PARP-1 cleavage seems to be a common event in cancer cell lines upon the treatment of TCM drugs. It is known that the inhibition of PARP-1 can potentiate both chemo- and radiotherapies for cancer and therefore the search for inhibitor(s) against PARP-1 has been an active area for the development of anticancer drugs [39]. Conversely, excessive expression of PARP-1 can cause translocation of the mitochondrial apoptosis-inducing factor (AIF) to the nuclei, and cause PARP-1-dependent cell death.

There are few herbs that do not cause apoptosis; instead, these herbs (listed in [Table 1]) generally induce antiangiogenesis, or induce differentiation and change the transforming phenotypes of the tumor cells as listed in [Table 1]. According to the TCM classification of medicinal herbs for cancer treatment, we have classified the herb plants listed in [Table 1] into six major classes and show them in [Table 2]. To sum up the above actions of the TCM-derived herbal compounds and herbal extracts, we have mapped the found molecular targets from [Table 1] to the known cellular signaling network shown in [Fig. 2]. This schematic diagram shows that MAPK/JNK/p38, JAK/STAT, PI3K/AKTS and NF-kappaB are the common signaling pathways affected in responding to the various treatments of TCM. The drawing also illustrates that the caspase family members and the mitochondria-mediated apoptotic molecules might play a role in the anticancer effects of the herbal medicines. However, the information collected up to the time of this review can only offer a rough and incomplete picture of the action of TCM herbal medicines. Further systemic studies are needed for a true and comprehensive understanding of the nature of the TCM products in cancer prevention and treatment.

Table 2 Functional classification of medicinal herbs based on TCM theory and clinical practice.

1. Medicinal for heat-clearance and detoxification (清熱解毒藥)

2. Medicinal for promoting blood circulation and eliminating stasis (活血化瘀藥)

3. Medicinal for strengthening qi (扶正培本藥)

4. Medicinal for resolving phlegm and removing stasis (化痰散結藥)

5. Medicinal with cytotoxic function (以毒攻毒類藥)

6. Medicinal for dispersing edema and relieving pain (消腫止痛藥)

7. Others (其他藥)

Artemisia annua L. 黃花蒿

Curcuma longa 薑黃

Antrodia camphorata 牛樟芝*

Alismatis rhizoma 澤瀉

Bufo bufo gargarizans/

Albizia julibrissin 合歡

Aglaia 米仔蘭*

Astragalus membranaceus 黃苠

Curcuma wenyujin 温鬱金

Coix lacryma-jobi L. (Coix seeds) 薏苡仁

Magnolia officinalis 厚樸

Bufo melanostictus (Venenum bufonis/Chan'su) 蟾酥

Saussurea lappa 木香*

Albatrellus confluens*

Brucea javanica 鴉胆子

Curcuma xanthorrhiza 束骨薑黃*

Coriolus versicolor 彩絨革蓋菌(雲芝)

Platycodon grandiflorum 桔梗

Camptotheca acuminata 喜樹*

Alpinia pricei Hayata 普萊氏月桃*

Coptidis Rhizoma (Coptis species)黃蓮

Leonurus japonicus 益母草

Dendrobium moniliforme 白石斛*

Stemona tuberosa Lour 百部

Daphne genkwa 芫花

Angelica keiskei 明日葉*

Erigeron breviscapus 燈盞細辛

Panax notoginseng 三七

Ephemerantha lonchophylla 大爪石斛*

Trichosanthes kirilowii 栝蔞

Euphorbia fischeriana/(Stellera chamaejasme L.*)狼毒

Anisomeles indica (L) Kuntze 金劍草*

Houttuynia cordata 魚腥草

Rheum officinale Baill (R. palmatum) (rhubarb)大黃

Glycyrrhiza glabra 甘草

Vitex negundo 牡荊

Garcinia hanburyi 藤黃*

Cleistocalyx operculatus 水翁*

Oldenlandia diffusa 白花蛇舌草

Salvia miltiorrhiza Bge. (Danshen) 丹參

Ganoderma lucidum 赤芝

Strychnos nux-vomica (Strychni semen) 馬錢子

Cordyceps militaris 蛹蟲草*

Oroxylum indicum 木蝴蝶

Lycium barbarum 寧夏枸杞

Tripterygium wilfordii 雷公藤*

Cremanthodium humile 矮垂頭菊*

Paeonia suffruticosa (Paeonia moutan) 牡丹皮

Poria cocos 茯苓

Inonotus obliquus Pilat 白樺茸*

Paris polyphylla (Rhizoma Paridis) 七葉一枝花

Schisandra chinensis 五味子

Isodon melissoides*

Patrinia scabiosaefolia 黃花敗醬**

Zizyphus jujuba fruit 大棗

Justicia procumbens 爵床*

Rabdosia rubescens 冬凌草

Pterocarya stenoptera 楓楊*

Scutellaria baicalensis 黃芩

Schisandra propinqua 香巴戟*

Scutellaria barbata 半枝蓮

Sophora moorcroftiana 砂生槐*

Solanum nigrum Linn 龍葵**

Zingiber zerumbet 紅球薑*

Sophora flavescens Ait. (Kushen) 苦參

Vitex rotundifolia 蔓荊*

* Drugs not included in “China Pharmacopia, 2010”; ** Medicinal included in the Appendix of “China Pharmacopia, 2010”; () Different species name under the same TCM name

#

Anticancer Effects and Underlying Mechanisms of TCM-Derived Complex Formulas

There are only a few mechanistic studies on the action of TCM formulas as anticancer agents. One study was on San-Zhong-Kui-Jian-Tang (SZKJT) [40], a complex formula comprising 17 different herbs, that is used for cancer therapy in China. SZKJT was found to induce the mitochondrial apoptotic pathway by changing Bax/Bcl-2 ratios, cytochrome c release and caspase-9 activation, but did not act on Fas/Fas ligand pathways in two human breast cancer cell lines, MCF-7 and MDA‐MB-231. A similar study was carried out by the same laboratory [41] on huang-lian-jie-du-tang (HLJDT) known to possess anti-inflammatory activity. The in vitro study conducted in two human liver cancer cell lines, HepG2 and PLC/PRF/5, found that HLJDT caused cell arrest by up-regulating the inactive form of Cdc2 and Cdc25, and downregulating the levels of Bcl-2 and Bcl-XL. Furthermore, HLJDT increased the ratio of Bax and Bak/Bcl-2 and Bcl-XL and the associated cell survival pathways, and subsequently triggered the mitochondrial apoptotic pathway. It was the collective actions of the herbs in the formula that were inhibiting the growth of cancer cells tested both in vitro cell lines and in vivo in nude mice. Another study is the study of a classic formula, Guizhi-fuling decoction (GZFLD) [42]. The formulation consists of five herbs: Cinnamomum cassia, Paeonia lactiflora, Paeonia suffruticosa, Poria cocos, and Prunus persica. Accordingly, GZFLD inhibited the growth of HeLa cells by activating the tissue inhibitor of metallopeptidases (TIMPs) and causing the suppression of the activity of the matrix metallopeptidase (MMPs) that play a key role in the degradation of the extracellular matrix and promotion of cell proliferation. In the same study, GZFLD was also shown to inhibit tumor growth and angiogenesis in an in vivo animal model. Another report [43] concerned a classic formula “bojungbangdocktang (BJBDT)” consisting of Astragalus membranaceus Bunge, Atractylodes japonica Koidzumi, Coiz lacryma-jobi Linne var. ma-yuen stapf, Dioscorea batatas Decaisne, Dolichos lablab Linne, Panax ginseng C. A. Mey, Polygonatum sibiricum Delar. ex Pedouté, Poria cocos (Schw.) Wolf. Two related studies [44], [45] found that BJBDT demonstrated antiangiogenesis by blocking VEGF/VEGFR activities in human umbilical vein endothelial cells. Interestingly, BJBDT can prevent cisplatin-induced toxicity and apoptosis in normal MCF-10A, but not in MCF-7 and MDA MB-231 breast cancer cells, suggesting the herbal formula can be applied as a cancer chemopreventive agent [43]. The synergistic effects of herbs in a TCM formula were well illustrated in a recent study, in which a TCM-based formula, Realgar-indigo naturalis (RIF), was applied in the treatment of acute promyelocytic leukemia (APL). The RIF formula has three components, realgar, indigo naturalis, and Salvia miltiorrhiza of which tetra-arsenic tetrasulfide, indirubin, and tanshinone IIA, respectively, are the major active ingredients [46]. The study demonstrated that tetraarsenic tetrasulfide is the principle component of the formula, while tanshinone IIA and indirubin are the adjuvant ingredients. Together these herbs have shown a synergistic action against APL effective in both in vitro and clinical studies.

#

Future Prospect of TCM Herbal Medicines in Cancer Research

The cellular and animal studies have provided strong molecular evidences for the anticancer activities of the TCM herbal medicines, tested as pure compounds or as crude extracts of the single herbs or the complex formulas. However, several important questions remain to be answered. Do TCM-derived herbal medicines possess any special effects other than those often seen with conventional drugs for cancer treatment? There has been little investigation to make a side-by-side comparison. An earlier work was conducted on the anticancer effects of protodioscine (glycosides) from the rhizome of Dioscorea collettii var. hypoglauca, a Chinese herbal remedy for the treatment of cervical carcinoma, carcinoma of urinary bladder and renal tumor for centuries, against a 60 NCI human cancer panel [47], and it was found to be specifically effective for cervical carcinoma, bladder and renal cancer cell lines. Moreover, based on an analysis of the COMPARE computer program with protodioscin as a seed compound, no other compounds in the NCI's anticancer drug screen database have a cytotoxicity pattern (mean graphs) similar to those of protodioscin, indicating that a potential novel mechanism of anti-cancer action is involved. This may be one of many methods by which the unique properties of TCM can be revealed in a concise manner.

The other question to be addressed in the future is whether the methodologies and the in vitro and in vivo biological models currently employed to investigate the therapeutic nature of traditional Chinese medicines are good enough. In this review, there are 66 herbs that have been used for anticancer studies. We have grouped these herbal plants into seven functional groups based on the traditional usage for cancer treatment ([Table 2]). Interestingly only a small subset of herbs is considered toxic, grouped under the category of “medicinal with cytotoxic function”, the majority is not. On the other hand, the majority of TCM-derived components shown above are in the same category as the conventional anticancer drugs which induce apoptosis. In a previous study [48], we used a cell system by which the inhibitory effects of non-cytotoxic chemicals were assessed by a focus formation assay upon transfection of ras oncogene to the host cells. Using this system, two well-studied medicinal mushrooms Ganoderma lucidum and Tricholoma lobayense with anticancer potential were examined for their possible adverse effects on cell transformation induced by ras oncogene. The results indicated that both species of mushrooms strongly inhibited ras-induced cell transformation. However, the inhibitory effect of the mushroom extracts was not due to a direct killing of the transformed cells; rather, it seems to have been mediated through the surrounding normal cells. This normal cell-dependent growth inhibitory effect is also observed with oleanolic acid isolated from Oldenlandia diffusa [49]. These examples suggest that, at least some, TCM medicines exert their anticancer effects through mechanism(s) other than apoptosis.

