Planta Med 2011; 77(11): 1203-1209
DOI: 10.1055/s-0030-1270832
Lectures GA Conference
Mini Reviews
© Georg Thieme Verlag KG Stuttgart · New York

Medicinal Plants from Jordan in the Treatment of Cancer: Traditional Uses vs. In vitro and In Vivo Evaluations – Part 1

Fatma U. Afifi-Yazar1 , Violet Kasabri1 , Rana Abu-Dahab1
  • 1Faculty of Pharmacy, University of Jordan, Amman, Jordan
Further Information

Prof. Dr. Fatma U. Afifi-Yazar

Department of Pharmaceutical Sciences
Faculty of Pharmacy
University of Jordan

Queen Rania Al-Abdullah Street

Amman 11942

Jordan

Phone: +96 2 65 35 50 00 ext. 23 3 01

Fax: +96 2 65 30 02 50

Email: fatueafi@ju.edu.jo

Publication History

received January 13, 2011 revised January 28, 2011

accepted February 2, 2011

Publication Date:
23 February 2011 (online)

Table of Contents #

Abstract

Plant species have long been used as principal ingredients in traditional medicine. Different surveys showed that ethnomedicinal plant species used by the inhabitants of Jordan for the treatment of cancer are inadequately screened for their therapeutic/chemopreventive potential and phytochemical findings. In this mini review, traditional herbal medicines pursued indigenously with their methods of preparation and active constituents are listed. Studies of random screening for selective cytotoxicity and antiproliferative activity of local spices, domesticated greens, or wild plants are briefly discussed. Recommended future directives for the design and conduct of comprehensive trials are pointed out to validate the usefulness of these active plants or bioactive phytoconstituents either alone or in combination with existing therapies or complementing pharmacologies.

#

Introduction

The Hashemite Kingdom of Jordan's habitat is unique in that the intersection of dense forest, arid desert, and tropical geography endows the country with a rich variety of plants and microorganisms that can be studied efficiently in a relatively small land area ([Fig. 1]) [1]. More than 2500 wild plant species from 700 genera exist; of these, there are approximately 100 endemic species, 250 rare species, and 125 very rare species [1], [2], [3]. In the Mediterranean basin, there seems to be a wealth of ethnobotanical studies providing a new and key tool for a quest after invaluable phytopharmaceuticals or the development of functional foods or nutraceuticals [4], [5], [6], [7], [8], [9], [10], [11], [12]. Traditional medicine practices are part of the Jordanian culture. Despite modern medicine accessibility, herbal medicine has often maintained popularity [13]. The percentage of reliability on herbal medicine varies from rural and desert areas to urban ones [14], [15], [16]. Crucially, the folk phytotherapy is “aging” or “vanishing” in the sense that knowledge of medicinal plants persists mainly in elderly rural people with little schooling [17]. In the last decades negative human impacts also affected the ecosystem, adding more plants to the list of endangered species, thus calling on the urgent need for community-based programs promoting their national conservation and sustainability [18].

Zoom Image

Fig. 1 Biogeographic zones of Jordan.

In a survey carried out with the herbalists in Jordan, none of the interviewed herbalists mentioned any plants for the treatment of cancer [15]. On the other hand, literature surveys based on the published studies indicated that in Jordan and in the neighboring countries, 27 plant species are considered as traditional remedies for the treatment of the different types of cancers [14], [19], [20], [21], [22], [23]. This article summarizes information on different aspects of chemopreventive-therapeutic plants as well as randomly screened plants for the antiproliferative activity to stimulate interest in these herbs which are of importance in Jordan and other countries of the semi-arid tropics.

#

Results and Discussion

Cancer is a leading cause of death worldwide. More than 70 % of all cancer deaths occurred in low- and middle-income countries. Deaths from cancer worldwide are projected to continue rising, with an estimated 12 million deaths in 2030 [24].

Running second after heart diseases, cancer is a major cause of morbidity among the Jordanian population, with an estimated incidence rate of 5000 new cases per year. Male to female ratio for cancer cases in Jordan is 0.97 : 1. The overall median age of cancer diagnosis in Jordan is 56 years (males: 60 years; females: 52 years). 43.15 % of all newly registered cases occurred in the age of 60 years and above, and 11.6 % occurred below the age of 30 years [25].

As recently updated by the Jordan National Cancer Registry (JNCR) statistics, the most commonly diagnosed cancers in a descending order in 2008 would be breast (18.8 %), colon (7.7 %), lung (7.7 %), bladder (4.3 %), and non-Hodgkin's lymphoma (4.8 %) [25], [26].

The evidence-based practices of consuming plants and plant derived products in the treatment of cancer with the orthodox therapy were first reported by Afifi et al. [13]. In cooperation with the King Hussein Cancer Centre (KHCC), the researchers interviewed a total of 1138 randomly selected cancer outpatients, predominantly Jordanians. Among interviewees, the total number of complementary and alternative medicine (CAM) users was 404 (35.5 %). All CAM users were either on chemotherapy or radiotherapy and preferred to use the crude extract in the form of infusions (n = 296, 73.3 %) [13]. Crude extracts were prepared from coarsely powdered plant mixtures and none of the individual plants could be identified by the researchers. Therefore emphasis is given in the present review to the plants with claimed anticancer activities in the ethnopharmacological studies and to the findings of the random screening of the plant species from the local flora for their antiproliferative activities. [Table 1] lists the ethnopharmacologically promoted plants with the method of preparation; parts used and reported phytochemical constituents. Clearly, in half of them, experimental studies to prove their cytotoxicity properties, however unique, are negligible. The majority of the plants (78 %), nevertheless, were tested for other pharmacological activities ([Table 1]).

Table 1 Indigenous medicinal plants of Jordan used for the treatment of cancer in folk medicine; major ethnopharmacological surveys, their phytochemical constituents, and latest common pharmacological findings.

No.

Family name

Species

Method of preparation of plant parts

Reported ethnopharmacological anticancer activity

Reported phytochemical constituents

Reported selective antiproliferative cytotoxicity or other pharmacologies

1

Amaryllidaceae

Narcissus tazetta L.a,b

Infusion of flowers

[23]

Alkaloids [55], [56], flavonoids, and terpenoids [57]

Antiviral [55], [58], [59]; cytotoxic constituents against a panel of cancer cell lines [56], [59], ethanol extract not cytotoxic against MCF-7 [23]; antimicrobial activity [57]

2

Araceae

Arum dioscoridis Sibth et Sm.c

Decoction of leaves

[19], [21]

None

None

3

Araceae

Arum hygrophilum Boiss.b

Decoction of leaves

[21]

None

Phytopathogenic fungicidal activity [60]

4

Araceae

Arum palaestinum Boiss.a,b

Decoction of leaves

[20], [21]

Pyrrole alkaloid [61]

Moderate antioxidant capacity [62]; dose-dependent suppression in the proliferation of breast carcinoma cells (MCF-7) and lymphoblastic leukemia cells (1301) by its ethyl acetate fraction [61]; ethanol extract not cytotoxic against MCF-7 [27]

5

Araliaceae

Hedera helix L.b

Decoction of leaves and berries

[14]

Saponins [63], [64]

Leishmanicidic activity [63]; anti-elastase and anti-hyaluronidase activities [65]; antispasmodic [66]; antimutagenic [67]; treatment of bronchial asthma [68]

6

Asteraceae

Inula viscosa (L.) Ait.a,b

Decoction of flower heads

[23]

Sesquiterpenes, sesquiterpenes acids [69]; azulenes, lactones, flavonoids, and essential oils [70]

Selective antiproliferative activity by inducing apoptosis in MCF-7 cancer cell lines [23]; anti-implantation and mid-term abortifacient effects in rats [71]; cytotoxic and genotoxic effects on A. cepa [72]; hypoglycemic activity in normal and diabetic rats [73]

7

Asteraceae

Calendula arvensis L.b

Infusion of dry flowering branches

[14]

Saponins [67], [74]; sesquiterpene glycosides [75]

Antimutagenic [67]; anti-inflammatory [74]; antiviral [75]

8

Asteraceae

Anthemis pseudocotula Boiss.c

Infusion of flower heads

[14]

Apigenin, apigenin-7-glucoside, scopoletin, and herniarin [76]

None

9

Cucurbitaceae

Luffa cylindrica L.a,b

Boiled seeds and aerial parts

[23]

Triterpenoids and saponins [77], [78]; flavone glycoside [79]

Although ethanol extract was noncytotoxic against MCF-7 [23], dose-dependent antiproliferative pro-apoptotic cytotoxicity of alpha-luffin towards tumor cells and its potential antitumor role [83], [84]; fibrinolytic [77]; antiviral, abortifacient, and cytotoxic activities [80], [81]; antioxidative [82] and immunomodulatory effects in Balb/C mice [78]

10

Ericaceae

Arbutus andrachne L.b

Decoction (oral), soaked in olive oil (external) of leaves, fruits, and roots

[20]

Arbutin, hydroquinone, beta-sitosterol, and ursolic acid [85]

Antityrosinase activity [85]

11

Euphorbiaceae

Mercurialis annua L.a

Decoction of leaves

[20]

Flavonol glycosides [86]

Ethanol extract lacked any antiproliferative efficacy in MCF-7 [27]

12

Fagaceae

Quercus calliprinos Decneb

Decoction of fruits and bark

[20]

Several fatty acids, lipids, and aromatic compounds [87]

High antioxidative capacity [62]; cattle toxicosis [88]

13

Globulariaceae

Globularia arabica L.b

Decoction of leaves

[14]

None

Fetotoxic potentials in female rats [89]; antimicrobial activity [90]; antiviral activity [91]

14

Lauraceae

Laurus nobilis L.a,b

Decoction of leaves

[20]

Flavonoid O-glycosides, flavonoid C-glycoside, catechin, and cinnamtannin B1 [92]

Antioxidant and acetylcholinesterase inhibition [93]; pro-apoptotic, antiproliferative properties on human melanoma cell lines [94]

15

Leguminosae

Ononis sicula Desf.a

Infusion (topical) of aerial parts

[23]

Flavonoids and terpenoids [23]

Selective antiproliferative activity against MCF-7 cancer cell lines [23]

16

Leguminosae

Anagyris foetida L.a

Decoction of leaves

[14]

Anagyrine, baptifoline, isorhamnetin [95]

Preliminary cytotoxicity against two tumor cell lines [95]; ethanol extract lacked such efficacy in MCF-7 [27]

17

Liliaceae

Urginea maritima (L.) Bakera,b

Infusion of bulbs

[14]

Cardiac glycosides of the bufadienolide type [96], [97]

Insecticidal activity [98]; cytotoxic and genotoxic effects in A. cepa test [99]

