Nuklearmedizin 2019; 58(02): 172-173
DOI: 10.1055/s-0039-1683675
Poster
Radiomics und Modelling
Georg Thieme Verlag KG Stuttgart · New York

Evaluation of a Fit Model for Time Activity Curves of Dynamic FET PET Acquisitions

C Lerche
1   Forschungszentrum Jülich GmbH, Institut für Neurowissenschaften und Medizin, Jülich
,
T Radomski
1   Forschungszentrum Jülich GmbH, Institut für Neurowissenschaften und Medizin, Jülich
,
P Lohmann
1   Forschungszentrum Jülich GmbH, Institut für Neurowissenschaften und Medizin, Jülich
,
C Brambilla
1   Forschungszentrum Jülich GmbH, Institut für Neurowissenschaften und Medizin, Jülich
,
L Caldeira
1   Forschungszentrum Jülich GmbH, Institut für Neurowissenschaften und Medizin, Jülich
,
J Scheins
1   Forschungszentrum Jülich GmbH, Institut für Neurowissenschaften und Medizin, Jülich
,
E Rota Kops
1   Forschungszentrum Jülich GmbH, Institut für Neurowissenschaften und Medizin, Jülich
,
L Tellmann
1   Forschungszentrum Jülich GmbH, Institut für Neurowissenschaften und Medizin, Jülich
,
KJ Langen
1   Forschungszentrum Jülich GmbH, Institut für Neurowissenschaften und Medizin, Jülich
,
H Herzog
1   Forschungszentrum Jülich GmbH, Institut für Neurowissenschaften und Medizin, Jülich
,
NJ Shah
1   Forschungszentrum Jülich GmbH, Institut für Neurowissenschaften und Medizin, Jülich
2   Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich
3   JARA – BRAIN – Translational Medicine, Aachen
4   Department of Neurology, RWTH Aachen University, Aachen
› Author Affiliations
Further Information

Publication History

Publication Date:
27 March 2019 (online)

 
 

    Ziel/Aim:

    Several studies have demonstrated that the shape of the time-activity-curve (TAC) of O-(2-[F-18]fluoroethyl)-L-tyrosine (FET) uptake in cerebral gliomas during the first hour p.i. depends on histological grade. Extraction of the parameters best describing the FET TACs in brain tumours is a matter of controversy. This study evaluates an explicit empirical model able to correctly describe the different TACs of FET with sufficient closeness.

    Methodik/Methods:

    The function class log(u)= log(A)+0.5 log(t)-κ √t successfully reproduces all typically observed TACs of FET, where u = u(t) is the FET TAC, A is the amplitude, and? describes the curve shape. The model was fitted to the average TACs, i.e. averaged over volume of interest and voxel-wise TACs. We evaluated the model in 36 PET data sets from low-grade (LG) and high-grade (HG) gliomas and with different dynamic framing schemes: standard scheme consisting of 16 time frames (5 × 1 min; 5 × 3 min; 6 × 5 min) and shorter schemes consisting of 4 time frames (4 × 5 min) starting at 20 min p.i. Results were compared to fitting with a linear model and diagnostic performance for glioma classification was evaluated (by ROC and LOOCV).

    Ergebnisse/Results:

    Relative fit parameter uncertainties for averaged TACs where smaller than 0.1% in all cases. The adjusted R2 values for fits with the empirical model where always larger than 0.45 and larger than 0.95 in 80% of the cases. Relative fit parameter uncertainties for voxel-wise TACs where smaller than 0.4 in 90% of all cases. Adjusted R2 values were larger than 0.7 in 50% of all cases. We observed a strong correlation between best-fit parameters from voxel-wise fits and averaged TAC fits. Diagnostic performance for glioma classification was best for the empirical model with 16 frames.

    Schlussfolgerungen/Conclusions:

    The empirical model precisely reproduces the uptake kinetics of both HG and LG gliomas in case of TAC averaged over the tumor volume and a contralateral region of normal brain tissue and allows for reliable glioma classification.


    #