Looking forward, we see three specific issues that will require focused attention: (i) more well-designed clinical trials are required to support the effectiveness and the safety of TCM in the management of cancers; (ii) new parameters based on the unique properties and theory of TCM are needed to assess the clinical efficacy of TCM in clinical trials; and (iii) new approaches to research may be needed, given the nature of TCM herbs as being fundamentally different from drugs. There is evidence that the reductionist approach, i.e., searching for one or a few active ingredients in an herb or formula, may not elucidate the efficacy of herbal medicines; a systems biology approach may be more appropriate and productive, in terms of developing effective treatment protocols.

Undoubtedly, the evaluation of the therapeutic effects and the benefits of TCM therapy for cancer patients is a significantly complex, albeit significant, issue. TCM therapy, based on multiple medicinal herbs and an holistic approach to diagnosis as well as treatment, means that a clinical study of TCM treatment is more difficult and complicated than the study of single compound drugs. In addition to the conventional “standards” used for WM clinical trail, there is a need to develop a set of parameters that are suitable to the assessment of TCM therapy. The effects, as well as the toxicity, of individual herbs or, especially, of single compounds derived from the herb cannot completely reflect the benefits and toxicity of the herbal combination. When whole herbs are not studied, improper or biased results and conclusions might be unavoidable [50]. As a goal, to develop TCM into rational cancer therapy, more well-designed intensive clinical evaluations and translational laboratory studies are absolutely needed. And, close collaboration between TCM and conventional Western medicine professions and a combination of TCM with modern multidisciplinary cutting-edge technologies, such as omic methodology on systems biology [51], would provide us with an attractive and effective strategy to achieve this goal.

#

Acknowledgements

The authors thank Dr. William Tai, Ms. Wing Yan Wong, and Dr. Hau Zhou for their technical assistance, and Prof. Zhi Hong Jiang's kind advice on the phytochemistry of the herbs and his contribution to [Fig. 3] drawings. Specific thanks go to Dr. Lisa Song's professional assistance in literature search and organization of the references. Thanks also go to Dr. Martha Dahlen's editing of this manuscript. This study was financially supported by Research Grants Council of Hong Kong under HKBU2/07C and HKBU 260307 grants to WLWH.