18

Liliaceae

Allium cepa L.a,b

Decoction of
raw bulbs and leaves

[19]

Flavonoid glycosides [100]; S‐alk(en)yl cysteine sulfoxide metabolites [101], [102]; quercetin [103]; onionin A [104]

Antimutagenic [100]; antidiabetic [105]; antiplatelet aggregation effect [106]; chemopreventive in gastrointestinal, ovarian, and endometrial and skin cancers [107], [108], [109], [110]; induction and augmentation of apoptosis [103], [111], [112]

19

Loranthaceae

Viscum cruciatum Sieb et Boiss.a,b

Decoction of external (pads) and leaves

[19], [22]

Diarylheptanoid [113]; triterpenoids and flavonoid aglycones [114]; polyphenols [115]

Antioxidative [115]; cytotoxic against larynx cancer cells [116] with a cytotoxic diarylheptanoid against a panel of cancer cell lines [113]

20

Menispermeaceae

Cocculus pendulus (J. R. & G. Forst.) Dielsb

Infusion of leaves and branches

[14]

Several alkaloids [117], [118], [119]

Anticholinesterase activity [120], [121]

21

Poaceae

Triticum aestivum L.a

Decoction of shoots

[20]

Lignans, dietary fibers, and aleurone [122], [123]

Pro-apoptotic antitumor activity in colon cancer cells [122], [123]

22

Polypodiaceae

Platanus orientalis L.a,b

Decoction of leaves

[14]

Flavonoids and kaempferol glycosides [124], [125]

Antimicrobial [124]; cytotoxic against leukemic cell lines [125]

23

Ranunculaceae

Clematis flammula L.b

Infusion of leaves

[14]

Polyphenols [126]

Antioxidative capacity [126]

24

Rhamnaceae

Zizyphus spina-christi (L.) Desf.b

Decoction of fruits and leaves

[21], [127], [128]

Saponin glycosides [129]; flavonoids [130]

Insulinotropic hypoglycemic effects in diabetic rats [131], [132], [133]; cytoprotective against liver aflatoxicosis [134] and CCl4-
fibrosis [135]; vasoconstrictive effect in rat aorta [136] antifungal [137]

25

Rosaceae

Sarcopoterium spinosum (L.) Spach.b

Infusion, decoction of leaves, seeds, and roots

[21]

Triterpenoids [138]

Antioxidative [62]; antidiabetic properties [139], [140]

26

Rosaceae

Crataegus azarolus L.b

Decoction of flowers and fruits

[20]

Polyphenols [141]

Antioxidative capacity [141]

27

Urticaceae

Urtica pilulifera L.b

Decoction of leaves

[20]

Phenolics [142]

Antioxidative [142]; hypoglycemic activity in diabetic rats [143]

a Plants with ethnotherapeutic claims and traditional uses subjected to critical antitumor cytotoxicity pharmacological appraisal. b Plants with ethnotherapeutic claims and traditional uses subjected to other critical pharmacological appraisals. c Plants with ethnotherapeutic claims and traditional uses not subjected to pharmacological appraisal

In an attempt to screen the medicinal herbs from the Jordanian flora collected from each of the four biogeographic regions of Jordan, more than 120 ethanol, chloroform, and water extracts belonging to about 49 families representing 86 genera were evaluated for their antiproliferative activity. Inula graveolens, Salvia dominica, Conyza canadiensis and Achillea santolina, I. viscosa, Lavendula officinalis, and S. syriaca showed promising and potent antiproliferative activities on a breast cancer cell line (MCF-7) [27], [28], [29]. The most active plant was I. graveolens with an IC50 of 3.83 µg/mL [27]. Inclusive reporting of the selective cytotoxicity of Rhus coriera and A. biberstenii along with the preceding seven species were collectively presented at the 1st Annual World Cancer Congress 2008 Shanghai, China. The ethanol extracts of the active plants were further evaluated using T47D, ZR-75-1, and BT474 cell lines, as were some of their volatile fractions and isolated pure flavonoids [28].

Al-Kalaldeh et al. demonstrated the cytotoxicity activity for the ethanol extracts of Origanum syriacum (IC50 of 6.4 µg/mL), Laurus nobilis (IC50 of 24.5 µg/mL), and S. triloba (IC50 of 25.3 µg/mL) against MCF-7 cell lines [30]. These were among many other commonly used culinary spices or edible domesticated greens proven for their therapeutic properties [31]. In a parallel line of work, Faris et al. illustrated the enhanced chemopreventive effect of cooked lentils against colorectal carcinogenesis [32]. Furthermore, compared to garlic-only treatment, combined supplementation of soy and garlic had a marked modulation of 7,12 dimethylbenzy-α-anthracene induced mammary cancer in female albino rats [33]. Additionally, aqueous extracts of Nigella sativum, Allium sativum, and Onopordum acanthium augmented significantly splenic natural killers' cytotoxicity against tumor targets in vitro and in vivo [34], [35], [36].

Few more reports on selective evaluation of the traditionally used plants for their cytotoxicity activities were obtainable [23], [37], [38]. Talib and Mahasneh screened 16 plants for their antiproliferative activity against Hep-2, MCF-7, and Vero cell lines and demonstrated that methanol fractions of Ononis hirta and I. viscosa exerted their antiproliferative activity by inducing apoptosis in cancer cell lines [23]. In vitro antiproliferative activities of several Salvia species against different cancer cell lines were tested by Fiore et al. [37]. Their findings showed promising cytotoxic activity for S. menthefolia, S. spinosa, S. sclarea, and S. dominica [37]. In a panel of fibrosarcoma L929sA cells, breast cancer cells MDA-MB231 and MCF-7, organic extracts of Withania somnifera, Psidium guajava, L. nobilis, and S. fruticosa also displayed remarkable antitumor cytotoxicity [38]. Withaferin A, a major constituent of W. somnifera, was further characterized among a novel class of NF-κB inhibitors, holding promise in cancer treatment [39]. As part of serial studies on the unique and under-explored biodiversity of Jordan, the colchicinoids of Colchicum spp. (Colchicaceae) were pursued [40], [41], [42], [43], [44]. Alkaloids of the colchicinoid structural class are well known from this genus, particularly (−)-colchicine, and these compounds have been investigated extensively for both toxicological and potential medical properties, exhibiting potent cytotoxicity against a human cancer cell panel [45]. Nevertheless, the pyrrolizidine alkaloids recovered from Echium glomeratum (Boraginaceae) by the same research group lacked any anticancerous cytotoxicity [46].

Nowadays, it is well accepted that plant constituents possess cancer-preventive and cancer-therapeutic activities and natural product chemistry has already contributed to 60 % of all anticancer drugs [47], [48], [49]. Chemoprevention research has gained momentum through the US FDA approval of tamoxifen and raloxifene for breast cancer risk reduction. Various epidemiological and preclinical findings and the results of several early clinical studies convincingly argue for a definitive role of selected dietary products in the treatment and prevention of cancers. Many of these agents target multiple signal transduction pathways; modulate cancer aneuploidy, tubulin binding, topoisomerases, and gene specific and aspecific targets, which vary widely depending on cancer origin [12], [50], [51]. The introduction of synthetic analogues of natural compounds may be a solution for potency and bioavailability limitations [52]. Some natural compounds have exhibited synergism with established chemopreventive agents or with other natural compounds [53]. Since drug associated toxicity remains a significant barrier for currently available chemotherapeutic and chemopreventive drugs, using natural compounds (with better safety profiles) as adjuvant therapy with current chemotherapeutic agents may help to mitigate drug associated toxicities [54]. The key challenge to researchers is how to best use this information for effective cancer prevention in populations with different cancer risks.

In conclusion, these studies, uniquely indicating the potential use of medicinal plants as antineoplastic agents, are among the very few that explored Jordanian flora from extreme environments such as the desert and near the Dead Sea (400 m below sea level) for pharmaceutical leads. Comprehensive research aiming at fully exploiting any of the promising species from the Jordanian flora, either alone or in combination with existing therapies, might lead to the discovery of new avenues for medicinal plants/natural compounds in reducing the public health impact of major cancers. Elucidation of molecular targets and mechanisms also constitutes another prerequisite.

#

References

  • 1 Al-Eisawi D, El-Oqlah A, Al-Khader I A. Jordan Country Study on Biological Diversity. United Nations Environmental Program, 2000. Amman; Al-Rai Commercial Press 2000: 7-11
  • 2 Al-Eisawi D M. List of Jordan vascular plants.  Mitt Bot München. 1982;  18 79-182
  • 3 Al-Eisawi D M. Vegetation of Jordan. Cairo; UNESCO-Regional Office for Science and Technology for the Arab States 1996: 266
  • 4 Al-Khalil S. A survey of plants used in Jordanian traditional medicine.  Int J Pharmacognosy. 1995;  33 317-323
  • 5 Azaizeh H, Fulder S, Khalil K, Said O. Ethnobotanical knowledge of local Arab practitioners in the Middle Eastern region.  Fitoterapia. 2003;  74 98-108
  • 6 Bonet M A, Valles J. Use of non-crop food vascular plants in Montseny biosphere reserve (Catalonia, Iberian Peninsula).  Int J Food Sci Nutr. 2002;  53 225-248
  • 7 Butler M S. The role of natural product chemistry in drug discovery.  J Nat Prod. 2004;  67 2141-2153
  • 8 Goldman P. Herbal medicines today and the roots of modern pharmacology.  Ann Intern Med. 2001;  135 594-600
  • 9 Phillipson J D. Phytochemistry and medicinal plants.  Phytochemistry. 2001;  56 237-243
  • 10 Newman D J, Cragg G M, Snader K M. Natural products as sources of new drugs over the period 1981–2001.  J Nat Prod. 2003;  66 1022-1037
  • 11 Abu-Rabia A. Herbs as a food and medicine source in Palestine.  Asian Pac J Cancer Prev. 2005;  6 404-407
  • 12 Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, Capaccioli S. Natural compounds for cancer treatment and prevention.  Pharmacol Res. 2009;  59 365-378
  • 13 Afifi F U, Wazaify M, Jabr M, Treish E. The use of herbal preparations as complementary and alternative medicine (CAM) in a sample of patients with cancer in Jordan.  Complement Ther Clin Pract. 2010;  16 208-212
  • 14 Oran S A, Al-Eisawi D M. Check list of medicinal plants in Jordan.  Dirasat. 1998;  25 84-112
  • 15 Abu-Rmailah B, Afifi F. Treatment with medicinal plants in Jordan.  Dirasat. 2000;  27 53-74
  • 16 Al-Aboudi A, Afifi F U. Plants used for the treatment of diabetes in Jordan: A review of scientific evidence.  Pharm Biol. 2011;  49 221-239
  • 17 Camejo-Rodrigues J, Ascensao L, Bonet M A, Valles J. An ethnobotanical study of medicinal and aromatic plants in the Natural Park of “Serra de Sao Mamede” (Portugal).  J Ethnopharmacol. 2003;  89 199-209
  • 18 Jeambey Z, Johns T, Talhouk S, Batal M. Perceived health and medicinal properties of six species of wild edible plants in north-east Lebanon.  Public Health Nutr. 2009;  12 1902-1911
  • 19 Ali-Shtayeh M S, Yaniv Z, Mahajna J. Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants.  J Ethnopharmacol. 2000;  73 221-232
  • 20 Said O, Khalil K, Fulder S, Azaizeh H. Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region.  J Ethnopharmacol. 2002;  83 251-265
  • 21 Hudaib M, Mohammad M, Bustanji Y, Tayyeb R, Yousef M, Aburjeie M, Aburjai T. Ethnopharmacological survey of medicinal plants in Jordan, Mujib Nature Reserve and surrounding area.  J Ethnopharmacol. 2008;  120 63-71
  • 22 Al-Qura'n S. Ethnopharmacological survey of wild medicinal plants in Showbak, Jordan.  J Ethnopharmacol. 2009;  123 45-50
  • 23 Talib W H, Mahasneh A M. Antiproliferative activity of plant extracts used against cancer in traditional medicine.  Sci Pharm. 2010;  78 33-45
  • 24 WHO .WHO projections of the global burden of disease including cancer: 2004–2030. http://www.who.int/healthinfo/global_burden_disease/projections/en/index.html Accessed January 1, 2011
  • 25 Tarawneh M, Nimri O. Cancer incidence in Jordan. Jordan Cancer Registry. Jordan; Ministry of Health 2007
  • 26 King Hussein Cancer Centre .Jordanian cancer statistics for the year 2007. Amman; KHCC publications 2007
  • 27 Abu-Dahab R, Afifi F. Antiproliferative activity of selected medicinal plants of Jordan against a breast adenocarcinoma cell line (MCF7).  Sci Pharm. 2007;  75 121-136
  • 28 Afifi-Yazar F U, Abu-Dahab R, Ismail S. Medicinal plants and anticancer activities: Experiences from Jordan using MCF7 cell lines. BIT Life Sciences' 1st Annual World Cancer Congress, Shanghai. 2008
  • 29 Abu-Dahab R, Afifi-Yazar F U. Comparison of antiproliferative activities of ethanolic plant extracts of the Jordanian flora using MCF7 and A549 cells.  Planta Med. 2007;  3 990
  • 30 Al-Kalaldeh J Z, Abu-Dahab R, Afifi F U. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare and Salvia triloba against human breast adenocarcinoma cells.  Nutr Res. 2010;  30 271-278
  • 31 Gupta M. Pharmacological properties and traditional therapeutic uses of important Indian spices: A review.  Int J Food Prop. 2010;  13 1092-1116
  • 32 Faris M A, Takruri H R, Shomaf M S, Bustanji Y K. Chemopreventive effect of raw and cooked lentils (Lens culinaris L.) and soybeans (Glcine max) against azoxymethane-induced aberrant crypt foci.  Nutr Res. 2009;  29 355-362
  • 33 Khataibeh M, Abu-Alruz K, Al-Widyan O, Abu-Samak M, Al-Qudah J. Combined supplementation of soy and garlic modulate biochemical parameters of 7,12-dimethylbenz[alpha]anthracene induced mammary cancer in female albino rats.  Pakistan J Biol Res. 2007;  10 2308-2313
  • 34 Abuherfeil N M, Maraqa A, Von Kleist S. Augmentation of natural killer cell activity in vitro against tumour cells by some wild plants from Jordan.  J Ethnopharmacol. 2000;  71 55-63
  • 35 Shabsoug B, Khalil R, Abuherfeil N. Enhancement of natural killer cell activity in vitro against human tumour cells by some plants from Jordan.  J Immunotoxicol. 2008;  5 279-285
  • 36 Abuherfeil N M, Salim M, Von Kleist S. Augmentation of natural killer cell activity in vivo against tumour cells by some wild plants from Jordan.  Phytother Res. 2001;  15 109-113
  • 37 Fiore G, Nencini C, Cavallo F, Capasso A, Bader A, Giorgi G, Micheli L. In vitro antiproliferative effect of six Salvia species on human tumor cell lines.  Phytother Res. 2006;  20 701-703
  • 38 Kaileh M, Berghe W V, Boone E, Essawi T, Haegeman G. Screening of indigenous Palestinian plants for potential anti-inflammatory and cytotoxic activity.  J Ethnopharmacol. 2007;  113 510-516
  • 39 Kaileh M, Vanden Berghe W, Heyerick A, Horion J, Piette J, Libert C, De Keukeleire D, Essawi T, Haegeman G. Withaferin A strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity.  J Biol Chem. 2007;  282 4253-4264
  • 40 Alali F Q, El-Elimat T, Li C, Qandil A, Alkofahi A, Tawaha K, Burgess J P, Nakanishi Y, Kroll D J, Navarro H A, Falkinham III J O, Wani M C, Oberlies N H. New colchicinoids from a native Jordanian meadow saffron, Colchicum brachyphyllum: isolation of the first naturally occurring dextrorotatory colchicinoid.  J Nat Prod. 2005;  68 173-178
  • 41 Alali F, Ma'aya'h A S, Alkofahi A, Qandil A, Li C, Burgess J P, Wani M C, Oberlies N H. A new colchicinoid from Colchicum tauri, an unexplored meadow saffron native to Jordan.  Nat Prod Commun. 2006;  1 95-99
  • 42 Alali F, Tawaha K, El-Elimat T, Qassaymeh R, Li C, Burgess J P, Yuka N, Kroll D J, Wani M C, Oberlies N Hl. Phytochemical studies and cytotoxicity evaluations of Colchicum tunicatum Feinbr and Colchicum hierosolymitanum Feinbr (Colchicaceae): two native Jordanian meadow saffrons.  Nat Prod Res. 2006;  20 558-566
  • 43 Alali F Q, Gharaibeh A, Ghawanmeh A, Tawaha K, Oberlies N H. Colchicinoids from Colchicum crocifolium Boiss.: a case study in dereplication strategies for (−)-colchicine and related analogues using LC-MS and LC-PDA techniques.  Phytochem Anal. 2008;  19 385-394
  • 44 Al-Mahmoud M S, Alali F Q, Tawaha K, Qasaymeh R M. Phytochemical study and cytotoxicity evaluation of Colchicum stevenii Kunth (Colchicaceae): a Jordanian meadow saffron.  Nat Prod Res. 2006;  20 153-160
  • 45 Alali F Q, Gharaibeh A A, Ghawanmeh A, Tawaha K, Qandil A, Burgess J P, Sy A, Nakanishi Y, Kroll D J, Oberlies N H. Colchicinoids from Colchicum crocifolium Boiss. (Colchicaceae).  Nat Prod Res. 2010;  24 152-159
  • 46 Alali F Q, Tahboub Y R, Ibrahim E S, Qandil A M, Tawaha K, Burgess J P, Sy A, Nakanishi Y, Kroll D J, Oberlies N H. Pyrrolizidine alkaloids from Echium glomeratum (Boraginaceae).  Phytochemistry. 2008;  69 2341-2346
  • 47 Rates S M K. Plants as source of drugs.  Toxicon. 2001;  39 603-613
  • 48 Dorai T, Aggarwal B B. Role of chemopreventive agents in cancer therapy.  Cancer Lett. 2004;  215 129-140
  • 49 Rabi T, Bishayee A. Terpenoids and breast cancer chemoprevention.  Breast Cancer Res Treat. 2009;  115 223-239
  • 50 Pezzuto J M. Resveratrol as an inhibitor of carcinogenesis.  Pharm Biol. 2008;  46 443-573
  • 51 Amin A R, Kucuk O, Khuri F R, Shin D M. Perspectives for cancer prevention with natural compounds.  J Clin Oncol. 2009;  27 2712-2715
  • 52 Kasinski A L, Du Y, Thomas S L, Zhao J, Sun S Y, Khuri F R, Wang C Y, Shoji M, Sun A, Snyder J P, Liotta D, Fu H. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis (2-flurobenzylidene) piperidin-4-one (EF24), a novel monoketone analog of curcumin.  Mol Pharmacol. 2008;  74 654-661