#

References

  • 1 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun M J. Cancer statistics, 2009.  CA Cancer J Clin. 2009;  59 225-249
  • 2 Macek C. East meets West to balance immunologic yin and yang.  JAMA. 1984;  251 433-435 439
  • 3 Sagar S M, Wong R K. Chinese medicine and biomodulation in cancer patients – part one.  Curr Oncol. 2008;  15 42-48
  • 4 Farrell M P, Kummar S. Phase I/IIA randomized study of PHY906, a novel herbal agent, as a modulator of chemotherapy in patients with advanced colorectal cancer.  Clin Colorectal Cancer. 2003;  2 253-256
  • 5 Yen Y, So S, Rose M, Saif M W, Chu E, Liu S H, Foo A, Jiang Z, Su T, Cheng Y C. Phase I/II study of PHY906/capecitabine in advanced hepatocellular carcinoma.  Anticancer Res. 2009;  29 4083-4092
  • 6 Yang Y F, Chen Z X, Xu Y, Wu Y, Wu X W, Zhu Y W, Li P H, Gao S L. Randomized controlled study on effect of Quxie capsule on the median survival time and qualify of life in patients with advanced colorectal carcinoma.  Zhongguo Zhong Xi Yi Jie He Za Zhi. 2008;  28 111-114
  • 7 Tan K Y, Liu C B, Chen A H, Ding Y J, Jin H Y, Seow-Choen F. The role of traditional Chinese medicine in colorectal cancer treatment.  Tech Coloproctol. 2008;  12 1-6
  • 8 Wu P, Dugoua J J, Eyawo O, Mills E J. Traditional Chinese medicines in the treatment of hepatocellular cancers: a systematic review and meta-analysis.  J Exp Clin Cancer Res. 2009;  28 112
  • 9 Xu Z Y, Jin C J, Shen D Y. Clinical study on treatment of advanced non-small-cell lung cancer with Chinese herbal medicine in different stages combined with chemotherapy.  Zhongguo Zhong Xi Yi Jie He Za Zhi. 2007;  27 874-878
  • 10 Cheng J H, Liu W S, Li Z M, Wang Z G. A clinical study on global TCM therapy in treating senile advanced non-small cell lung cancer.  Chin J Integr Med. 2007;  13 269-274
  • 11 Huang Z F, Wei J S, Li H Z, Tan Z O, Zhang Z J, Chen C. Effect of Shenqi Fuzheng injection combined with chemotherapy on thirty patients with advanced breast cancer.  Zhongguo Zhong Xi Yi Jie He Za Zhi. 2008;  28 152-154
  • 12 Cho W C, Chen H Y. Clinical efficacy of traditional Chinese medicine as a concomitant therapy for nasopharyngeal carcinoma: a systematic review and meta-analysis.  Cancer Invest. 2009;  27 334-344
  • 13 Liu X, Hua B J. Effect of traditional Chinese medicine on quality of life and survival period in patients with progressive gastric cancer.  Zhongguo Zhong Xi Yi Jie He Za Zhi. 2008;  28 105-107
  • 14 Wei X, Chen Z, Yang X, Wu T. Chinese herbal medicines for esophageal cancer.  Cochrane Database Syst Rev. 2009;  (4) CD004520
  • 15 Liu N L, Chien L Y, Tai C J, Lin K C, Tai C J. Effectiveness of traditional Chinese medicine for liver protection and chemotherapy completion among cancer patients.  eCAM. 2009;  1-8
  • 16 Taixiang W, Munro A J, Guanjian L. Chinese medical herbs for chemotherapy side effects in colorectal cancer patients.  Cochrane Database Syst Rev. 2005;  (1) CD004540
  • 17 Xu L, Lao L X, Ge A, Yu S, Li J, Mansky P J. Chinese herbal medicine for cancer pain.  Integr Cancer Ther. 2007;  6 208-234
  • 18 Wang B, Tian H Q, Liang G W. Effect of ganji recipe combined with Fructus Bruceae oil emulsion intervention on quality of life in patients with advanced primary hepatic cancer.  Zhongguo Zhong Xi Yi Jie He Za Zhi. 2009;  29 257-260
  • 19 Zhang T. Effect of TCM therapy for removing toxic substance and unblocking meridians on post-radiation quality of life in 55 patients with lung cancer.  Zhongguo Zhong Xi Yi Jie He Za Zhi. 2008;  28 154-157
  • 20 Tang W, Hemm I, Bertram B. Recent development of antitumor agents from Chinese herbal medicines; part I. Low molecular compounds.  Planta Med. 2003;  69 97-108
  • 21 Tang W, Hemm I, Bertram B. Recent development of antitumor agents from Chinese herbal medicines. Part II. High molecular compounds.  Planta Med. 2003;  69 193-201
  • 22 Hsiang Y H, Hertzberg R, Hecht S, Liu L F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I.  J Biol Chem. 1985;  260 14873-14878
  • 23 Wall M E. Camptothecin and taxol: discovery to clinic.  Med Res Rev. 1998;  18 299-314
  • 24 Oberlies N H, Kroll D J. Camptothecin and taxol: historic achievements in natural products research.  J Nat Prod. 2004;  67 129-135
  • 25 Zhang X W, Qing C, Xu B. Apoptosis induction and cell cycle perturbation in human hepatoma hep G2 cells by 10-hydroxycamptothecin.  Anticancer Drugs. 1999;  10 569-576
  • 26 Kaufmann S H, Earnshaw W C. Induction of apoptosis by cancer chemotherapy.  Exp Cell Res. 2000;  256 42-49
  • 27 Fulda S, Debatin K M. Targeting inhibitor of apoptosis proteins (IAPs) for diagnosis and treatment of human diseases.  Recent Pat Anticancer Drug Discov. 2006;  1 81-89
  • 28 Ji Y B, Gao S Y, Ji C F, Zou X. Induction of apoptosis in HepG2 cells by solanine and Bcl-2 protein.  J Ethnopharmacol. 2008;  115 194-202
  • 29 Peng C C, Chen K C, Peng R Y, Chyau C C, Su C H, Hsieh-Li H M. Antrodia camphorata extract induces replicative senescence in superficial TCC, and inhibits the absolute migration capability in invasive bladder carcinoma cells.  J Ethnopharmacol. 2007;  109 93-103
  • 30 Tin M M, Cho C H, Chan K, James A E, Ko J K. Astragalus saponins induce growth inhibition and apoptosis in human colon cancer cells and tumor xenograft.  Carcinogenesis. 2007;  28 1347-1355
  • 31 Efferth T. Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of artemisinin – from bench to bedside.  Planta Med. 2007;  73 299-309
  • 32 Tang J, Feng Y, Tsao S, Wang N, Curtain R, Wang Y. Berberine and Coptidis rhizoma as novel antineoplastic agents: a review of, traditional use and biomedical investigations.  J Ethnopharmacol. 2009;  126 5-17
  • 33 Pandey M K, Sung B, Kunnumakkara A B, Sethi G, Chaturvedi M M, Aggarwal B B. Berberine modifies cysteine 179 of IkappaBalpha kinase, suppresses nuclear factor-kappaB-regulated antiapoptotic gene products, and potentiates apoptosis.  Cancer Res. 2008;  68 5370-5379
  • 34 Dai Z, Gao J, Ji Z, Wang X, Ren H, Liu X, Wu W, Kang H, Guan H. Matrine induces apoptosis in gastric carcinoma cells via alteration of Fas/FasL and activation of caspase-3.  J Ethnopharmacol. 2009;  123 91-96
  • 35 Kiviharju T M, Lecane P S, Sellers R G, Peehl D M. Antiproliferative and proapoptotic activities of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells.  Clin Cancer Res. 2002;  8 2666-2674
  • 36 Yang M, Huang J, Pan H Z, Jin J. Triptolide overcomes dexamethasone resistance and enhanced PS-341-induced apoptosis via PI3k/Akt/NF-kappaB pathways in human multiple myeloma cells.  Int J Mol Med. 2008;  22 489-496
  • 37 Baumann S, Fas S C, Giaisi M, Muller W W, Merling A, Gulow K, Edler L, Krammer P H, Li-Weber M. Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCgamma1- and Ca2+-dependent apoptosis.  Blood. 2008;  111 2354-2363
  • 38 Sun G P, Wang H, Xu S P, Shen Y X, Wu Q, Chen Z D, Wei W. Anti-tumor effects of paeonol in a HepA-hepatoma bearing mouse model via induction of tumor cell apoptosis and stimulation of IL-2 and TNF-alpha production.  Eur J Pharmacol. 2008;  584 246-252
  • 39 Wang Y, Dawson V L, Dawson T M. Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos.  Exp Neurol. 2009;  218 193-202
  • 40 Hsu Y L, Yen M H, Kuo P L, Cho C Y, Huang Y T, Tseng C J, Lee J P, Lin C C. San-Zhong-Kui-Jian-Tang, a traditional Chinese medicine prescription, inhibits the proliferation of human breast cancer cell by blocking cell cycle progression and inducing apoptosis.  Biol Pharm Bull. 2006;  29 2388-2394
  • 41 Hsu Y L, Kuo P L, Tzeng T F, Sung S C, Yen M H, Lin L T, Lin C C. Huang-lian-jie-du-tang, a traditional Chinese medicine prescription, induces cell-cycle arrest and apoptosis in human liver cancer cells in vitro and in vivo.  J Gastroenterol Hepatol. 2008;  23 e290-e299
  • 42 Yao Z, Shulan Z. Inhibition effect of Guizhi-Fuling-decoction on the invasion of human cervical cancer.  J Ethnopharmacol. 2008;  120 25-35
  • 43 Kang S, Jeong S, Kwon H, Yun S, Kim J, Lee H, Lee E, Ahn K S, Kim S. Protective effect of Bojungbangdocktang on cisplatin-induced cytotoxicity and apoptosis in MCF-10A breast endothelial cells.  Environ Toxicol Pharmacol. 2009;  28 430-438
  • 44 Lee H J, Kim K H, Jang Y S. Protective effect of ethanol extract of Bojungbangamtang on cisplatin induced toxicity.  J Oriental Pathol. 2007;  21 1-5
  • 45 Jang Y S, Lee H J, Lee H J, Kim K H, Won S H, Lee J D, Ahn K S, Kim J H, Yu Y B, Kim S H. Bojungbangdocktang inhibits vascular endothelial growth factor induced angiogenesis via blocking the VEGF/VEGFR2 signaling pathway in human umbilical vein endothelial cells.  Chin Sci Bull. 2009;  54 227-233
  • 46 Wang L, Zhou G B, Liu P, Song J H, Liang Y, Yan X J, Xu F, Wang B S, Mao J H, Shen Z X, Chen S J, Chen Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia.  Proc Natl Acad Sci U S A. 2008;  105 4826-4831
  • 47 Hu K, Yao X. Protodioscin (NSC-698 796): its spectrum of cytotoxicity against sixty human cancer cell lines in an anticancer drug screen panel.  Planta Med. 2002;  68 297-301
  • 48 Hsiao W L, Li Y Q, Lee T L, Li N, You M M, Chang S T. Medicinal mushroom extracts inhibit ras-induced cell transformation and the inhibitory effect requires the presence of normal cells.  Carcinogenesis. 2004;  25 1177-1183
  • 49 Wu P K, Chi Shing Tai W, Liang Z T, Zhao Z Z, Hsiao W L. Oleanolic acid isolated from Oldenlandia diffusa exhibits a unique growth inhibitory effect against ras-transformed fibroblasts.  Life Sci. 2009;  85 113-121
  • 50 Chiu J, Yau T, Epstein R J. Complications of traditional Chinese/herbal medicines (TCM) – a guide for perplexed oncologists and other cancer caregivers.  Support Care Cancer. 2009;  17 231-240
  • 51 Efferth T, Li P C, Konkimalla V S, Kaina B. From traditional Chinese medicine to rational cancer therapy.  Trends Mol Med. 2007;  13 353-361
  • 52 O'Leary J, Muggia F M. Camptothecins: a review of their development and schedules of administration.  Eur J Cancer. 1998;  34 1500-1508
  • 53 Pastor N, Cortes F. Bufalin influences the repair of X-ray-induced DNA breaks in Chinese hamster cells.  DNA Repair (Amst). 2003;  2 1353-1360