  • 53 Rajabalian S. Methanolic extract of Teucrium polium L. potentiates the cytotoxic and apoptotic effects of anticancer drugs of vincristine, vinblastine and doxorubicin against a panel of cancerous cell lines.  Exp Oncol. 2008;  30 133-138
  • 54 Sarkar F H, Li Y. Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics.  Cancer Treat Rev. 2009;  35 597-607
  • 55 Papas T S, Sandhaus L, Chirigos M A, Furusawa E. Inhibition of DNA polymerase of avian myeloblastosis virus by an alkaloid extract from Narcissus tazetta L.  Biochem Biophys Res Commun. 1973;  52 88-92
  • 56 Youssef D T, Khalifa A A. Cytotoxic quaternary alkaloids from the flowers of Narcissus tazetta.  Pharmazie. 2001;  56 818-822
  • 57 Talib W H, Mahasneh A M. Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine.  Molecules. 2010;  15 1811-1824
  • 58 Kelling C L, Schipper I A, Schermeister L J, Vacik J P. Effects of crude extracts of various plants on infectious bovine rhinotracheitis virus-plaque production.  Am J Vet Res. 1976;  37 215-218
  • 59 Ooi L S, Tian L, Su M, Ho W S, Sun S S, Chung H Y, Wong H N, Ooi V E. Isolation, characterisation, molecular cloning and modelling of a new lipid transfer protein with antiviral and antiproliferative activities from Narcissus tazetta.  Peptides. 2008;  29 2101-2109
  • 60 Khalil A, Dababneh B. Inhibition of phytopathogenic fungi by extracts from medicinal plants in Jordan.  J Biol Sci. 2007;  7 579-581
  • 61 El-Desouky S K, Kim K H, Ryu S Y, Eweas A F, Gamal-Eldeen A M, Kim Y K. A new pyrrole alkaloid isolated from Arum palaestinum Boiss. and its biological activities.  Arch Pharm Res. 2007;  30 927-931
  • 62 Al-Mustafa A H, Al-Thunibat O Y. Antioxidant capacity of some Jordanian medicinal plants used traditionally for the treatment of diabetes.  Pakistan J Biol Sci. 2008;  11 351-358
  • 63 Majester-Savornin B, Elias R, Diaz-Lanza A M, Balansard G, Gasquet M, Delmas F. Saponins of the ivy plant, Hedera helix, and their leishmanicidic activity.  Planta Med. 1991;  57 260-262
  • 64 Demirci B, Goppel M, Demirci F, Franz G. HPLC profiling and quantification of active principles in leaves of Hedera helix L.  Pharmazie. 2004;  59 770-774
  • 65 Facino R M, Carini M, Stefani R, Aldini G, Saibene L. Anti-elastase and anti-hyaluronidase activities of saponins and sapogenins from Hedera helix, Aesculus hippocastanum, and Ruscus aculeatus: factors contributing to their efficacy in the treatment of venous insufficiency.  Arch Pharm (Weinheim). 1995;  328 720-724
  • 66 Trute A, Gross J, Mutschler E, Nahrstedt A. In vitro antispasmodic compounds of the dry extract obtained from Hedera helix.  Planta Med. 1997;  63 125-129
  • 67 Elias R, De Meo M, Vidal-Ollivier E, Laget M, Balansard G, Dumenil G. Antimutagenic activity of some saponins isolated from Calendula officinalis L., C. arvensis L. and Hedera helix L.  Mutagenesis. 1990;  5 327-331
  • 68 Hofmann D, Hecker M, Volp A. Efficacy of dry extract of ivy leaves in children with bronchial asthma–a review of randomised controlled trials.  Phytomedicine. 2003;  10 213-220
  • 69 Zarga M H, Sabri S S, Hamed E M, Khanfar M A, Zeller K P, Atta-Ur-Rahman. A new eudesmane type sesquiterpene from Inula viscosa.  Nat Prod Res. 2003;  17 99-102
  • 70 Lauro L, Rolih C. Observations and research on an extract of Inula viscosa Ait.  Boll Soc Ital Biol Sper. 1990;  66 829-834
  • 71 Al-Dissi N M, Salhab A S, Al-Hajj H. Effects of Inula viscosa leaf extracts on abortion and implantation in rats.  J Ethnopharmacol. 2001;  77 117-121
  • 72 Askin Celik T, Aslanturk O S. Evaluation of cytotoxicity and gentoxicity of Inula viscosa leaf extracts with Allium test.  J Biomed Biotechnol. DOI: 10.1155/2010/189252 , advance online publication 23 June 2010;
  • 73 Zeggwagh N A, Ouahidi M L, Lemhadri A, Eddouks M. Study of hypoglycaemic and hypolidemic effects of Inula viscosa L. aqueous extract in normal and diabetic rats.  J Ethnopharmacol. 2006;  108 223-227
  • 74 Chemli R, Toumi A, Queslati S, Zouaghi H, Boukef K, Balansard G. Calendula arvensis L. Impact of saponins on toxicity, haemolytic effect and anti-inflammatory activity.  J Pharm Belg. 1990;  45 12-16
  • 75 De Tommasi N, Pizza C, Conti C, Orsi N, Stein M L. Structure and in vitro antiviral activity of sesquiterpene glycosides from Calendula arvensis.  J Nat Prod. 1990;  53 830-835
  • 76 Saleh M M, Rizk A M. Flavonoids and coumarins of Anthemis pseudocotiola.  Planta Med. 1974;  25 60-62
  • 77 Yoshikawa K, Arihara S, Wang J D, Narui T, Okuyama T. Structures of two fibrinolytic saponins from seeds of Luffa cylindrica Roem.  Chem Pharm Bull. 1991;  39 1185-1188
  • 78 Khajuria A, Gupta A, Garai S, Wakhloo B P. Immunomodulatory effects of two saponins 1 and 2 isolated from Luffa cylindrica in Balb/C mice.  Bioorg Med Chem Lett. 2007;  17 1608-1612
  • 79 Du Q, Cui H. A new flavone glycoside from the fruits of Luffa cylindrica.  Fitoterapia. 2007;  78 609-610
  • 80 Ng T B, Chan W Y, Yeung H W. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants.  Gen Pharmacol. 1992;  23 579-590
  • 81 Ng T B, Wong R N, Yeung H W. Two proteins with ribosome-inactivating, cytotoxic and abortifacient activities from seeds of Luffa cylindrica roem (Cucurbitaceae).  Biochem Int. 1992;  27 197-207
  • 82 Du Q, Xu Y, Li L, Zhao Y, Jerz G, Winterhalter P. Antioxidant constituents in the fruits of Luffa cylindrica (L.) Roem.  J Agric Food Chem. 2006;  54 4186-4190
  • 83 Poma A, Marcozzi G, Cesare P, Carmignanu M, Spano L. Antiproliferative effect and apoptotic response in vitro of human melanoma cells to liposomes containing the ribosome-inactivating protein luffin.  Biochim Biophys Acta. 1999;  1472 197-205
  • 84 Lui L, Wang R, He W, He F, Huang G. Cloning and soluble expression of mature alpha-luffin from Luffa cylindrica and its antitumor activities in vitro.  Acta Biochim Biophys Sin (Shanghai). 2010;  42 585-592
  • 85 Issa R A, Afifi F U, Amro B I. Studying the anti-tyrosinase effect of Arbustus andrachne L. extracts.  Int J Cosmet Sci. 2008;  40 271-276
  • 86 Dumkow K. Flavonoids of domestic euphorbiaceae. 4. Flavonol glycosides of Mercurialis annua L.  Z Naturforsch B. 1969;  24 1203
  • 87 Hanus L O, Temina M, Dembitsky V. Biodiversity of the chemical constituents in the epiphytic lichenized ascomycete Ramalina lacera grown on difference substrates Crataegus sinaicus, Pinus halepensis, and Quercus calliprinos.  Biomed Pap. 2008;  152 203-208
  • 88 Yeruham I, Avidar Y, Perl S, Yakobson B, Shlosberg A, Hanji V, Bogin E. Probable toxicosis in cattle in Israel caused by the oak Quercus calliprinos.  Vet Hum Toxicol. 1998;  40 336-340
  • 89 Elbetieha A, Oran S A, Alkofahi A, Darmnai H, Raies A M. Fetotoxic potentials of Globularia arabica and Globularia alypum (Globulariaceae) in rats.  J Ethnopharmcol. 2000;  72 215-219
  • 90 Oran S A, Raies A M. Antimicrobial activity of Globularia arabica Jaub. and Spach and G. alypum L. (Globulariaceae).  Dirasat. 2000;  27 71-73
  • 91 Sultan M M, Zaki A K. Antiviral screening of forty-two Egyptian medicinal plants.  J Ethnopharmcol. 2009;  126 102-107
  • 92 Dall'Aqua S, Cervellati R, Speroni E, Costa S, Guerra M C, Stella L, Greco E, Innocenti G. Phytochemical composition and antioxidant activity of Laurus nobilis L. leaf infusion.  J Med Food. 2009;  12 869-876
  • 93 Ferreira A, Proenca C, Serralheiro M L, Araujo M E. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal.  J Ethnopharmacol. 2006;  108 31-37
  • 94 Panza E, Tersigni M, Iorizzi M, Zollo F, De Marino S, Festa C, Napolitano M, Castello G, Ialenti A, Ianaro A. Lauroside B, a megastigmane glycoside from Laurus nobilis (Bay Laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation.  J Nat Prod. DOI: 10.1021/np100688g , advance online publication 28 December 2010;
  • 95 Innocenti G, Dall'Acqua S, Viola G, Loi M C. Cytotoxic constituents from Anagyris foetida leaves.  Fitoterapia. 2006;  77 595-597
  • 96 Dias C, Borralho Graca J A, Lurdes Goncalves M. Scilla maderensis, TLC screening and positive inotropic effect of bulb extracts.  J Ethnopharmacol. 2000;  71 487-492
  • 97 Krenn L, Jelovina M, Kopp B. New bufadienolides from Urginea maritime sensu strictu.  Fitoterapia. 2000;  71 126-129
  • 98 Civelek H S, Weintraub P G. Effects of two plant extracts on larval leafminer Liriomyza trifolii (Diptera: Agromyzidae) in tomatoes.  J Econ Entomol. 2004;  97 1581-1586
  • 99 Mert M, Betul B. Cytogenetic effects of Urginea maritime L. aqueous extracts on the chromosomes by using Allium test method.  Caryologia. 2008;  61 342-348
  • 100 Boyle S P, Dobson V L, Duthie S J, Kyle J A, Collins A R. Absorption and DNA protective effects of flavonoid glycosides from an onion meal.  Eur J Nutr. 2000;  39 213-223
  • 101 Griffiths G, Trueman L, Crowther T, Thomas B, Smith B. Onions—a global benefit to health.  Phytother Res. 2002;  16 603-615
  • 102 Rose P, Whiteman M, Moore P K, Zhu Y Z. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents.  Nat Prod Rep. 2005;  22 351-368
  • 103 Galluzzo P, Martini C, Bulzomi P, Leone S, Bolli A, Pallottini V, Marino M. Quercetin-induced apoptotic cascade in cancer cells: antioxidant versus estrogen receptor alpha-dependent mechanisms.  Mol Nutr Food Res. 2009;  53 699-708
  • 104 El-Aasr M, Fujiwara Y, Takeya M, Ikeda T, Tsukamoto S, Ono M, Nakano D, Okawa M, Kinjo J, Yoshimitsu H, Nohara T. Onionin A from Allium cepa inhibits macrophage activation.  J Nat Prod. 2010;  73 1306-1308
  • 105 Srinivasan K. Plant foods in the management of diabetes mellitus: spices as beneficial antidiabetic food adjuncts.  Int J Food Sci Nutr. 2005;  56 399-414
  • 106 Hubbard G P, Wolffram S, de Vos R, Bovy A, Gibbins J M, Lovegrove J A. Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study.  Br J Nutr. 2006;  96 482-488
  • 107 Sengupta A, Ghosh S, Bhattacharjee S. Allium vegetables in cancer prevention: an overview.  Asian Pac J Cancer Prev. 2004;  5 237-245
  • 108 González C A, Pera G, Agudo A, Bueno-de-Mesquita H B, Ceroti M, Boeing H, Schulz M, Del Giudice G, Plebani M, Carneiro F, Berrino F, Sacerdote C, Tumino R, Panico S, Berglund G, Simán H, Hallmans G, Stenling R, Martinez C, Dorronsoro M, Barricarte A, Navarro C, Quiros J R, Allen N, Key T J, Bingham S, Day N E, Linseisen J, Nagel G, Overvad K, Jensen M K, Olsen A, Tjønneland A, Büchner F L, Peeters P H, Numans M E, Clavel-Chapelon F, Boutron-Ruault M C, Roukos D, Trichopoulou A, Psaltopoulou T, Lund E, Casagrande C, Slimani N, Jenab M, Riboli E. Fruit and vegetable intake and the risk of stomach and oesophagus adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST).  Int J Cancer. 2006;  118 2559-2566
  • 109 Galasso R, Palli D, Tumino R, Vineis P, Trichopoulou A, Kalapothaki V, Trichopoulos D, Chang-Claude J, Linseisen J, Boutron-Ruault M C, Touillaud M, Clavel-Chapelon F, Olsen A, Tjønneland A, Overvad K, Tetsche M, Jenab M, Norat T, Kaaks R, Riboli E. Fruit and vegetable consumption and risk of epithelial ovarian cancer: the European Prospective Investigation into Cancer and Nutrition.  Cancer Epidemiol Biomarkers Prev. 2005;  14 253-255
  • 110 Galeone C, Pelucchi C, Dal Maso L, Negri E, Montella M, Zucchetto A, Talamini R, La Vecchia C. Allium vegetables intake and endometrial cancer risk.  Public Health Nutr. 2009;  12 1576-1579
  • 111 Ban J O, Hwang I G, Kim T M, Hwang B Y, Lee U S, Jeong H S, Yoon Y W, Kimz D J, Hong J T. Anti-proliferate and pro-apoptotic effects of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone through inactivation of NF-kappaB in human colon cancer cells.  Arch Pharm Res. 2007;  30 1455-1463
  • 112 Shrivastava S, Ganesh N. Tumour inhibition and cytotoxicity assay by aqueous extract of onion (Allium cepa) & garlic (Allium sativum): an in-vitro analysis.  Int J Phytomed. 2010;  2 80-84
  • 113 Martin-Cordero C, Lopez-Lazaro M, Agudo M A, Navarro E, Trujillo J, Ayus M J. A cytotoxic diarylheptanoid from Viscum cruciatum.  Phytochemistry. 2001;  58 567-569
  • 114 Hass K, Bauer M, Wollenweber E. Cuticular waxes and flavonol aglycones of mistletoes.  Z Naturforsch. 2003;  58 464-470
  • 115 Alali F Q, Tawaha K, El-Elimat T, Syouf M, Al-Fayad M, Abulaila K, Nielsen S J, Wheaton W D, Falkinham 3rd J O, Oberlies N H. Antioxidant activity and total phenolic content of aqueous and methanolic extracts of Jordanian plants: an ICBG project.  Nat Prod Res. 2007;  21 1121-1131
  • 116 Saenz M T, Ahumada M C, Garcia M D. Extracts from Viscum and Crataegus are cytotoxic against larynx cancer cells.  Z Naturforsch. 1997;  52 42-44
  • 117 Hussain S F, Khan L, Guinaudeau H, Leet J E, Freyer A J, Shamma M. The alkaloidal profile of Cocculus pendulus.  Tetrahedron. 1984;  40 2513-2517
  • 118 Atta-ur-Rahman. Isolation, structural and synthetic studies on the chemical constituents of medicinal plants of Pakistan.  Pure Appl Chem. 1986;  58 663-673
  • 119 Al-Khalil S, Al-Eisawi D, Sharaf M, Schiff Jr P L. Alkaloids of Cocculus pendulus.  Planta Med. 1993;  59 276
  • 120 Atta-ur-Rahman, Atia-Tul-Wahab, Nawaz S A, Choudhary I M. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Cocculus pendulus.  Chem Pharm Bull (Tokyo). 2004;  52 802-806
  • 121 Atta-ur-Rahman, Atia-Tul-Wahab, Zia Sultani S, Nawaz S A, Choudhary I M. Bisbenzylisoquinoline alkaloids from Cocculus pendulus.  Nat Prod Res. 2009;  23 1265-1273
  • 122 Qu H, Madl R L, Takemoto D J, Baybutt R C, Wang W. Lignans are involved in the antitumor activity of wheat bran in colon cancer SW480 cells.  J Nutr. 2005;  135 598-602
  • 123 Borowicki A, Stein K, Scharlau D, Glei M. Fermentation supernatants of wheat (Triticum aestivum L.) aleurone beneficially modulate cancer progression in human colon cells.  J Agric Food Chem. 2010;  58 2001-2007
  • 124 Mitrokotsa D, Mitaku S, Demetzos C, Harvala C, Mentis A, Perez S, Kokkinopoulos D. Bioactive compounds from the buds of Plantanus orientalis and isolation of a new kaempferol glycoside.  Planta Med. 1993;  59 517-520
  • 125 Dimas K, Demetzos C, Mitaku S, Marselos M, Tzavaras T, Kokkinopoulos D. Cytotoxic activity of kaempferol glycoside against human leukaemic cell lines in vitro.  Pharmacol Res. 2000;  41 85-88
  • 126 Atmani D, Chaher N, Berboucha M, Ayouni K, Lounis H, Boudaoud H. Antioxidant capacity and phenol content of selected Algerian medicinal plants.  Food Chem. 2009;  112 303-309
  • 127 Dafni A, Levy S, Lev E. The ethnobotany of Christ's Thorne jujube (Ziziphus spina-christi) in Israel.  J Ethnobiol Ethnomed. 2005;  1 8
  • 128 Saied A S, Gebauer J, Hammer K, Buerkert A. Ziziphus spina-christi (L.) Willd: a multipurpose fruit tree.  Genet Resour Crop Evol. 2008;  55 929-937
  • 129 El-Din Hussein Mahran G, Glombitza K W, Mirhom Y W, Hartmann R, Michel C G. Novel saponins from Zizyphus spina-christi growing in Egypt.  Planta Med. 1996;  62 163-165
  • 130 Shahat A A, Pieters L, Apers S, Nazeif N M, Abdel-Azim N S, Berghe D V, Vlietinck A J. Chemical and biological investigations on Zizyphus spina-christi L.  Phytother Res. 2001;  15 593-597
  • 131 Abdel-Zaher A O, Salim S Y, Assaf M H, Abdel-Hady R H. Antidiabetic activity and toxicity of Zizyphus spina-christi leaves.  J Ethnopharmacol. 2005;  101 129-138
  • 132 Nesseem D I, Michel C G, Sleem A A, Al-Alfy T S. Formulation and evaluation of antihyperglycemic leaf extracts of Zizyphus spina-christi (L.) Willd.  Pharmazie. 2009;  64 104-109
  • 133 Michel C G, Nesseem D I, Ismail M F. Anti-diabetic activity and stability study of the formulated leaf extract of Zizyphus spina-christi (L.) Willd with the influence of seasonal variation.  J Ethnopharmacol. 2011;  133 53-62
  • 134 Abdel-Wahhab M A, Omara E A, Abdel-Galil M M, Hassan N S, Nada S A, Saeed A, el-Sayed M M. Zizyphus spina-christi extract protects against aflatoxin B1-initiated hepatic carcinogenicity.  Afr J Tradit Complement Alternat Med. 2007;  4 248-256
  • 135 Amin A, Mahmoud-Ghoneim D. Zizyphus spina-christi protects against carbon tetrachloride-induced liver fibrosis in rats.  Food Chem Toxicol. 2009;  47 2111-2119
  • 136 Godini A, Kazem M, Naseri G, Badavi M. The effect of Ziziphus spina-christi leaf extract on isolated rat aorta.  JPMA. 2009;  53 537-539
  • 137 Hadizadeh I, Peivastegan B, Kolahi M. Antifungal activity of nettle (Urtica dioica L.), colocynth (Citrullus colocynthis L. Schrad), oleander (Nerium oleander L.) and konar (Ziziphus spina-christi L.) extracts on plants pathogenic fungi.  Pakistan J Biol Sci. 2009;  12 58-63
  • 138 Reher G, Reznicek G, Baumann A. Triterpenoids from Sarcopoterium spinosum and Sanguisorba minor.  Planta Med. 1991;  57 506
  • 139 Kasabri V, Afifi F U, Hamdan I. In vitro and in vivo acute antihyperglycemic effects of five selected indigenous plants from Jordan used in traditional medicine.  J Ethnopharmacol. 2011;  27 888-896
  • 140 Smirin P, Taler D, Abitbol G, Brutman-Barazani T, Kerem Z, Sampson S R, Rosenzweig T. Sarcopoterium spinosum extract as an antidiabetic agent: in vitro and in vivo study.  J Ethnopharmacol. 2010;  129 10-17
  • 141 Bashri-Sahloul R, Ammar S, Fredj R B, Saguem S, Grec S, Trotin F, Skhiri F H. Polyphenol contents and antioxidative activities of extracts from flowers of two Crataegus azarolus L. varieties.  Pakistan J Biol Sci. 2009;  12 660-668
  • 142 Ozen T, Collu Z, Korkmaz H. Antioxidant properties of Urtica pilulifera root, seed, flower and leaf extract.  J Med Food. 2010;  13 1224-1231
  • 143 Kavalali G, Tuncel H, Goksel S, Hatemi H H. Hypoglycaemic activity of Urtica pilulifera in streptozotocin-diabetic rats.  J Ethnopharmacol. 2003;  84 241-245