  • 54 Mizushina Y, Akihisa T, Ukiya M, Murakami C, Kuriyama I, Xu X, Yoshida H, Sakaguchi K. A novel DNA topoisomerase inhibitor: dehydroebriconic acid, one of the lanostane-type triterpene acids from Poria cocos.  Cancer Sci. 2004;  95 354-360
  • 55 Li C H, Chen P Y, Chang U M, Kan L S, Fang W H, Tsai K S, Lin S B. Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells.  Life Sci. 2005;  77 252-265
  • 56 Zhang S, Li X, Zhang F, Yang P, Gao X, Song Q. Preparation of yuanhuacine and relative daphne diterpene esters from Daphne genkwa and structure-activity relationship of potent inhibitory activity against DNA topoisomerase I.  Bioorg Med Chem. 2006;  14 3888-3895
  • 57 Meng L H, Ding J. Salvicine, a novel topoisomerase II inhibitor, exerts its potent anticancer activity by ROS generation.  Acta Pharmacol Sin. 2007;  28 1460-1465
  • 58 Liang C H, Shiu L Y, Chang L C, Sheu H M, Tsai E M, Kuo K W. Solamargine enhances HER2 expression and increases the susceptibility of human lung cancer H661 and H69 cells to trastuzumab and epirubicin.  Chem Res Toxicol. 2008;  21 393-399
  • 59 Li-Weber M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin.  Cancer Treat Rev. 2009;  35 57-68
  • 60 Lopez-Lazaro M. Distribution and biological activities of the flavonoid luteolin.  Mini Rev Med Chem. 2009;  9 31-59
  • 61 Chow L W, Lo C S, Loo W T, Hu X C, Sham J S. Polysaccharide peptide mediates apoptosis by up-regulating p 21 gene and down-regulating cyclin D1 gene.  Am J Chin Med. 2003;  31 1-9
  • 62 Yin X, Zhou J, Jie C, Xing D, Zhang Y. Anticancer activity and mechanism of Scutellaria barbata extract on human lung cancer cell line A549.  Life Sci. 2004;  75 2233-2244
  • 63 Liu J J, Huang R W, Lin D J, Wu X Y, Peng J, Pan X L, Song Y Q, Lin Q, Hou M, Wang D N, Chen F, Zhang M H. Oridonin-induced apoptosis in leukemia K562 cells and its mechanism.  Neoplasma. 2005;  52 225-230
  • 64 Chan J Y, Tang P M, Hon P M, Au S W, Tsui S K, Waye M M, Kong S K, Mak T C, Fung K P. Pheophorbide a, a major antitumor component purified from Scutellaria barbata, induces apoptosis in human hepatocellular carcinoma cells.  Planta Med. 2006;  72 28-33
  • 65 Cheah Y H, Azimahtol H L P, Abdullah N R. Xanthorrhizol exhibits antiproliferative activity on MCF-7 breast cancer cells via apoptosis induction.  Anticancer Res. 2006;  26 4527-4534
  • 66 Chiu L C, Ho T S, Wong E Y, Ooi V E. Ethyl acetate extract of Patrinia scabiosaefolia downregulates anti-apoptotic Bcl-2/Bcl-X(L) expression, and induces apoptosis in human breast carcinoma MCF-7 cells independent of caspase-9 activation.  J Ethnopharmacol. 2006;  105 263-268
  • 67 Huang Y T, Huang D M, Chueh S C, Teng C M, Guh J H. Alisol B acetate, a triterpene from Alismatis rhizoma, induces Bax nuclear translocation and apoptosis in human hormone-resistant prostate cancer PC-3 cells.  Cancer Lett. 2006;  231 270-278
  • 68 Liu J, Huang R, Lin D, Peng J, Zhang M, Pan X, Hou M, Wu X, Lin Q, Chen F. Ponicidin, an ent-kaurane diterpenoid derived from a constituent of the herbal supplement PC-SPES, Rabdosia rubescens, induces apoptosis by activation of caspase-3 and mitochondrial events in lung cancer cells in vitro.  Cancer Invest. 2006;  24 136-148
  • 69 Liu X S, Jiang J. Molecular mechanism of matrine-induced apoptosis in leukemia K562 cells.  Am J Chin Med. 2006;  34 1095-1103
  • 70 Panichakul T, Intachote P, Wongkajorsilp A, Sripa B, Sirisinha S. Triptolide sensitizes resistant cholangiocarcinoma cells to TRAIL-induced apoptosis.  Anticancer Res. 2006;  26 259-265
  • 71 Perabo F G E, Frossler C, Landwehrs G, Schmidt D H, Von Rucker A, Wirger A, Muller S C. Indirubin-3′-monoxime, a CDK inhibitor induces growth inhibition and apoptosis-independent up-regulation of survivin in transitional cell cancer.  Anticancer Res. 2006;  26 2129-2135
  • 72 Rajasingh J, Raikwar H P, Muthian G, Johnson C, Bright J J. Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia.  Biochem Biophys Res Commun. 2006;  340 359-368
  • 73 Su C L, Huang L L, Huang L M, Lee J C, Lin C N, Won S J. Caspase-8 acts as a key upstream executor of mitochondria during justicidin A-induced apoptosis in human hepatoma cells.  FEBS Lett. 2006;  580 3185-3191
  • 74 Tan T W, Tsai H R, Lu H F, Lin H L, Tsou M F, Lin Y T, Tsai H Y, Chen Y F, Chung J G. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation.  Anticancer Res. 2006;  26 4361-4371
  • 75 Tang W, Liu J W, Zhao W M, Wei D Z, Zhong J J. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells.  Life Sci. 2006;  80 205-211
  • 76 Wang X, Matta R, Shen G, Nelin L D, Pei D, Liu Y. Mechanism of triptolide-induced apoptosis: Effect on caspase activation and Bid cleavage and essentiality of the hydroxyl group of triptolide.  J Mol Med. 2006;  84 405-415
  • 77 Won H J, Han C H, Kim Y H, Kwon H J, Kim B W, Choi J S, Kim K. Induction of apoptosis in human acute leukemia Jurkat T cells by Albizzia julibrissin extract is mediated via mitochondria-dependent caspase-3 activation.  J Ethnopharmacol. 2006;  106 383-389
  • 78 Yadav S K, Lee S C. Evidence for Oldenlandia diffusa-evoked cancer cell apoptosis through superoxide burst and caspase activation.  J Chin Integr Med. 2006;  4 485-489
  • 79 Yang H L, Chen C S, Chang W H, Lu F J, Lai Y C, Chen C C, Hseu T H, Kuo C T, Hseu Y C. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata.  Cancer Lett. 2006;  231 215-227
  • 80 Jin S, Pang R P, Shen J N, Huang G, Wang J, Zhou J G. Grifolin induces apoptosis via inhibition of PI3K/AKT signalling pathway in human osteosarcoma cells.  Apoptosis. 2007;  12 1317-1326
  • 81 Huang X, Kojima-Yuasa A, Norikura T, Kennedy D O, Hasuma T, Matsui-Yuasa I. Mechanism of the anti-cancer activity of Zizyphus jujuba in HepG2 cells.  Am J Chin Med. 2007;  35 517-532
  • 82 Ko J K S, Leung W C, Ho W K, Chiu P. Herbal diterpenoids induce growth arrest and apoptosis in colon cancer cells with increased expression of the nonsteroidal anti-inflammatory drug-activated gene.  Eur J Pharmacol. 2007;  559 1-13
  • 83 Kuo P L, Hsu Y L, Sung S C, Ni W C, Lin T C, Lin C C. Induction of apoptosis in human breast adenocarcinoma MCF-7 cells by pterocarnin A from the bark of Pterocarya stenoptera via the Fas-mediated pathway.  Anticancer Drugs. 2007;  18 555-562
  • 84 Li H, Wang L J, Qiu G F, Yu J Q, Liang S C, Hu X M. Apoptosis of Hela cells induced by extract from Cremanthodium humile.  Food Chem Toxicol. 2007;  45 2040-2046
  • 85 Li J, Xia X, Ke Y, Nie H, Smith M A, Zhu X. Trichosanthin induced apoptosis in HL-60 cells via mitochondrial and endoplasmic reticulum stress signaling pathways.  Biochim Biophys Acta Gen Subj. 2007;  1770 1169-1180
  • 86 Li Z, Sturm S, Stuppner H, Schraml E, Moser V A, Siegl V, Pfragner R. The dichloromethane fraction of Stemona tuberosa Lour inhibits tumor cell growth and induces apoptosis of human medullary thyroid carcinoma cells.  Biologics. 2007;  1 455-463
  • 87 Lin J, Chen L Y, Lin Z X, Zhao M L. The effect of triptolide on apoptosis of glioblastoma multiforme (GBM) cells.  J Int Med Res. 2007;  35 637-643
  • 88 Mu D, Chen W, Yu B, Zhang C, Zhang Y, Qi H. Calcium and survivin are involved in the induction of apoptosis by dihydroartemisinin in human lung cancer SPC-A-1 cells.  Methods Find Exp Clin Pharmacol. 2007;  29 33-38
  • 89 Nishimura R, Tabata K, Arakawa M, Ito Y, Kimura Y, Akihisa T, Nagai H, Sakuma A, Kohno H, Suzuki T. Isobavachalcone, a chalcone constituent of Angelica keiskei, induces apoptosis in neuroblastoma.  Biol Pharm Bull. 2007;  30 1878-1883
  • 90 Roy M K, Nakahara K, Na Thalang V, Trakoontivakorn G, Takenaka M, Isobe S, Tsushida T. Baicalein, a flavonoid extracted from a methanolic extract of Oroxylum indicum inhibits proliferation of a cancer cell line in vitro via induction of apoptosis.  Pharmazie. 2007;  62 149-153
  • 91 Tao Z, Zhou Y, Lu J, Duan W, Qin Y, He X, Lin L, Ding J. Caspase-8 preferentially senses the apoptosis-inducing action of NG-18, a gambogic acid derivative, in human leukemia HL-60 cells.  Cancer Biol Ther. 2007;  6 691-696
  • 92 Tian Z, Xu L, Zhou L, Yang M, Chen S, Xiao P, Wu E. Cytotoxic activity of schisandrolic and isoschisandrolic acids involves induction of apoptosis.  Chemotherapy. 2007;  53 257-262
  • 93 Wang J, Wang X, Jiang S, Yuan S, Lin P, Zhang J, Lu Y, Wang Q, Xiong Z, Wu Y, Ren J, Yang H. Growth inhibition and induction of apoptosis and differentiation of tanshinone IIA in human glioma cells.  J Neurooncol. 2007;  82 11-21
  • 94 Xiao Y, Yang F, Li S, Gao J, Hu G, Lao S, Conceicao E L, Fung K, Wang Y, Lee S M. Furanodiene induces G2/M cell cycle arrest and apoptosis through MAPK signaling and mitochondria-caspase pathway in human hepatocellular carcinoma cells.  Cancer Biol Ther. 2007;  6 1044-1050
  • 95 Yang L, Wu S, Zhang Q, Liu F, Wu P. 23,24-Dihydrocucurbitacin B induces G2/M cell-cycle arrest and mitochondria-dependent apoptosis in human breast cancer cells (Bcap37).  Cancer Lett. 2007;  256 267-278
  • 96 Yu Z Y, Liang Y G, Xiao H, Shan Y J, Dong B, Huang R, Fu Y L, Zhao Z H, Liu Z Y, Zhao Q S, Wang S Q, Chen J P, Mao B Z, Cong Y W. Melissoidesin G, a diterpenoid purified from Isodon melissoides, induces leukemic-cell apoptosis through induction of redox imbalance and exhibits synergy with other anticancer agents.  Int J Cancer. 2007;  121 2084-2094
  • 97 Zhu J Y, Lavrik I N, Mahlknecht U, Giaisi M, Proksch P, Krammer P H, Li-Weber M. The traditional Chinese herbal compound rocaglamide preferentially induces apoptosis in leukemia cells by modulation of mitogen-activated protein kinase activities.  Int J Cancer. 2007;  121 1839-1846
  • 98 Carter B Z, Mak D H, Schober W D, Dietrich M F, Pinilla C, Vassilev L T, Reed J C, Andreeff M. Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5.  Blood. 2008;  111 3742-3750
  • 99 Chen T H, Pan S L, Guh J H, Chen C C, Huang Y T, Pai H C, Teng C M. Denbinobin induces apoptosis by apoptosis-inducing factor releasing and DNA damage in human colorectal cancer HCT-116 cells.  Naunyn Schmiedebergs Arch Pharmacol. 2008;  378 447-457
  • 100 Eom K S, Hong J M, Youn M J, So H S, Park R, Kim J M, Kim T Y. Berberine induces G1 arrest and apoptosis in human glioblastoma T98G cells through mitochondrial/caspases pathway.  Biol Pharm Bull. 2008;  31 558-562