Prof. Dr. Fatma U. Afifi-Yazar

Department of Pharmaceutical Sciences
Faculty of Pharmacy
University of Jordan

Queen Rania Al-Abdullah Street

Amman 11942

Jordan

Phone: +96 2 65 35 50 00 ext. 23 3 01

Fax: +96 2 65 30 02 50

Email: fatueafi@ju.edu.jo

#

References

  • 1 Al-Eisawi D, El-Oqlah A, Al-Khader I A. Jordan Country Study on Biological Diversity. United Nations Environmental Program, 2000. Amman; Al-Rai Commercial Press 2000: 7-11
  • 2 Al-Eisawi D M. List of Jordan vascular plants.  Mitt Bot München. 1982;  18 79-182
  • 3 Al-Eisawi D M. Vegetation of Jordan. Cairo; UNESCO-Regional Office for Science and Technology for the Arab States 1996: 266
  • 4 Al-Khalil S. A survey of plants used in Jordanian traditional medicine.  Int J Pharmacognosy. 1995;  33 317-323
  • 5 Azaizeh H, Fulder S, Khalil K, Said O. Ethnobotanical knowledge of local Arab practitioners in the Middle Eastern region.  Fitoterapia. 2003;  74 98-108
  • 6 Bonet M A, Valles J. Use of non-crop food vascular plants in Montseny biosphere reserve (Catalonia, Iberian Peninsula).  Int J Food Sci Nutr. 2002;  53 225-248
  • 7 Butler M S. The role of natural product chemistry in drug discovery.  J Nat Prod. 2004;  67 2141-2153
  • 8 Goldman P. Herbal medicines today and the roots of modern pharmacology.  Ann Intern Med. 2001;  135 594-600
  • 9 Phillipson J D. Phytochemistry and medicinal plants.  Phytochemistry. 2001;  56 237-243
  • 10 Newman D J, Cragg G M, Snader K M. Natural products as sources of new drugs over the period 1981–2001.  J Nat Prod. 2003;  66 1022-1037
  • 11 Abu-Rabia A. Herbs as a food and medicine source in Palestine.  Asian Pac J Cancer Prev. 2005;  6 404-407
  • 12 Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, Capaccioli S. Natural compounds for cancer treatment and prevention.  Pharmacol Res. 2009;  59 365-378
  • 13 Afifi F U, Wazaify M, Jabr M, Treish E. The use of herbal preparations as complementary and alternative medicine (CAM) in a sample of patients with cancer in Jordan.  Complement Ther Clin Pract. 2010;  16 208-212
  • 14 Oran S A, Al-Eisawi D M. Check list of medicinal plants in Jordan.  Dirasat. 1998;  25 84-112
  • 15 Abu-Rmailah B, Afifi F. Treatment with medicinal plants in Jordan.  Dirasat. 2000;  27 53-74
  • 16 Al-Aboudi A, Afifi F U. Plants used for the treatment of diabetes in Jordan: A review of scientific evidence.  Pharm Biol. 2011;  49 221-239
  • 17 Camejo-Rodrigues J, Ascensao L, Bonet M A, Valles J. An ethnobotanical study of medicinal and aromatic plants in the Natural Park of “Serra de Sao Mamede” (Portugal).  J Ethnopharmacol. 2003;  89 199-209
  • 18 Jeambey Z, Johns T, Talhouk S, Batal M. Perceived health and medicinal properties of six species of wild edible plants in north-east Lebanon.  Public Health Nutr. 2009;  12 1902-1911
  • 19 Ali-Shtayeh M S, Yaniv Z, Mahajna J. Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants.  J Ethnopharmacol. 2000;  73 221-232
  • 20 Said O, Khalil K, Fulder S, Azaizeh H. Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region.  J Ethnopharmacol. 2002;  83 251-265
  • 21 Hudaib M, Mohammad M, Bustanji Y, Tayyeb R, Yousef M, Aburjeie M, Aburjai T. Ethnopharmacological survey of medicinal plants in Jordan, Mujib Nature Reserve and surrounding area.  J Ethnopharmacol. 2008;  120 63-71
  • 22 Al-Qura'n S. Ethnopharmacological survey of wild medicinal plants in Showbak, Jordan.  J Ethnopharmacol. 2009;  123 45-50
  • 23 Talib W H, Mahasneh A M. Antiproliferative activity of plant extracts used against cancer in traditional medicine.  Sci Pharm. 2010;  78 33-45
  • 24 WHO .WHO projections of the global burden of disease including cancer: 2004–2030. http://www.who.int/healthinfo/global_burden_disease/projections/en/index.html Accessed January 1, 2011
  • 25 Tarawneh M, Nimri O. Cancer incidence in Jordan. Jordan Cancer Registry. Jordan; Ministry of Health 2007
  • 26 King Hussein Cancer Centre .Jordanian cancer statistics for the year 2007. Amman; KHCC publications 2007
  • 27 Abu-Dahab R, Afifi F. Antiproliferative activity of selected medicinal plants of Jordan against a breast adenocarcinoma cell line (MCF7).  Sci Pharm. 2007;  75 121-136
  • 28 Afifi-Yazar F U, Abu-Dahab R, Ismail S. Medicinal plants and anticancer activities: Experiences from Jordan using MCF7 cell lines. BIT Life Sciences' 1st Annual World Cancer Congress, Shanghai. 2008
  • 29 Abu-Dahab R, Afifi-Yazar F U. Comparison of antiproliferative activities of ethanolic plant extracts of the Jordanian flora using MCF7 and A549 cells.  Planta Med. 2007;  3 990
  • 30 Al-Kalaldeh J Z, Abu-Dahab R, Afifi F U. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare and Salvia triloba against human breast adenocarcinoma cells.  Nutr Res. 2010;  30 271-278
  • 31 Gupta M. Pharmacological properties and traditional therapeutic uses of important Indian spices: A review.  Int J Food Prop. 2010;  13 1092-1116
  • 32 Faris M A, Takruri H R, Shomaf M S, Bustanji Y K. Chemopreventive effect of raw and cooked lentils (Lens culinaris L.) and soybeans (Glcine max) against azoxymethane-induced aberrant crypt foci.  Nutr Res. 2009;  29 355-362
  • 33 Khataibeh M, Abu-Alruz K, Al-Widyan O, Abu-Samak M, Al-Qudah J. Combined supplementation of soy and garlic modulate biochemical parameters of 7,12-dimethylbenz[alpha]anthracene induced mammary cancer in female albino rats.  Pakistan J Biol Res. 2007;  10 2308-2313
  • 34 Abuherfeil N M, Maraqa A, Von Kleist S. Augmentation of natural killer cell activity in vitro against tumour cells by some wild plants from Jordan.  J Ethnopharmacol. 2000;  71 55-63
  • 35 Shabsoug B, Khalil R, Abuherfeil N. Enhancement of natural killer cell activity in vitro against human tumour cells by some plants from Jordan.  J Immunotoxicol. 2008;  5 279-285
  • 36 Abuherfeil N M, Salim M, Von Kleist S. Augmentation of natural killer cell activity in vivo against tumour cells by some wild plants from Jordan.  Phytother Res. 2001;  15 109-113
  • 37 Fiore G, Nencini C, Cavallo F, Capasso A, Bader A, Giorgi G, Micheli L. In vitro antiproliferative effect of six Salvia species on human tumor cell lines.  Phytother Res. 2006;  20 701-703
  • 38 Kaileh M, Berghe W V, Boone E, Essawi T, Haegeman G. Screening of indigenous Palestinian plants for potential anti-inflammatory and cytotoxic activity.  J Ethnopharmacol. 2007;  113 510-516
  • 39 Kaileh M, Vanden Berghe W, Heyerick A, Horion J, Piette J, Libert C, De Keukeleire D, Essawi T, Haegeman G. Withaferin A strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity.  J Biol Chem. 2007;  282 4253-4264
  • 40 Alali F Q, El-Elimat T, Li C, Qandil A, Alkofahi A, Tawaha K, Burgess J P, Nakanishi Y, Kroll D J, Navarro H A, Falkinham III J O, Wani M C, Oberlies N H. New colchicinoids from a native Jordanian meadow saffron, Colchicum brachyphyllum: isolation of the first naturally occurring dextrorotatory colchicinoid.  J Nat Prod. 2005;  68 173-178
  • 41 Alali F, Ma'aya'h A S, Alkofahi A, Qandil A, Li C, Burgess J P, Wani M C, Oberlies N H. A new colchicinoid from Colchicum tauri, an unexplored meadow saffron native to Jordan.  Nat Prod Commun. 2006;  1 95-99
  • 42 Alali F, Tawaha K, El-Elimat T, Qassaymeh R, Li C, Burgess J P, Yuka N, Kroll D J, Wani M C, Oberlies N Hl. Phytochemical studies and cytotoxicity evaluations of Colchicum tunicatum Feinbr and Colchicum hierosolymitanum Feinbr (Colchicaceae): two native Jordanian meadow saffrons.  Nat Prod Res. 2006;  20 558-566
  • 43 Alali F Q, Gharaibeh A, Ghawanmeh A, Tawaha K, Oberlies N H. Colchicinoids from Colchicum crocifolium Boiss.: a case study in dereplication strategies for (−)-colchicine and related analogues using LC-MS and LC-PDA techniques.  Phytochem Anal. 2008;  19 385-394
  • 44 Al-Mahmoud M S, Alali F Q, Tawaha K, Qasaymeh R M. Phytochemical study and cytotoxicity evaluation of Colchicum stevenii Kunth (Colchicaceae): a Jordanian meadow saffron.  Nat Prod Res. 2006;  20 153-160
  • 45 Alali F Q, Gharaibeh A A, Ghawanmeh A, Tawaha K, Qandil A, Burgess J P, Sy A, Nakanishi Y, Kroll D J, Oberlies N H. Colchicinoids from Colchicum crocifolium Boiss. (Colchicaceae).  Nat Prod Res. 2010;  24 152-159
  • 46 Alali F Q, Tahboub Y R, Ibrahim E S, Qandil A M, Tawaha K, Burgess J P, Sy A, Nakanishi Y, Kroll D J, Oberlies N H. Pyrrolizidine alkaloids from Echium glomeratum (Boraginaceae).  Phytochemistry. 2008;  69 2341-2346
  • 47 Rates S M K. Plants as source of drugs.  Toxicon. 2001;  39 603-613
  • 48 Dorai T, Aggarwal B B. Role of chemopreventive agents in cancer therapy.  Cancer Lett. 2004;  215 129-140
  • 49 Rabi T, Bishayee A. Terpenoids and breast cancer chemoprevention.  Breast Cancer Res Treat. 2009;  115 223-239
  • 50 Pezzuto J M. Resveratrol as an inhibitor of carcinogenesis.  Pharm Biol. 2008;  46 443-573
  • 51 Amin A R, Kucuk O, Khuri F R, Shin D M. Perspectives for cancer prevention with natural compounds.  J Clin Oncol. 2009;  27 2712-2715
  • 52 Kasinski A L, Du Y, Thomas S L, Zhao J, Sun S Y, Khuri F R, Wang C Y, Shoji M, Sun A, Snyder J P, Liotta D, Fu H. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis (2-flurobenzylidene) piperidin-4-one (EF24), a novel monoketone analog of curcumin.  Mol Pharmacol. 2008;  74 654-661
  • 53 Rajabalian S. Methanolic extract of Teucrium polium L. potentiates the cytotoxic and apoptotic effects of anticancer drugs of vincristine, vinblastine and doxorubicin against a panel of cancerous cell lines.  Exp Oncol. 2008;  30 133-138
  • 54 Sarkar F H, Li Y. Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics.  Cancer Treat Rev. 2009;  35 597-607
  • 55 Papas T S, Sandhaus L, Chirigos M A, Furusawa E. Inhibition of DNA polymerase of avian myeloblastosis virus by an alkaloid extract from Narcissus tazetta L.  Biochem Biophys Res Commun. 1973;  52 88-92
  • 56 Youssef D T, Khalifa A A. Cytotoxic quaternary alkaloids from the flowers of Narcissus tazetta.  Pharmazie. 2001;  56 818-822
  • 57 Talib W H, Mahasneh A M. Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine.  Molecules. 2010;  15 1811-1824
  • 58 Kelling C L, Schipper I A, Schermeister L J, Vacik J P. Effects of crude extracts of various plants on infectious bovine rhinotracheitis virus-plaque production.  Am J Vet Res. 1976;  37 215-218
  • 59 Ooi L S, Tian L, Su M, Ho W S, Sun S S, Chung H Y, Wong H N, Ooi V E. Isolation, characterisation, molecular cloning and modelling of a new lipid transfer protein with antiviral and antiproliferative activities from Narcissus tazetta.  Peptides. 2008;  29 2101-2109
  • 60 Khalil A, Dababneh B. Inhibition of phytopathogenic fungi by extracts from medicinal plants in Jordan.  J Biol Sci. 2007;  7 579-581
  • 61 El-Desouky S K, Kim K H, Ryu S Y, Eweas A F, Gamal-Eldeen A M, Kim Y K. A new pyrrole alkaloid isolated from Arum palaestinum Boiss. and its biological activities.  Arch Pharm Res. 2007;  30 927-931
  • 62 Al-Mustafa A H, Al-Thunibat O Y. Antioxidant capacity of some Jordanian medicinal plants used traditionally for the treatment of diabetes.  Pakistan J Biol Sci. 2008;  11 351-358
  • 63 Majester-Savornin B, Elias R, Diaz-Lanza A M, Balansard G, Gasquet M, Delmas F. Saponins of the ivy plant, Hedera helix, and their leishmanicidic activity.  Planta Med. 1991;  57 260-262
  • 64 Demirci B, Goppel M, Demirci F, Franz G. HPLC profiling and quantification of active principles in leaves of Hedera helix L.  Pharmazie. 2004;  59 770-774
  • 65 Facino R M, Carini M, Stefani R, Aldini G, Saibene L. Anti-elastase and anti-hyaluronidase activities of saponins and sapogenins from Hedera helix, Aesculus hippocastanum, and Ruscus aculeatus: factors contributing to their efficacy in the treatment of venous insufficiency.  Arch Pharm (Weinheim). 1995;  328 720-724
  • 66 Trute A, Gross J, Mutschler E, Nahrstedt A. In vitro antispasmodic compounds of the dry extract obtained from Hedera helix.  Planta Med. 1997;  63 125-129
  • 67 Elias R, De Meo M, Vidal-Ollivier E, Laget M, Balansard G, Dumenil G. Antimutagenic activity of some saponins isolated from Calendula officinalis L., C. arvensis L. and Hedera helix L.  Mutagenesis. 1990;  5 327-331
  • 68 Hofmann D, Hecker M, Volp A. Efficacy of dry extract of ivy leaves in children with bronchial asthma–a review of randomised controlled trials.  Phytomedicine. 2003;  10 213-220
  • 69 Zarga M H, Sabri S S, Hamed E M, Khanfar M A, Zeller K P, Atta-Ur-Rahman. A new eudesmane type sesquiterpene from Inula viscosa.  Nat Prod Res. 2003;  17 99-102
  • 70 Lauro L, Rolih C. Observations and research on an extract of Inula viscosa Ait.  Boll Soc Ital Biol Sper. 1990;  66 829-834
  • 71 Al-Dissi N M, Salhab A S, Al-Hajj H. Effects of Inula viscosa leaf extracts on abortion and implantation in rats.  J Ethnopharmacol. 2001;  77 117-121
  • 72 Askin Celik T, Aslanturk O S. Evaluation of cytotoxicity and gentoxicity of Inula viscosa leaf extracts with Allium test.  J Biomed Biotechnol. DOI: 10.1155/2010/189252 , advance online publication 23 June 2010;
  • 73 Zeggwagh N A, Ouahidi M L, Lemhadri A, Eddouks M. Study of hypoglycaemic and hypolidemic effects of Inula viscosa L. aqueous extract in normal and diabetic rats.  J Ethnopharmacol. 2006;  108 223-227
  • 74 Chemli R, Toumi A, Queslati S, Zouaghi H, Boukef K, Balansard G. Calendula arvensis L. Impact of saponins on toxicity, haemolytic effect and anti-inflammatory activity.  J Pharm Belg. 1990;  45 12-16
  • 75 De Tommasi N, Pizza C, Conti C, Orsi N, Stein M L. Structure and in vitro antiviral activity of sesquiterpene glycosides from Calendula arvensis.  J Nat Prod. 1990;  53 830-835
  • 76 Saleh M M, Rizk A M. Flavonoids and coumarins of Anthemis pseudocotiola.  Planta Med. 1974;  25 60-62
  • 77 Yoshikawa K, Arihara S, Wang J D, Narui T, Okuyama T. Structures of two fibrinolytic saponins from seeds of Luffa cylindrica Roem.  Chem Pharm Bull. 1991;  39 1185-1188
  • 78 Khajuria A, Gupta A, Garai S, Wakhloo B P. Immunomodulatory effects of two saponins 1 and 2 isolated from Luffa cylindrica in Balb/C mice.  Bioorg Med Chem Lett. 2007;  17 1608-1612
  • 79 Du Q, Cui H. A new flavone glycoside from the fruits of Luffa cylindrica.  Fitoterapia. 2007;  78 609-610
  • 80 Ng T B, Chan W Y, Yeung H W. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants.  Gen Pharmacol. 1992;  23 579-590
  • 81 Ng T B, Wong R N, Yeung H W. Two proteins with ribosome-inactivating, cytotoxic and abortifacient activities from seeds of Luffa cylindrica roem (Cucurbitaceae).  Biochem Int. 1992;  27 197-207
  • 82 Du Q, Xu Y, Li L, Zhao Y, Jerz G, Winterhalter P. Antioxidant constituents in the fruits of Luffa cylindrica (L.) Roem.  J Agric Food Chem. 2006;  54 4186-4190
  • 83 Poma A, Marcozzi G, Cesare P, Carmignanu M, Spano L. Antiproliferative effect and apoptotic response in vitro of human melanoma cells to liposomes containing the ribosome-inactivating protein luffin.  Biochim Biophys Acta. 1999;  1472 197-205
  • 84 Lui L, Wang R, He W, He F, Huang G. Cloning and soluble expression of mature alpha-luffin from Luffa cylindrica and its antitumor activities in vitro.  Acta Biochim Biophys Sin (Shanghai). 2010;  42 585-592
  • 85 Issa R A, Afifi F U, Amro B I. Studying the anti-tyrosinase effect of Arbustus andrachne L. extracts.  Int J Cosmet Sci. 2008;  40 271-276
  • 86 Dumkow K. Flavonoids of domestic euphorbiaceae. 4. Flavonol glycosides of Mercurialis annua L.  Z Naturforsch B. 1969;  24 1203
  • 87 Hanus L O, Temina M, Dembitsky V. Biodiversity of the chemical constituents in the epiphytic lichenized ascomycete Ramalina lacera grown on difference substrates Crataegus sinaicus, Pinus halepensis, and Quercus calliprinos.  Biomed Pap. 2008;  152 203-208
  • 88 Yeruham I, Avidar Y, Perl S, Yakobson B, Shlosberg A, Hanji V, Bogin E. Probable toxicosis in cattle in Israel caused by the oak Quercus calliprinos.  Vet Hum Toxicol. 1998;  40 336-340
  • 89 Elbetieha A, Oran S A, Alkofahi A, Darmnai H, Raies A M. Fetotoxic potentials of Globularia arabica and Globularia alypum (Globulariaceae) in rats.  J Ethnopharmcol. 2000;  72 215-219
  • 90 Oran S A, Raies A M. Antimicrobial activity of Globularia arabica Jaub. and Spach and G. alypum L. (Globulariaceae).  Dirasat. 2000;  27 71-73
  • 91 Sultan M M, Zaki A K. Antiviral screening of forty-two Egyptian medicinal plants.  J Ethnopharmcol. 2009;  126 102-107
  • 92 Dall'Aqua S, Cervellati R, Speroni E, Costa S, Guerra M C, Stella L, Greco E, Innocenti G. Phytochemical composition and antioxidant activity of Laurus nobilis L. leaf infusion.  J Med Food. 2009;  12 869-876
  • 93 Ferreira A, Proenca C, Serralheiro M L, Araujo M E. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal.  J Ethnopharmacol. 2006;  108 31-37
  • 94 Panza E, Tersigni M, Iorizzi M, Zollo F, De Marino S, Festa C, Napolitano M, Castello G, Ialenti A, Ianaro A. Lauroside B, a megastigmane glycoside from Laurus nobilis (Bay Laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation.  J Nat Prod. DOI: 10.1021/np100688g , advance online publication 28 December 2010;
  • 95 Innocenti G, Dall'Acqua S, Viola G, Loi M C. Cytotoxic constituents from Anagyris foetida leaves.  Fitoterapia. 2006;  77 595-597
  • 96 Dias C, Borralho Graca J A, Lurdes Goncalves M. Scilla maderensis, TLC screening and positive inotropic effect of bulb extracts.  J Ethnopharmacol. 2000;  71 487-492
  • 97 Krenn L, Jelovina M, Kopp B. New bufadienolides from Urginea maritime sensu strictu.  Fitoterapia. 2000;  71 126-129
  • 98 Civelek H S, Weintraub P G. Effects of two plant extracts on larval leafminer Liriomyza trifolii (Diptera: Agromyzidae) in tomatoes.  J Econ Entomol. 2004;  97 1581-1586
  • 99 Mert M, Betul B. Cytogenetic effects of Urginea maritime L. aqueous extracts on the chromosomes by using Allium test method.  Caryologia. 2008;  61 342-348
  • 100 Boyle S P, Dobson V L, Duthie S J, Kyle J A, Collins A R. Absorption and DNA protective effects of flavonoid glycosides from an onion meal.  Eur J Nutr. 2000;  39 213-223
  • 101 Griffiths G, Trueman L, Crowther T, Thomas B, Smith B. Onions—a global benefit to health.  Phytother Res. 2002;  16 603-615