  • 101 Hahm E R, Arlotti J A, Marynowski S W, Singh S V. Honokiol, a constituent of oriental medicinal herb magnolia officinalis, inhibits growth of PC-3 xenografts in vivo in association with apoptosis induction.  Clin Cancer Res. 2008;  14 1248-1257
  • 102 Ho C M, Huang C C, Huang C J, Cheng J S, Chen I S, Tsai J Y, Jiann B P, Tseng P L, Kuo S J, Jan C R. Effects of Antrodia camphorata on viability, apoptosis, and [Ca2+]i in PC3 human prostate cancer cells.  Chin J Physiol. 2008;  51 78-84
  • 103 Jin C Y, Kim G Y, Choi Y H. Induction of apoptosis by aqueous extract of Cordyceps militaris through activation of caspases and inactivation of Akt in human breast cancer MDA-MB-231 cells.  J Microbiol Biotechnol. 2008;  18 1997-2003
  • 104 Kim D C, Ramachandran S, Baek S H, Kwon S H, Kwon K Y, Cha S D, Bae I, Cho C H. Induction of growth inhibition and apoptosis in human uterine leiomyoma cells by isoliquiritigenin.  Reprod Sci. 2008;  15 552-558
  • 105 Kim E J, Lim S S, Park S Y, Shin H K, Kim J S, Park J H. Apoptosis of DU145 human prostate cancer cells induced by dehydrocostus lactone isolated from the root of Saussurea lappa.  Food Chem Toxicol. 2008;  46 3651-3658
  • 106 Kuo C T, Hsu M J, Chen B C, Chen C C, Teng C M, Pan S L, Lin C H. Denbinobin induces apoptosis in human lung adenocarcinoma cells via Akt inactivation, Bad activation, and mitochondrial dysfunction.  Toxicol Lett. 2008;  177 48-58
  • 107 Lau S T, Lin Z X, Zhao M, Leung P S. Brucea javanica fruit induces cytotoxicity and apoptosis in pancreatic adenocarcinoma cell lines.  Phytother Res. 2008;  22 477-486
  • 108 Lee S M, Kwon J I, Choi Y H, Eom H S, Chi G Y. Induction of G2/M arrest and apoptosis by water extract of Strychni Semen in human gastric carcinoma AGS cells.  Phytother Res. 2008;  22 752-758
  • 109 Lin S, Fujii M, Hou D. Molecular mechanism of apoptosis induced by schizandrae-derived lignans in human leukemia HL-60 cells.  Food Chem Toxicol. 2008;  46 590-597
  • 110 Liu W K, Cheung F W, Liu B P, Li C, Ye W, Che C T. Involvement of p21 and FasL in induction of cell cycle arrest and apoptosis by neochamaejasmin A in human prostate LNCaP cancer cells.  J Nat Prod. 2008;  71 842-846
  • 111 Min R, Tong J, Wenjun Y, Wenhu D, Xiaojian Z, Jiacai H, Jian Z, Wantao C, Chenping Z. Growth inhibition and induction of apoptosis in human oral squamous cell carcinoma Tca-8113 cell lines by shikonin was partly through the inactivation of NF-kappaB pathway.  Phytother Res. 2008;  22 407-415
  • 112 Mu D, Zhang W, Chu D, Liu T, Xie Y, Fu E, Jin F. The role of calcium, P38 MAPK in dihydroartemisinin-induced apoptosis of lung cancer PC-14 cells.  Cancer Chemother Pharmacol. 2008;  61 639-645
  • 113 Sagawa M, Nakazato T, Uchida H, Ikeda Y, Kizaki M. Cantharidin induces apoptosis of human multiple myeloma cells via inhibition of the JAK/STAT pathway.  Cancer Sci. 2008;  99 1820-1826
  • 114 Yan S S, Li Y, Wang Y, Shen S S, Gu Y, Wang H B, Qin G W, Yu Q. 17-Acetoxyjolkinolide B irreversibly inhibits IkappaB kinase and induces apoptosis of tumor cells.  Mol Cancer Ther. 2008;  7 1523-1532
  • 115 Yang H L, Chen S C, Chen C S, Wang S Y, Hseu Y C. Alpinia pricei rhizome extracts induce apoptosis of human carcinoma KB cells via a mitochondria-dependent apoptotic pathway.  Food Chem Toxicol. 2008;  46 3318-3324
  • 116 Yang M, Huang J, Pan H, Jin J. Triptolide overcomes dexamethasone resistance and enhanced PS-341-induced apoptosis via PI3k/Akt/NF-kappaB pathways in human multiple myeloma cells.  Int J Mol Med. 2008;  22 489-496
  • 117 Abdel Wahab S I, Abdul A B, Alzubairi A S, Mohamed Elhassan M, Mohan S. In vitro ultramorphological assessment of apoptosis induced by Zerumbone on (HeLa).  J Biomed Biotechnol. 2009;  2009 769568
  • 118 Chan J Y, Tan B K H, Lee S C. Scutellarin sensitizes drug-evoked colon cancer cell apoptosis through enhanced caspase-6 activation.  Anticancer Res. 2009;  29 3043-3047
  • 119 Dai Z J, Gao J, Ji Z Z, Wang X J, Ren H T, Liu X X, Wu W Y, Kang H F, Guan H T. Matrine induces apoptosis in gastric carcinoma cells via alteration of Fas/FasL and activation of caspase-3.  J Ethnopharmacol. 2009;  123 91-96
  • 120 Hou Y Y, Wu M L, Hwang Y C, Chang F R, Wu Y C, Wu C C. The natural diterpenoid ovatodiolide induces cell cycle arrest and apoptosis in human oral squamous cell carcinoma Ca9-22 cells.  Life Sci. 2009;  85 26-32
  • 121 Lai W W, Yang J S, Lai K C, Kuo C L, Hsu C K, Wang C K, Chang C Y, Lin J J, Tang N Y, Chen P Y, Huang W W, Chung J G. Rhein induced apoptosis through the endoplasmic reticulum stress, caspase- and mitochondria-dependent pathways in SCC-4 human tongue squamous cancer cells.  In Vivo. 2009;  23 309-316
  • 122 Lee D H, Rhee J G, Lee Y J. Reactive oxygen species up-regulate p53 and Puma; a possible mechanism for apoptosis during combined treatment with TRAIL and wogonin.  Br J Pharmacol. 2009;  157 1189-1202
  • 123 Li D D, Wu X Q, Tang J, Wei X Y, Zhu X F. ON-III inhibits erbB-2 tyrosine kinase receptor signal pathway and triggers apoptosis through induction of Bim in breast cancer cells.  Cancer Biol Ther. 2009;  8 739-743
  • 124 Liu W, Mu R, Nie F F, Yang Y, Wang J, Dai Q S, Lu N, Qi Q, Rong J J, Hu R, Wang X T, You Q D, Guo Q L. MAC-related mitochondrial pathway in oroxylin-A-induced apoptosis in human hepatocellular carcinoma HepG2 cells.  Cancer Lett. 2009;  284 198-207
  • 125 Lu Y Y, Chen T S, Qu J L, Pan W L, Sun L, Wei X B. Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells.  J Biomed Sci. 2009;  16 16
  • 126 Luo Q, Li Z, Yan J, Zhu F, Xu R J, Cai Y Z. Lycium barbarum polysaccharides induce apoptosis in human prostate cancer cells and inhibits prostate cancer growth in a xenograft mouse model of human prostate cancer.  J Med Food. 2009;  12 695-703
  • 127 Park S C, Yoo H S, Park C, Cho C K, Kim G, Kim W, Lee Y, Choi Y H. Induction of apoptosis in human lung carcinoma cells by the water extract of Panax notoginseng is associated with the activation of caspase-3 through downregulation of Akt.  Int J Oncol. 2009;  35 121-127
  • 128 Sanchez-Duffhues G, Calzado M A, de Vinuesa A G, Appendino G, Fiebich B L, Loock U, Lefarth-Risse A, Krohn K, Munoz E. Denbinobin inhibits nuclear factor-kappaB and induces apoptosis via reactive oxygen species generation in human leukemic cells.  Biochem Pharmacol. 2009;  77 1401-1409
  • 129 Shen J K, Du H P, Yang M, Wang Y G, Jin J. Casticin induces leukemic cell death through apoptosis and mitotic catastrophe.  Ann Hematol. 2009;  88 743-752
  • 130 Shin D Y, Kim G Y, Li W, Choi B T, Kim N D, Kang H S, Choi Y H. Implication of intracellular ROS formation, caspase-3 activation and Egr-1 induction in platycodon D-induced apoptosis of U937 human leukemia cells.  Biomed Pharmacother. 2009;  63 86-94
  • 131 Tang Y J, Yang J S, Lin C F, Shyu W C, Tsuzuki M, Lu C C, Chen Y F, Lai K C. Houttuynia cordata Thunb extract induces apoptosis through mitochondrial-dependent pathway in HT-29 human colon adenocarcinoma cells.  Oncol Rep. 2009;  22 1051-1056
  • 132 Tsang C M, Lau E P W, Di K, Cheung P Y, Hau P M, Ching Y P, Wong Y C, Cheung A L M, Wan T S K, Tong Y, Tsao S W, Feng Y. Berberine inhibits Rho GTPases and cell migration at low doses but induces G2 arrest and apoptosis at high doses in human cancer cells.  Int J Mol Med. 2009;  24 131-138
  • 133 Wang Y, Ma X, Yan S, Shen S, Zhu H, Gu Y, Wang H, Qin G, Yu Q. 17-Hydroxy-jolkinolide B inhibits signal transducers and activators of transcription 3 signaling by covalently cross-linking Janus kinases and induces apoptosis of human cancer cells.  Cancer Res. 2009;  69 7302-7310
  • 134 Wong B Y Y, Nguyen D L, Lin T, Wong H H L, Cavalcante A, Greenberg N M, Hausted R P, Zheng J. Chinese medicinal herb Scutellaria barbata modulates apoptosis and cell survival in murine and human prostate cancer cells and tumor development in TRAMP mice.  Eur J Cancer Prev. 2009;  18 331-341
  • 135 Xiao X, Bai P, Bui Nguyen T M, Xiao J, Liu S, Yang G, Hu L, Chen X, Zhang X, Liu J, Wang H. The antitumoral effect of Paris Saponin I associated with the induction of apoptosis through the mitochondrial pathway.  Mol Cancer Ther. 2009;  8 1179-1188
  • 136 Xie H, Qin Y X, Zhou Y L, Tong L J, Lin L P, Geng M Y, Duan W H, Ding J. GA3, a new gambogic acid derivative, exhibits potent antitumor activities in vitro via apoptosis-involved mechanisms.  Acta Pharmacol Sin. 2009;  30 346-354
  • 137 Xu X, Liu Y, Wang L, He J, Zhang H, Chen X, Li Y, Yang J, Tao J. Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells.  Int J Dermatol. 2009;  48 186-192
  • 138 Yun H R, Yoo H S, Shin D Y, Hong S H, Kim J H, Cho C K, Choi Y H. Apoptosis induction of human lung carcinoma cells by Chan Su (Venenum bufonis) through activation of caspases.  JAMS J Acupunct Meridian Stud. 2009;  2 210-217
  • 139 Zhou Y, Yiliang E L, Cao J, Zeng G, Shen C, Li Y, Zhou M, Chen Y, Pu W, Potters L, Shi Y E. Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth.  Clin Cancer Res. 2009;  15 5161-5169
  • 140 Jing Y, Watabe M, Hashimoto S, Nakajo S, Nakaya K. Cell cycle arrest and protein kinase modulating effect of bufalin on human leukemia ML1 cells.  Anticancer Res. 1994;  14 1193-1198
  • 141 Woo J H, Li D, Wilsbach K, Orita H, Coulter J, Tully E, Kwon T K, Xu S, Gabrielson E. Coix seed extract, a commonly used treatment for cancer in China, inhibits NFkappaB and protein kinase C signaling.  Cancer Biol Ther. 2007;  6 2005-2011
  • 142 Que H F, Chen H F, Gao S P, Lu D M, Tang H J, Jia X H, Xu J N. Effect on runing II on the growth of metastasis of transplanted tumor in mammary cancer-bearing mice and its mechanism.  J Tradit Chin Med. 2008;  28 293-298
  • 143 Lu Q, Zhang P, Zhang X, Chen J. Experimental study of the anti-cancer mechanism of tanshinone IIA against human breast cancer.  Int J Mol Med. 2009;  24 773-780
  • 144 Tao J, Zhang P, Liu G, Yan H, Bu X, Ma Z, Wang N, Jia W. Cytotoxicity of Chinese motherwort (YiMuCao) aqueous ethanol extract is, non-apoptotic and estrogen receptor independent on human breast cancer cells.  J Ethnopharmacol. 2009;  122 234-239
  • 145 Yo Y T, Shieh G S, Hsu K F, Wu C L, Shiau A L. Licorice and licochalcone-A induce autophagy in LNCaP prostate cancer cells by suppression of Bcl-2 expression and the mTOR pathway.  J Agric Food Chem. 2009;  57 8266-8273