  • 102 Rose P, Whiteman M, Moore P K, Zhu Y Z. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents.  Nat Prod Rep. 2005;  22 351-368
  • 103 Galluzzo P, Martini C, Bulzomi P, Leone S, Bolli A, Pallottini V, Marino M. Quercetin-induced apoptotic cascade in cancer cells: antioxidant versus estrogen receptor alpha-dependent mechanisms.  Mol Nutr Food Res. 2009;  53 699-708
  • 104 El-Aasr M, Fujiwara Y, Takeya M, Ikeda T, Tsukamoto S, Ono M, Nakano D, Okawa M, Kinjo J, Yoshimitsu H, Nohara T. Onionin A from Allium cepa inhibits macrophage activation.  J Nat Prod. 2010;  73 1306-1308
  • 105 Srinivasan K. Plant foods in the management of diabetes mellitus: spices as beneficial antidiabetic food adjuncts.  Int J Food Sci Nutr. 2005;  56 399-414
  • 106 Hubbard G P, Wolffram S, de Vos R, Bovy A, Gibbins J M, Lovegrove J A. Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study.  Br J Nutr. 2006;  96 482-488
  • 107 Sengupta A, Ghosh S, Bhattacharjee S. Allium vegetables in cancer prevention: an overview.  Asian Pac J Cancer Prev. 2004;  5 237-245
  • 108 González C A, Pera G, Agudo A, Bueno-de-Mesquita H B, Ceroti M, Boeing H, Schulz M, Del Giudice G, Plebani M, Carneiro F, Berrino F, Sacerdote C, Tumino R, Panico S, Berglund G, Simán H, Hallmans G, Stenling R, Martinez C, Dorronsoro M, Barricarte A, Navarro C, Quiros J R, Allen N, Key T J, Bingham S, Day N E, Linseisen J, Nagel G, Overvad K, Jensen M K, Olsen A, Tjønneland A, Büchner F L, Peeters P H, Numans M E, Clavel-Chapelon F, Boutron-Ruault M C, Roukos D, Trichopoulou A, Psaltopoulou T, Lund E, Casagrande C, Slimani N, Jenab M, Riboli E. Fruit and vegetable intake and the risk of stomach and oesophagus adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST).  Int J Cancer. 2006;  118 2559-2566
  • 109 Galasso R, Palli D, Tumino R, Vineis P, Trichopoulou A, Kalapothaki V, Trichopoulos D, Chang-Claude J, Linseisen J, Boutron-Ruault M C, Touillaud M, Clavel-Chapelon F, Olsen A, Tjønneland A, Overvad K, Tetsche M, Jenab M, Norat T, Kaaks R, Riboli E. Fruit and vegetable consumption and risk of epithelial ovarian cancer: the European Prospective Investigation into Cancer and Nutrition.  Cancer Epidemiol Biomarkers Prev. 2005;  14 253-255
  • 110 Galeone C, Pelucchi C, Dal Maso L, Negri E, Montella M, Zucchetto A, Talamini R, La Vecchia C. Allium vegetables intake and endometrial cancer risk.  Public Health Nutr. 2009;  12 1576-1579
  • 111 Ban J O, Hwang I G, Kim T M, Hwang B Y, Lee U S, Jeong H S, Yoon Y W, Kimz D J, Hong J T. Anti-proliferate and pro-apoptotic effects of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone through inactivation of NF-kappaB in human colon cancer cells.  Arch Pharm Res. 2007;  30 1455-1463
  • 112 Shrivastava S, Ganesh N. Tumour inhibition and cytotoxicity assay by aqueous extract of onion (Allium cepa) & garlic (Allium sativum): an in-vitro analysis.  Int J Phytomed. 2010;  2 80-84
  • 113 Martin-Cordero C, Lopez-Lazaro M, Agudo M A, Navarro E, Trujillo J, Ayus M J. A cytotoxic diarylheptanoid from Viscum cruciatum.  Phytochemistry. 2001;  58 567-569
  • 114 Hass K, Bauer M, Wollenweber E. Cuticular waxes and flavonol aglycones of mistletoes.  Z Naturforsch. 2003;  58 464-470
  • 115 Alali F Q, Tawaha K, El-Elimat T, Syouf M, Al-Fayad M, Abulaila K, Nielsen S J, Wheaton W D, Falkinham 3rd J O, Oberlies N H. Antioxidant activity and total phenolic content of aqueous and methanolic extracts of Jordanian plants: an ICBG project.  Nat Prod Res. 2007;  21 1121-1131
  • 116 Saenz M T, Ahumada M C, Garcia M D. Extracts from Viscum and Crataegus are cytotoxic against larynx cancer cells.  Z Naturforsch. 1997;  52 42-44
  • 117 Hussain S F, Khan L, Guinaudeau H, Leet J E, Freyer A J, Shamma M. The alkaloidal profile of Cocculus pendulus.  Tetrahedron. 1984;  40 2513-2517
  • 118 Atta-ur-Rahman. Isolation, structural and synthetic studies on the chemical constituents of medicinal plants of Pakistan.  Pure Appl Chem. 1986;  58 663-673
  • 119 Al-Khalil S, Al-Eisawi D, Sharaf M, Schiff Jr P L. Alkaloids of Cocculus pendulus.  Planta Med. 1993;  59 276
  • 120 Atta-ur-Rahman, Atia-Tul-Wahab, Nawaz S A, Choudhary I M. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Cocculus pendulus.  Chem Pharm Bull (Tokyo). 2004;  52 802-806
  • 121 Atta-ur-Rahman, Atia-Tul-Wahab, Zia Sultani S, Nawaz S A, Choudhary I M. Bisbenzylisoquinoline alkaloids from Cocculus pendulus.  Nat Prod Res. 2009;  23 1265-1273
  • 122 Qu H, Madl R L, Takemoto D J, Baybutt R C, Wang W. Lignans are involved in the antitumor activity of wheat bran in colon cancer SW480 cells.  J Nutr. 2005;  135 598-602
  • 123 Borowicki A, Stein K, Scharlau D, Glei M. Fermentation supernatants of wheat (Triticum aestivum L.) aleurone beneficially modulate cancer progression in human colon cells.  J Agric Food Chem. 2010;  58 2001-2007
  • 124 Mitrokotsa D, Mitaku S, Demetzos C, Harvala C, Mentis A, Perez S, Kokkinopoulos D. Bioactive compounds from the buds of Plantanus orientalis and isolation of a new kaempferol glycoside.  Planta Med. 1993;  59 517-520
  • 125 Dimas K, Demetzos C, Mitaku S, Marselos M, Tzavaras T, Kokkinopoulos D. Cytotoxic activity of kaempferol glycoside against human leukaemic cell lines in vitro.  Pharmacol Res. 2000;  41 85-88
  • 126 Atmani D, Chaher N, Berboucha M, Ayouni K, Lounis H, Boudaoud H. Antioxidant capacity and phenol content of selected Algerian medicinal plants.  Food Chem. 2009;  112 303-309
  • 127 Dafni A, Levy S, Lev E. The ethnobotany of Christ's Thorne jujube (Ziziphus spina-christi) in Israel.  J Ethnobiol Ethnomed. 2005;  1 8
  • 128 Saied A S, Gebauer J, Hammer K, Buerkert A. Ziziphus spina-christi (L.) Willd: a multipurpose fruit tree.  Genet Resour Crop Evol. 2008;  55 929-937
  • 129 El-Din Hussein Mahran G, Glombitza K W, Mirhom Y W, Hartmann R, Michel C G. Novel saponins from Zizyphus spina-christi growing in Egypt.  Planta Med. 1996;  62 163-165
  • 130 Shahat A A, Pieters L, Apers S, Nazeif N M, Abdel-Azim N S, Berghe D V, Vlietinck A J. Chemical and biological investigations on Zizyphus spina-christi L.  Phytother Res. 2001;  15 593-597
  • 131 Abdel-Zaher A O, Salim S Y, Assaf M H, Abdel-Hady R H. Antidiabetic activity and toxicity of Zizyphus spina-christi leaves.  J Ethnopharmacol. 2005;  101 129-138
  • 132 Nesseem D I, Michel C G, Sleem A A, Al-Alfy T S. Formulation and evaluation of antihyperglycemic leaf extracts of Zizyphus spina-christi (L.) Willd.  Pharmazie. 2009;  64 104-109
  • 133 Michel C G, Nesseem D I, Ismail M F. Anti-diabetic activity and stability study of the formulated leaf extract of Zizyphus spina-christi (L.) Willd with the influence of seasonal variation.  J Ethnopharmacol. 2011;  133 53-62
  • 134 Abdel-Wahhab M A, Omara E A, Abdel-Galil M M, Hassan N S, Nada S A, Saeed A, el-Sayed M M. Zizyphus spina-christi extract protects against aflatoxin B1-initiated hepatic carcinogenicity.  Afr J Tradit Complement Alternat Med. 2007;  4 248-256
  • 135 Amin A, Mahmoud-Ghoneim D. Zizyphus spina-christi protects against carbon tetrachloride-induced liver fibrosis in rats.  Food Chem Toxicol. 2009;  47 2111-2119
  • 136 Godini A, Kazem M, Naseri G, Badavi M. The effect of Ziziphus spina-christi leaf extract on isolated rat aorta.  JPMA. 2009;  53 537-539
  • 137 Hadizadeh I, Peivastegan B, Kolahi M. Antifungal activity of nettle (Urtica dioica L.), colocynth (Citrullus colocynthis L. Schrad), oleander (Nerium oleander L.) and konar (Ziziphus spina-christi L.) extracts on plants pathogenic fungi.  Pakistan J Biol Sci. 2009;  12 58-63
  • 138 Reher G, Reznicek G, Baumann A. Triterpenoids from Sarcopoterium spinosum and Sanguisorba minor.  Planta Med. 1991;  57 506
  • 139 Kasabri V, Afifi F U, Hamdan I. In vitro and in vivo acute antihyperglycemic effects of five selected indigenous plants from Jordan used in traditional medicine.  J Ethnopharmacol. 2011;  27 888-896
  • 140 Smirin P, Taler D, Abitbol G, Brutman-Barazani T, Kerem Z, Sampson S R, Rosenzweig T. Sarcopoterium spinosum extract as an antidiabetic agent: in vitro and in vivo study.  J Ethnopharmacol. 2010;  129 10-17
  • 141 Bashri-Sahloul R, Ammar S, Fredj R B, Saguem S, Grec S, Trotin F, Skhiri F H. Polyphenol contents and antioxidative activities of extracts from flowers of two Crataegus azarolus L. varieties.  Pakistan J Biol Sci. 2009;  12 660-668
  • 142 Ozen T, Collu Z, Korkmaz H. Antioxidant properties of Urtica pilulifera root, seed, flower and leaf extract.  J Med Food. 2010;  13 1224-1231
  • 143 Kavalali G, Tuncel H, Goksel S, Hatemi H H. Hypoglycaemic activity of Urtica pilulifera in streptozotocin-diabetic rats.  J Ethnopharmacol. 2003;  84 241-245

Prof. Dr. Fatma U. Afifi-Yazar

Department of Pharmaceutical Sciences
Faculty of Pharmacy
University of Jordan

Queen Rania Al-Abdullah Street

Amman 11942

Jordan

Phone: +96 2 65 35 50 00 ext. 23 3 01

Fax: +96 2 65 30 02 50

Email: fatueafi@ju.edu.jo

Zoom Image

Fig. 1 Biogeographic zones of Jordan.