Prof. W. L. Wendy Hsiao

School of Chinese Medicine
Hong Kong Baptist University

Kowloon Tong

Kowloon

Hong Kong

People's Republic of China

Phone: + 852 34 11 29 59

Fax: + 852 34 11 24 61

Email: bowhsiao@hkbu.edu.hk

#

References

  • 1 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun M J. Cancer statistics, 2009.  CA Cancer J Clin. 2009;  59 225-249
  • 2 Macek C. East meets West to balance immunologic yin and yang.  JAMA. 1984;  251 433-435 439
  • 3 Sagar S M, Wong R K. Chinese medicine and biomodulation in cancer patients – part one.  Curr Oncol. 2008;  15 42-48
  • 4 Farrell M P, Kummar S. Phase I/IIA randomized study of PHY906, a novel herbal agent, as a modulator of chemotherapy in patients with advanced colorectal cancer.  Clin Colorectal Cancer. 2003;  2 253-256
  • 5 Yen Y, So S, Rose M, Saif M W, Chu E, Liu S H, Foo A, Jiang Z, Su T, Cheng Y C. Phase I/II study of PHY906/capecitabine in advanced hepatocellular carcinoma.  Anticancer Res. 2009;  29 4083-4092
  • 6 Yang Y F, Chen Z X, Xu Y, Wu Y, Wu X W, Zhu Y W, Li P H, Gao S L. Randomized controlled study on effect of Quxie capsule on the median survival time and qualify of life in patients with advanced colorectal carcinoma.  Zhongguo Zhong Xi Yi Jie He Za Zhi. 2008;  28 111-114
  • 7 Tan K Y, Liu C B, Chen A H, Ding Y J, Jin H Y, Seow-Choen F. The role of traditional Chinese medicine in colorectal cancer treatment.  Tech Coloproctol. 2008;  12 1-6
  • 8 Wu P, Dugoua J J, Eyawo O, Mills E J. Traditional Chinese medicines in the treatment of hepatocellular cancers: a systematic review and meta-analysis.  J Exp Clin Cancer Res. 2009;  28 112
  • 9 Xu Z Y, Jin C J, Shen D Y. Clinical study on treatment of advanced non-small-cell lung cancer with Chinese herbal medicine in different stages combined with chemotherapy.  Zhongguo Zhong Xi Yi Jie He Za Zhi. 2007;  27 874-878
  • 10 Cheng J H, Liu W S, Li Z M, Wang Z G. A clinical study on global TCM therapy in treating senile advanced non-small cell lung cancer.  Chin J Integr Med. 2007;  13 269-274
  • 11 Huang Z F, Wei J S, Li H Z, Tan Z O, Zhang Z J, Chen C. Effect of Shenqi Fuzheng injection combined with chemotherapy on thirty patients with advanced breast cancer.  Zhongguo Zhong Xi Yi Jie He Za Zhi. 2008;  28 152-154
  • 12 Cho W C, Chen H Y. Clinical efficacy of traditional Chinese medicine as a concomitant therapy for nasopharyngeal carcinoma: a systematic review and meta-analysis.  Cancer Invest. 2009;  27 334-344
  • 13 Liu X, Hua B J. Effect of traditional Chinese medicine on quality of life and survival period in patients with progressive gastric cancer.  Zhongguo Zhong Xi Yi Jie He Za Zhi. 2008;  28 105-107
  • 14 Wei X, Chen Z, Yang X, Wu T. Chinese herbal medicines for esophageal cancer.  Cochrane Database Syst Rev. 2009;  (4) CD004520
  • 15 Liu N L, Chien L Y, Tai C J, Lin K C, Tai C J. Effectiveness of traditional Chinese medicine for liver protection and chemotherapy completion among cancer patients.  eCAM. 2009;  1-8
  • 16 Taixiang W, Munro A J, Guanjian L. Chinese medical herbs for chemotherapy side effects in colorectal cancer patients.  Cochrane Database Syst Rev. 2005;  (1) CD004540
  • 17 Xu L, Lao L X, Ge A, Yu S, Li J, Mansky P J. Chinese herbal medicine for cancer pain.  Integr Cancer Ther. 2007;  6 208-234
  • 18 Wang B, Tian H Q, Liang G W. Effect of ganji recipe combined with Fructus Bruceae oil emulsion intervention on quality of life in patients with advanced primary hepatic cancer.  Zhongguo Zhong Xi Yi Jie He Za Zhi. 2009;  29 257-260
  • 19 Zhang T. Effect of TCM therapy for removing toxic substance and unblocking meridians on post-radiation quality of life in 55 patients with lung cancer.  Zhongguo Zhong Xi Yi Jie He Za Zhi. 2008;  28 154-157
  • 20 Tang W, Hemm I, Bertram B. Recent development of antitumor agents from Chinese herbal medicines; part I. Low molecular compounds.  Planta Med. 2003;  69 97-108
  • 21 Tang W, Hemm I, Bertram B. Recent development of antitumor agents from Chinese herbal medicines. Part II. High molecular compounds.  Planta Med. 2003;  69 193-201
  • 22 Hsiang Y H, Hertzberg R, Hecht S, Liu L F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I.  J Biol Chem. 1985;  260 14873-14878
  • 23 Wall M E. Camptothecin and taxol: discovery to clinic.  Med Res Rev. 1998;  18 299-314
  • 24 Oberlies N H, Kroll D J. Camptothecin and taxol: historic achievements in natural products research.  J Nat Prod. 2004;  67 129-135
  • 25 Zhang X W, Qing C, Xu B. Apoptosis induction and cell cycle perturbation in human hepatoma hep G2 cells by 10-hydroxycamptothecin.  Anticancer Drugs. 1999;  10 569-576
  • 26 Kaufmann S H, Earnshaw W C. Induction of apoptosis by cancer chemotherapy.  Exp Cell Res. 2000;  256 42-49
  • 27 Fulda S, Debatin K M. Targeting inhibitor of apoptosis proteins (IAPs) for diagnosis and treatment of human diseases.  Recent Pat Anticancer Drug Discov. 2006;  1 81-89
  • 28 Ji Y B, Gao S Y, Ji C F, Zou X. Induction of apoptosis in HepG2 cells by solanine and Bcl-2 protein.  J Ethnopharmacol. 2008;  115 194-202
  • 29 Peng C C, Chen K C, Peng R Y, Chyau C C, Su C H, Hsieh-Li H M. Antrodia camphorata extract induces replicative senescence in superficial TCC, and inhibits the absolute migration capability in invasive bladder carcinoma cells.  J Ethnopharmacol. 2007;  109 93-103
  • 30 Tin M M, Cho C H, Chan K, James A E, Ko J K. Astragalus saponins induce growth inhibition and apoptosis in human colon cancer cells and tumor xenograft.  Carcinogenesis. 2007;  28 1347-1355
  • 31 Efferth T. Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of artemisinin – from bench to bedside.  Planta Med. 2007;  73 299-309
  • 32 Tang J, Feng Y, Tsao S, Wang N, Curtain R, Wang Y. Berberine and Coptidis rhizoma as novel antineoplastic agents: a review of, traditional use and biomedical investigations.  J Ethnopharmacol. 2009;  126 5-17
  • 33 Pandey M K, Sung B, Kunnumakkara A B, Sethi G, Chaturvedi M M, Aggarwal B B. Berberine modifies cysteine 179 of IkappaBalpha kinase, suppresses nuclear factor-kappaB-regulated antiapoptotic gene products, and potentiates apoptosis.  Cancer Res. 2008;  68 5370-5379
  • 34 Dai Z, Gao J, Ji Z, Wang X, Ren H, Liu X, Wu W, Kang H, Guan H. Matrine induces apoptosis in gastric carcinoma cells via alteration of Fas/FasL and activation of caspase-3.  J Ethnopharmacol. 2009;  123 91-96
  • 35 Kiviharju T M, Lecane P S, Sellers R G, Peehl D M. Antiproliferative and proapoptotic activities of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells.  Clin Cancer Res. 2002;  8 2666-2674
  • 36 Yang M, Huang J, Pan H Z, Jin J. Triptolide overcomes dexamethasone resistance and enhanced PS-341-induced apoptosis via PI3k/Akt/NF-kappaB pathways in human multiple myeloma cells.  Int J Mol Med. 2008;  22 489-496
  • 37 Baumann S, Fas S C, Giaisi M, Muller W W, Merling A, Gulow K, Edler L, Krammer P H, Li-Weber M. Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCgamma1- and Ca2+-dependent apoptosis.  Blood. 2008;  111 2354-2363
  • 38 Sun G P, Wang H, Xu S P, Shen Y X, Wu Q, Chen Z D, Wei W. Anti-tumor effects of paeonol in a HepA-hepatoma bearing mouse model via induction of tumor cell apoptosis and stimulation of IL-2 and TNF-alpha production.  Eur J Pharmacol. 2008;  584 246-252
  • 39 Wang Y, Dawson V L, Dawson T M. Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos.  Exp Neurol. 2009;  218 193-202
  • 40 Hsu Y L, Yen M H, Kuo P L, Cho C Y, Huang Y T, Tseng C J, Lee J P, Lin C C. San-Zhong-Kui-Jian-Tang, a traditional Chinese medicine prescription, inhibits the proliferation of human breast cancer cell by blocking cell cycle progression and inducing apoptosis.  Biol Pharm Bull. 2006;  29 2388-2394
  • 41 Hsu Y L, Kuo P L, Tzeng T F, Sung S C, Yen M H, Lin L T, Lin C C. Huang-lian-jie-du-tang, a traditional Chinese medicine prescription, induces cell-cycle arrest and apoptosis in human liver cancer cells in vitro and in vivo.  J Gastroenterol Hepatol. 2008;  23 e290-e299
  • 42 Yao Z, Shulan Z. Inhibition effect of Guizhi-Fuling-decoction on the invasion of human cervical cancer.  J Ethnopharmacol. 2008;  120 25-35
  • 43 Kang S, Jeong S, Kwon H, Yun S, Kim J, Lee H, Lee E, Ahn K S, Kim S. Protective effect of Bojungbangdocktang on cisplatin-induced cytotoxicity and apoptosis in MCF-10A breast endothelial cells.  Environ Toxicol Pharmacol. 2009;  28 430-438
  • 44 Lee H J, Kim K H, Jang Y S. Protective effect of ethanol extract of Bojungbangamtang on cisplatin induced toxicity.  J Oriental Pathol. 2007;  21 1-5
  • 45 Jang Y S, Lee H J, Lee H J, Kim K H, Won S H, Lee J D, Ahn K S, Kim J H, Yu Y B, Kim S H. Bojungbangdocktang inhibits vascular endothelial growth factor induced angiogenesis via blocking the VEGF/VEGFR2 signaling pathway in human umbilical vein endothelial cells.  Chin Sci Bull. 2009;  54 227-233
  • 46 Wang L, Zhou G B, Liu P, Song J H, Liang Y, Yan X J, Xu F, Wang B S, Mao J H, Shen Z X, Chen S J, Chen Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia.  Proc Natl Acad Sci U S A. 2008;  105 4826-4831
  • 47 Hu K, Yao X. Protodioscin (NSC-698 796): its spectrum of cytotoxicity against sixty human cancer cell lines in an anticancer drug screen panel.  Planta Med. 2002;  68 297-301
  • 48 Hsiao W L, Li Y Q, Lee T L, Li N, You M M, Chang S T. Medicinal mushroom extracts inhibit ras-induced cell transformation and the inhibitory effect requires the presence of normal cells.  Carcinogenesis. 2004;  25 1177-1183
  • 49 Wu P K, Chi Shing Tai W, Liang Z T, Zhao Z Z, Hsiao W L. Oleanolic acid isolated from Oldenlandia diffusa exhibits a unique growth inhibitory effect against ras-transformed fibroblasts.  Life Sci. 2009;  85 113-121
  • 50 Chiu J, Yau T, Epstein R J. Complications of traditional Chinese/herbal medicines (TCM) – a guide for perplexed oncologists and other cancer caregivers.  Support Care Cancer. 2009;  17 231-240
  • 51 Efferth T, Li P C, Konkimalla V S, Kaina B. From traditional Chinese medicine to rational cancer therapy.  Trends Mol Med. 2007;  13 353-361
  • 52 O'Leary J, Muggia F M. Camptothecins: a review of their development and schedules of administration.  Eur J Cancer. 1998;  34 1500-1508
  • 53 Pastor N, Cortes F. Bufalin influences the repair of X-ray-induced DNA breaks in Chinese hamster cells.  DNA Repair (Amst). 2003;  2 1353-1360
  • 54 Mizushina Y, Akihisa T, Ukiya M, Murakami C, Kuriyama I, Xu X, Yoshida H, Sakaguchi K. A novel DNA topoisomerase inhibitor: dehydroebriconic acid, one of the lanostane-type triterpene acids from Poria cocos.  Cancer Sci. 2004;  95 354-360
  • 55 Li C H, Chen P Y, Chang U M, Kan L S, Fang W H, Tsai K S, Lin S B. Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells.  Life Sci. 2005;  77 252-265
  • 56 Zhang S, Li X, Zhang F, Yang P, Gao X, Song Q. Preparation of yuanhuacine and relative daphne diterpene esters from Daphne genkwa and structure-activity relationship of potent inhibitory activity against DNA topoisomerase I.  Bioorg Med Chem. 2006;  14 3888-3895
  • 57 Meng L H, Ding J. Salvicine, a novel topoisomerase II inhibitor, exerts its potent anticancer activity by ROS generation.  Acta Pharmacol Sin. 2007;  28 1460-1465
  • 58 Liang C H, Shiu L Y, Chang L C, Sheu H M, Tsai E M, Kuo K W. Solamargine enhances HER2 expression and increases the susceptibility of human lung cancer H661 and H69 cells to trastuzumab and epirubicin.  Chem Res Toxicol. 2008;  21 393-399
  • 59 Li-Weber M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin.  Cancer Treat Rev. 2009;  35 57-68
  • 60 Lopez-Lazaro M. Distribution and biological activities of the flavonoid luteolin.  Mini Rev Med Chem. 2009;  9 31-59
  • 61 Chow L W, Lo C S, Loo W T, Hu X C, Sham J S. Polysaccharide peptide mediates apoptosis by up-regulating p 21 gene and down-regulating cyclin D1 gene.  Am J Chin Med. 2003;  31 1-9
  • 62 Yin X, Zhou J, Jie C, Xing D, Zhang Y. Anticancer activity and mechanism of Scutellaria barbata extract on human lung cancer cell line A549.  Life Sci. 2004;  75 2233-2244
  • 63 Liu J J, Huang R W, Lin D J, Wu X Y, Peng J, Pan X L, Song Y Q, Lin Q, Hou M, Wang D N, Chen F, Zhang M H. Oridonin-induced apoptosis in leukemia K562 cells and its mechanism.  Neoplasma. 2005;  52 225-230
  • 64 Chan J Y, Tang P M, Hon P M, Au S W, Tsui S K, Waye M M, Kong S K, Mak T C, Fung K P. Pheophorbide a, a major antitumor component purified from Scutellaria barbata, induces apoptosis in human hepatocellular carcinoma cells.  Planta Med. 2006;  72 28-33
  • 65 Cheah Y H, Azimahtol H L P, Abdullah N R. Xanthorrhizol exhibits antiproliferative activity on MCF-7 breast cancer cells via apoptosis induction.  Anticancer Res. 2006;  26 4527-4534
  • 66 Chiu L C, Ho T S, Wong E Y, Ooi V E. Ethyl acetate extract of Patrinia scabiosaefolia downregulates anti-apoptotic Bcl-2/Bcl-X(L) expression, and induces apoptosis in human breast carcinoma MCF-7 cells independent of caspase-9 activation.  J Ethnopharmacol. 2006;  105 263-268
  • 67 Huang Y T, Huang D M, Chueh S C, Teng C M, Guh J H. Alisol B acetate, a triterpene from Alismatis rhizoma, induces Bax nuclear translocation and apoptosis in human hormone-resistant prostate cancer PC-3 cells.  Cancer Lett. 2006;  231 270-278
  • 68 Liu J, Huang R, Lin D, Peng J, Zhang M, Pan X, Hou M, Wu X, Lin Q, Chen F. Ponicidin, an ent-kaurane diterpenoid derived from a constituent of the herbal supplement PC-SPES, Rabdosia rubescens, induces apoptosis by activation of caspase-3 and mitochondrial events in lung cancer cells in vitro.  Cancer Invest. 2006;  24 136-148
  • 69 Liu X S, Jiang J. Molecular mechanism of matrine-induced apoptosis in leukemia K562 cells.  Am J Chin Med. 2006;  34 1095-1103
  • 70 Panichakul T, Intachote P, Wongkajorsilp A, Sripa B, Sirisinha S. Triptolide sensitizes resistant cholangiocarcinoma cells to TRAIL-induced apoptosis.  Anticancer Res. 2006;  26 259-265
  • 71 Perabo F G E, Frossler C, Landwehrs G, Schmidt D H, Von Rucker A, Wirger A, Muller S C. Indirubin-3′-monoxime, a CDK inhibitor induces growth inhibition and apoptosis-independent up-regulation of survivin in transitional cell cancer.  Anticancer Res. 2006;  26 2129-2135
  • 72 Rajasingh J, Raikwar H P, Muthian G, Johnson C, Bright J J. Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia.  Biochem Biophys Res Commun. 2006;  340 359-368
  • 73 Su C L, Huang L L, Huang L M, Lee J C, Lin C N, Won S J. Caspase-8 acts as a key upstream executor of mitochondria during justicidin A-induced apoptosis in human hepatoma cells.  FEBS Lett. 2006;  580 3185-3191
  • 74 Tan T W, Tsai H R, Lu H F, Lin H L, Tsou M F, Lin Y T, Tsai H Y, Chen Y F, Chung J G. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation.  Anticancer Res. 2006;  26 4361-4371
  • 75 Tang W, Liu J W, Zhao W M, Wei D Z, Zhong J J. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells.  Life Sci. 2006;  80 205-211
  • 76 Wang X, Matta R, Shen G, Nelin L D, Pei D, Liu Y. Mechanism of triptolide-induced apoptosis: Effect on caspase activation and Bid cleavage and essentiality of the hydroxyl group of triptolide.  J Mol Med. 2006;  84 405-415
  • 77 Won H J, Han C H, Kim Y H, Kwon H J, Kim B W, Choi J S, Kim K. Induction of apoptosis in human acute leukemia Jurkat T cells by Albizzia julibrissin extract is mediated via mitochondria-dependent caspase-3 activation.  J Ethnopharmacol. 2006;  106 383-389
  • 78 Yadav S K, Lee S C. Evidence for Oldenlandia diffusa-evoked cancer cell apoptosis through superoxide burst and caspase activation.  J Chin Integr Med. 2006;  4 485-489
  • 79 Yang H L, Chen C S, Chang W H, Lu F J, Lai Y C, Chen C C, Hseu T H, Kuo C T, Hseu Y C. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata.  Cancer Lett. 2006;  231 215-227
  • 80 Jin S, Pang R P, Shen J N, Huang G, Wang J, Zhou J G. Grifolin induces apoptosis via inhibition of PI3K/AKT signalling pathway in human osteosarcoma cells.  Apoptosis. 2007;  12 1317-1326
  • 81 Huang X, Kojima-Yuasa A, Norikura T, Kennedy D O, Hasuma T, Matsui-Yuasa I. Mechanism of the anti-cancer activity of Zizyphus jujuba in HepG2 cells.  Am J Chin Med. 2007;  35 517-532
  • 82 Ko J K S, Leung W C, Ho W K, Chiu P. Herbal diterpenoids induce growth arrest and apoptosis in colon cancer cells with increased expression of the nonsteroidal anti-inflammatory drug-activated gene.  Eur J Pharmacol. 2007;  559 1-13
  • 83 Kuo P L, Hsu Y L, Sung S C, Ni W C, Lin T C, Lin C C. Induction of apoptosis in human breast adenocarcinoma MCF-7 cells by pterocarnin A from the bark of Pterocarya stenoptera via the Fas-mediated pathway.  Anticancer Drugs. 2007;  18 555-562
  • 84 Li H, Wang L J, Qiu G F, Yu J Q, Liang S C, Hu X M. Apoptosis of Hela cells induced by extract from Cremanthodium humile.  Food Chem Toxicol. 2007;  45 2040-2046
  • 85 Li J, Xia X, Ke Y, Nie H, Smith M A, Zhu X. Trichosanthin induced apoptosis in HL-60 cells via mitochondrial and endoplasmic reticulum stress signaling pathways.  Biochim Biophys Acta Gen Subj. 2007;  1770 1169-1180
  • 86 Li Z, Sturm S, Stuppner H, Schraml E, Moser V A, Siegl V, Pfragner R. The dichloromethane fraction of Stemona tuberosa Lour inhibits tumor cell growth and induces apoptosis of human medullary thyroid carcinoma cells.  Biologics. 2007;  1 455-463
  • 87 Lin J, Chen L Y, Lin Z X, Zhao M L. The effect of triptolide on apoptosis of glioblastoma multiforme (GBM) cells.  J Int Med Res. 2007;  35 637-643
  • 88 Mu D, Chen W, Yu B, Zhang C, Zhang Y, Qi H. Calcium and survivin are involved in the induction of apoptosis by dihydroartemisinin in human lung cancer SPC-A-1 cells.  Methods Find Exp Clin Pharmacol. 2007;  29 33-38
  • 89 Nishimura R, Tabata K, Arakawa M, Ito Y, Kimura Y, Akihisa T, Nagai H, Sakuma A, Kohno H, Suzuki T. Isobavachalcone, a chalcone constituent of Angelica keiskei, induces apoptosis in neuroblastoma.  Biol Pharm Bull. 2007;  30 1878-1883
  • 90 Roy M K, Nakahara K, Na Thalang V, Trakoontivakorn G, Takenaka M, Isobe S, Tsushida T. Baicalein, a flavonoid extracted from a methanolic extract of Oroxylum indicum inhibits proliferation of a cancer cell line in vitro via induction of apoptosis.  Pharmazie. 2007;  62 149-153
  • 91 Tao Z, Zhou Y, Lu J, Duan W, Qin Y, He X, Lin L, Ding J. Caspase-8 preferentially senses the apoptosis-inducing action of NG-18, a gambogic acid derivative, in human leukemia HL-60 cells.  Cancer Biol Ther. 2007;  6 691-696
  • 92 Tian Z, Xu L, Zhou L, Yang M, Chen S, Xiao P, Wu E. Cytotoxic activity of schisandrolic and isoschisandrolic acids involves induction of apoptosis.  Chemotherapy. 2007;  53 257-262
  • 93 Wang J, Wang X, Jiang S, Yuan S, Lin P, Zhang J, Lu Y, Wang Q, Xiong Z, Wu Y, Ren J, Yang H. Growth inhibition and induction of apoptosis and differentiation of tanshinone IIA in human glioma cells.  J Neurooncol. 2007;  82 11-21
  • 94 Xiao Y, Yang F, Li S, Gao J, Hu G, Lao S, Conceicao E L, Fung K, Wang Y, Lee S M. Furanodiene induces G2/M cell cycle arrest and apoptosis through MAPK signaling and mitochondria-caspase pathway in human hepatocellular carcinoma cells.  Cancer Biol Ther. 2007;  6 1044-1050
  • 95 Yang L, Wu S, Zhang Q, Liu F, Wu P. 23,24-Dihydrocucurbitacin B induces G2/M cell-cycle arrest and mitochondria-dependent apoptosis in human breast cancer cells (Bcap37).  Cancer Lett. 2007;  256 267-278
  • 96 Yu Z Y, Liang Y G, Xiao H, Shan Y J, Dong B, Huang R, Fu Y L, Zhao Z H, Liu Z Y, Zhao Q S, Wang S Q, Chen J P, Mao B Z, Cong Y W. Melissoidesin G, a diterpenoid purified from Isodon melissoides, induces leukemic-cell apoptosis through induction of redox imbalance and exhibits synergy with other anticancer agents.  Int J Cancer. 2007;  121 2084-2094
  • 97 Zhu J Y, Lavrik I N, Mahlknecht U, Giaisi M, Proksch P, Krammer P H, Li-Weber M. The traditional Chinese herbal compound rocaglamide preferentially induces apoptosis in leukemia cells by modulation of mitogen-activated protein kinase activities.  Int J Cancer. 2007;  121 1839-1846
  • 98 Carter B Z, Mak D H, Schober W D, Dietrich M F, Pinilla C, Vassilev L T, Reed J C, Andreeff M. Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5.  Blood. 2008;  111 3742-3750
  • 99 Chen T H, Pan S L, Guh J H, Chen C C, Huang Y T, Pai H C, Teng C M. Denbinobin induces apoptosis by apoptosis-inducing factor releasing and DNA damage in human colorectal cancer HCT-116 cells.  Naunyn Schmiedebergs Arch Pharmacol. 2008;  378 447-457
  • 100 Eom K S, Hong J M, Youn M J, So H S, Park R, Kim J M, Kim T Y. Berberine induces G1 arrest and apoptosis in human glioblastoma T98G cells through mitochondrial/caspases pathway.  Biol Pharm Bull. 2008;  31 558-562
  • 101 Hahm E R, Arlotti J A, Marynowski S W, Singh S V. Honokiol, a constituent of oriental medicinal herb magnolia officinalis, inhibits growth of PC-3 xenografts in vivo in association with apoptosis induction.  Clin Cancer Res. 2008;  14 1248-1257
  • 102 Ho C M, Huang C C, Huang C J, Cheng J S, Chen I S, Tsai J Y, Jiann B P, Tseng P L, Kuo S J, Jan C R. Effects of Antrodia camphorata on viability, apoptosis, and [Ca2+]i in PC3 human prostate cancer cells.  Chin J Physiol. 2008;  51 78-84
  • 103 Jin C Y, Kim G Y, Choi Y H. Induction of apoptosis by aqueous extract of Cordyceps militaris through activation of caspases and inactivation of Akt in human breast cancer MDA-MB-231 cells.  J Microbiol Biotechnol. 2008;  18 1997-2003
  • 104 Kim D C, Ramachandran S, Baek S H, Kwon S H, Kwon K Y, Cha S D, Bae I, Cho C H. Induction of growth inhibition and apoptosis in human uterine leiomyoma cells by isoliquiritigenin.  Reprod Sci. 2008;  15 552-558
  • 105 Kim E J, Lim S S, Park S Y, Shin H K, Kim J S, Park J H. Apoptosis of DU145 human prostate cancer cells induced by dehydrocostus lactone isolated from the root of Saussurea lappa.  Food Chem Toxicol. 2008;  46 3651-3658
  • 106 Kuo C T, Hsu M J, Chen B C, Chen C C, Teng C M, Pan S L, Lin C H. Denbinobin induces apoptosis in human lung adenocarcinoma cells via Akt inactivation, Bad activation, and mitochondrial dysfunction.  Toxicol Lett. 2008;  177 48-58
  • 107 Lau S T, Lin Z X, Zhao M, Leung P S. Brucea javanica fruit induces cytotoxicity and apoptosis in pancreatic adenocarcinoma cell lines.  Phytother Res. 2008;  22 477-486
  • 108 Lee S M, Kwon J I, Choi Y H, Eom H S, Chi G Y. Induction of G2/M arrest and apoptosis by water extract of Strychni Semen in human gastric carcinoma AGS cells.  Phytother Res. 2008;  22 752-758
  • 109 Lin S, Fujii M, Hou D. Molecular mechanism of apoptosis induced by schizandrae-derived lignans in human leukemia HL-60 cells.  Food Chem Toxicol. 2008;  46 590-597
  • 110 Liu W K, Cheung F W, Liu B P, Li C, Ye W, Che C T. Involvement of p21 and FasL in induction of cell cycle arrest and apoptosis by neochamaejasmin A in human prostate LNCaP cancer cells.  J Nat Prod. 2008;  71 842-846
  • 111 Min R, Tong J, Wenjun Y, Wenhu D, Xiaojian Z, Jiacai H, Jian Z, Wantao C, Chenping Z. Growth inhibition and induction of apoptosis in human oral squamous cell carcinoma Tca-8113 cell lines by shikonin was partly through the inactivation of NF-kappaB pathway.  Phytother Res. 2008;  22 407-415
  • 112 Mu D, Zhang W, Chu D, Liu T, Xie Y, Fu E, Jin F. The role of calcium, P38 MAPK in dihydroartemisinin-induced apoptosis of lung cancer PC-14 cells.  Cancer Chemother Pharmacol. 2008;  61 639-645
  • 113 Sagawa M, Nakazato T, Uchida H, Ikeda Y, Kizaki M. Cantharidin induces apoptosis of human multiple myeloma cells via inhibition of the JAK/STAT pathway.  Cancer Sci. 2008;  99 1820-1826
  • 114 Yan S S, Li Y, Wang Y, Shen S S, Gu Y, Wang H B, Qin G W, Yu Q. 17-Acetoxyjolkinolide B irreversibly inhibits IkappaB kinase and induces apoptosis of tumor cells.  Mol Cancer Ther. 2008;  7 1523-1532
  • 115 Yang H L, Chen S C, Chen C S, Wang S Y, Hseu Y C. Alpinia pricei rhizome extracts induce apoptosis of human carcinoma KB cells via a mitochondria-dependent apoptotic pathway.  Food Chem Toxicol. 2008;  46 3318-3324
  • 116 Yang M, Huang J, Pan H, Jin J. Triptolide overcomes dexamethasone resistance and enhanced PS-341-induced apoptosis via PI3k/Akt/NF-kappaB pathways in human multiple myeloma cells.  Int J Mol Med. 2008;  22 489-496
  • 117 Abdel Wahab S I, Abdul A B, Alzubairi A S, Mohamed Elhassan M, Mohan S. In vitro ultramorphological assessment of apoptosis induced by Zerumbone on (HeLa).  J Biomed Biotechnol. 2009;  2009 769568
  • 118 Chan J Y, Tan B K H, Lee S C. Scutellarin sensitizes drug-evoked colon cancer cell apoptosis through enhanced caspase-6 activation.  Anticancer Res. 2009;  29 3043-3047
  • 119 Dai Z J, Gao J, Ji Z Z, Wang X J, Ren H T, Liu X X, Wu W Y, Kang H F, Guan H T. Matrine induces apoptosis in gastric carcinoma cells via alteration of Fas/FasL and activation of caspase-3.  J Ethnopharmacol. 2009;  123 91-96
  • 120 Hou Y Y, Wu M L, Hwang Y C, Chang F R, Wu Y C, Wu C C. The natural diterpenoid ovatodiolide induces cell cycle arrest and apoptosis in human oral squamous cell carcinoma Ca9-22 cells.  Life Sci. 2009;  85 26-32
  • 121 Lai W W, Yang J S, Lai K C, Kuo C L, Hsu C K, Wang C K, Chang C Y, Lin J J, Tang N Y, Chen P Y, Huang W W, Chung J G. Rhein induced apoptosis through the endoplasmic reticulum stress, caspase- and mitochondria-dependent pathways in SCC-4 human tongue squamous cancer cells.  In Vivo. 2009;  23 309-316
  • 122 Lee D H, Rhee J G, Lee Y J. Reactive oxygen species up-regulate p53 and Puma; a possible mechanism for apoptosis during combined treatment with TRAIL and wogonin.  Br J Pharmacol. 2009;  157 1189-1202
  • 123 Li D D, Wu X Q, Tang J, Wei X Y, Zhu X F. ON-III inhibits erbB-2 tyrosine kinase receptor signal pathway and triggers apoptosis through induction of Bim in breast cancer cells.  Cancer Biol Ther. 2009;  8 739-743
  • 124 Liu W, Mu R, Nie F F, Yang Y, Wang J, Dai Q S, Lu N, Qi Q, Rong J J, Hu R, Wang X T, You Q D, Guo Q L. MAC-related mitochondrial pathway in oroxylin-A-induced apoptosis in human hepatocellular carcinoma HepG2 cells.  Cancer Lett. 2009;  284 198-207
  • 125 Lu Y Y, Chen T S, Qu J L, Pan W L, Sun L, Wei X B. Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-a-1 cells.  J Biomed Sci. 2009;  16 16
  • 126 Luo Q, Li Z, Yan J, Zhu F, Xu R J, Cai Y Z. Lycium barbarum polysaccharides induce apoptosis in human prostate cancer cells and inhibits prostate cancer growth in a xenograft mouse model of human prostate cancer.  J Med Food. 2009;  12 695-703
  • 127 Park S C, Yoo H S, Park C, Cho C K, Kim G, Kim W, Lee Y, Choi Y H. Induction of apoptosis in human lung carcinoma cells by the water extract of Panax notoginseng is associated with the activation of caspase-3 through downregulation of Akt.  Int J Oncol. 2009;  35 121-127
  • 128 Sanchez-Duffhues G, Calzado M A, de Vinuesa A G, Appendino G, Fiebich B L, Loock U, Lefarth-Risse A, Krohn K, Munoz E. Denbinobin inhibits nuclear factor-kappaB and induces apoptosis via reactive oxygen species generation in human leukemic cells.  Biochem Pharmacol. 2009;  77 1401-1409
  • 129 Shen J K, Du H P, Yang M, Wang Y G, Jin J. Casticin induces leukemic cell death through apoptosis and mitotic catastrophe.  Ann Hematol. 2009;  88 743-752
  • 130 Shin D Y, Kim G Y, Li W, Choi B T, Kim N D, Kang H S, Choi Y H. Implication of intracellular ROS formation, caspase-3 activation and Egr-1 induction in platycodon D-induced apoptosis of U937 human leukemia cells.  Biomed Pharmacother. 2009;  63 86-94
  • 131 Tang Y J, Yang J S, Lin C F, Shyu W C, Tsuzuki M, Lu C C, Chen Y F, Lai K C. Houttuynia cordata Thunb extract induces apoptosis through mitochondrial-dependent pathway in HT-29 human colon adenocarcinoma cells.  Oncol Rep. 2009;  22 1051-1056
  • 132 Tsang C M, Lau E P W, Di K, Cheung P Y, Hau P M, Ching Y P, Wong Y C, Cheung A L M, Wan T S K, Tong Y, Tsao S W, Feng Y. Berberine inhibits Rho GTPases and cell migration at low doses but induces G2 arrest and apoptosis at high doses in human cancer cells.  Int J Mol Med. 2009;  24 131-138
  • 133 Wang Y, Ma X, Yan S, Shen S, Zhu H, Gu Y, Wang H, Qin G, Yu Q. 17-Hydroxy-jolkinolide B inhibits signal transducers and activators of transcription 3 signaling by covalently cross-linking Janus kinases and induces apoptosis of human cancer cells.  Cancer Res. 2009;  69 7302-7310
  • 134 Wong B Y Y, Nguyen D L, Lin T, Wong H H L, Cavalcante A, Greenberg N M, Hausted R P, Zheng J. Chinese medicinal herb Scutellaria barbata modulates apoptosis and cell survival in murine and human prostate cancer cells and tumor development in TRAMP mice.  Eur J Cancer Prev. 2009;  18 331-341
  • 135 Xiao X, Bai P, Bui Nguyen T M, Xiao J, Liu S, Yang G, Hu L, Chen X, Zhang X, Liu J, Wang H. The antitumoral effect of Paris Saponin I associated with the induction of apoptosis through the mitochondrial pathway.  Mol Cancer Ther. 2009;  8 1179-1188
  • 136 Xie H, Qin Y X, Zhou Y L, Tong L J, Lin L P, Geng M Y, Duan W H, Ding J. GA3, a new gambogic acid derivative, exhibits potent antitumor activities in vitro via apoptosis-involved mechanisms.  Acta Pharmacol Sin. 2009;  30 346-354
  • 137 Xu X, Liu Y, Wang L, He J, Zhang H, Chen X, Li Y, Yang J, Tao J. Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells.  Int J Dermatol. 2009;  48 186-192
  • 138 Yun H R, Yoo H S, Shin D Y, Hong S H, Kim J H, Cho C K, Choi Y H. Apoptosis induction of human lung carcinoma cells by Chan Su (Venenum bufonis) through activation of caspases.  JAMS J Acupunct Meridian Stud. 2009;  2 210-217
  • 139 Zhou Y, Yiliang E L, Cao J, Zeng G, Shen C, Li Y, Zhou M, Chen Y, Pu W, Potters L, Shi Y E. Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth.  Clin Cancer Res. 2009;  15 5161-5169
  • 140 Jing Y, Watabe M, Hashimoto S, Nakajo S, Nakaya K. Cell cycle arrest and protein kinase modulating effect of bufalin on human leukemia ML1 cells.  Anticancer Res. 1994;  14 1193-1198
  • 141 Woo J H, Li D, Wilsbach K, Orita H, Coulter J, Tully E, Kwon T K, Xu S, Gabrielson E. Coix seed extract, a commonly used treatment for cancer in China, inhibits NFkappaB and protein kinase C signaling.  Cancer Biol Ther. 2007;  6 2005-2011
  • 142 Que H F, Chen H F, Gao S P, Lu D M, Tang H J, Jia X H, Xu J N. Effect on runing II on the growth of metastasis of transplanted tumor in mammary cancer-bearing mice and its mechanism.  J Tradit Chin Med. 2008;  28 293-298
  • 143 Lu Q, Zhang P, Zhang X, Chen J. Experimental study of the anti-cancer mechanism of tanshinone IIA against human breast cancer.  Int J Mol Med. 2009;  24 773-780
  • 144 Tao J, Zhang P, Liu G, Yan H, Bu X, Ma Z, Wang N, Jia W. Cytotoxicity of Chinese motherwort (YiMuCao) aqueous ethanol extract is, non-apoptotic and estrogen receptor independent on human breast cancer cells.  J Ethnopharmacol. 2009;  122 234-239
  • 145 Yo Y T, Shieh G S, Hsu K F, Wu C L, Shiau A L. Licorice and licochalcone-A induce autophagy in LNCaP prostate cancer cells by suppression of Bcl-2 expression and the mTOR pathway.  J Agric Food Chem. 2009;  57 8266-8273

Prof. W. L. Wendy Hsiao

School of Chinese Medicine
Hong Kong Baptist University

Kowloon Tong

Kowloon

Hong Kong

People's Republic of China

Phone: + 852 34 11 29 59

Fax: + 852 34 11 24 61

Email: bowhsiao@hkbu.edu.hk

Zoom Image

Fig. 1 Schematic presentation of the actions of TCM as adjuvant cancer therapy based on the theory and clinical practice of TCM.

Zoom Image

Fig. 2 The altered protein molecules (shown in [Table 1]) upon treatments of TCM herbal medicines and the associated cellular signaling networks.

Zoom Image

Fig. 3 Chemical structures of the TCM-derived active components shown in [Table 1].