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Introduction

Cytoskeleton in Human Cells
Cytoskeleton is a dynamic network within the cellular cyto-
plasmcomposedofmore than 100 constitutive and regulatory
proteins.1Themainclasses ofcytoskeletalpolymers aremicro-

tubules, representing the stiffest component, actin cytoskele-
ton, and the intermediate filaments. Microtubules and actin
filaments are polarized proteins that facilitate movement of
molecular motors such as myosin or dynein. Intermediate
filaments, such as keratin and vimentin, interact with actin
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Abstract Cytoskeleton is composed of more than 100 proteins and represents a dynamic
network of the cellular cytoplasm. Cytoskeletal functions include spatial organization
of cellular components, structural connection of the cell with external environment,
and biomechanical force generation. Cytoskeleton takes part, at different levels, in all
phases of platelet biogenesis: megakaryocyte (MK) differentiation, MK maturation,
and platelet formation. In addition, it also plays a major role in each stage of platelet
function. Inherited platelet disorders (IPDs) are a group of rare diseases featured by low
platelet count and/or impaired platelet function. Over the past decade, the investiga-
tion of platelet biomechanics has become a major and highly relevant theme of
research due to its implications at every stage of development of human life. The initial
use of diverse biophysical techniques (e.g., micropipette aspiration, atomic force and
scanning ion conductance microscopy, real-time deformability cytometry) started
unraveling biomechanical features of platelets that are expected to provide new
explanations for physiological and pathological mechanisms. Although the impact of
cytoskeletal alterations has been largely elucidated in various IPDs’ pathogenesis, the
understanding of their impact on biomechanical properties of platelets represents an
unmet need. Regarding IPDs, improving biomechanical studies seems promising for
diagnostic and prognostic implications. Potentially, these characteristics of platelets
may also be used for the prediction of bleeding risk. This review addresses the current
available methods for biophysical investigations of platelets and the possible imple-
mentations in the field of IPDs.
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cytoskeleton and microtubules forming structures that sup-
port cells to resist and respond to tensile forces or shear
stress.2–4 The three principal functions of the cytoskeleton
are (1) the spatial organization and trafficking of cellular
contents, (2) the connection of the cell with the external
environment at physical and biochemical levels, and (3)
mechanotransduction and generation of biomechanical forces
allowing the cell to move and modify its shape in response to
stimuli. Thus, cytoskeleton plays a critical role in several key
physiological and pathological processes, such as cell-shape
maintenance, cell division, cell proliferation and migration,
and tumor growth and progression. Our knowledge of cyto-
skeletal function at a molecular level is rapidly evolving,
making its components evenmore precise disease biomarkers
and possible therapeutic drug targets.2,5–7

Specific alterations in cytoskeletal elements, or proteins
connecting the cytoskeleton to the cellmembrane, are respon-
sible for diseases affecting different systems. For instance, in
hereditary spherocytosis, mutations of spectrin and ankyrin
hinder the biconcave shape maintenance of the red blood
cells.8 Besides, anomalies of the intermediatefilament nuclear
lamin A/C represent the driving alterations of some genetic
forms of dilated cardiomyopathy and muscular dystrophy.9,10

Cytoskeleton in Platelets
Regarding cytoskeletal elements and their function/dysfunc-
tion, platelets share many similarities with other human cells
but also several specificities. Cytoskeleton plays a major role
both in platelet biogenesis and platelet function.11–14 Mature
platelets derive from bone marrow megakaryocytes (MKs),
which release them in theblood streamat the end of a complex
process driven by thrombopoietin.15 Throughout their matu-
ration process, MKs undergo polyploidization by switching
from mitosis to endomitosis while cytokinesis is inhibited.
Soon after, MKs form large membrane reservoirs and eventu-
ally elongate proplatelets into the sinusoids of the vascular
niche of the bone marrow.16 Platelet formation and shaping
continues within the blood flow, passing through the interme-
diate form of “preplatelets.” Each of these processes is finely

regulated at the cytoskeletal level, particularly through the
modulation of the cleavage furrow and the tuning of the
structure of β1 tubulin.12,17 Before proplatelets are released
fromMKs, microtubules reassemble to transport granules and
organelles fromtheMKcellbody totheforthcomingproplatelet
tips.18 Not surprisingly, the cytoskeletal machinery also con-
tributes to the final platelet dimension.19,20

Although platelets participate in various processes be-
yond hemostasis, such as inflammation, innate immune
response against bacterial pathogens, and interaction with
tumor cells during cancermetastasis, their principal role is to
safeguard vascular integrity.11,21–26 After adhesion to the
damaged endothelium, integrin-dependent activation indu-
ces morphologic changes in platelets, which turn their
original discoid shape to round to the peculiar “fried-egg”
conformation.27,28 This process results in stronger platelet–
extracellular matrix (ECM) adhesion, followed by platelet
aggregation and eventually platelet contraction. The cyto-
skeletal framework takes part in all the aforementioned
steps, at different levels (►Fig. 1).

Immediately upon exposure of subendothelial ECM pro-
teins in a damaged vessel, low-affinity binding between
platelet GP Ib-IX-V complex and von Willebrand Factor is
established under shear. The consequential activation of this
receptor complex, alongside that of G protein-coupled recep-
tors, promotes a cytoskeleton-dependent rapid morphologic
and functional transition of platelet integrins. Particularly GP
IIb/IIIa, the most abundant platelet integrin, changes the
conformation of its extracellular β3 domain, thus increasing
the affinity toward fibrinogen, fibronectin, and von Wille-
brand Factor. As a result, a stronger platelet adhesion to
extracellular ligands via integrins is achieved.29–33

Cytoskeleton is at the crossroads of this process as it
directly supports the adhesion-mediated morphological
changes of integrins; at the same time, it senses the activated
state of integrins and reacts by remodeling its structure to
form filopodia and pseudopodia and initiates platelet con-
traction (►Fig. 2). The structural connectors between actin
cytoskeleton and intracellular portions of integrins (e.g., β

Fig. 1 Schematic representation of subcortical cytoskeletal framework in platelets. The main structural components of the platelet
cytoskeleton (e.g., actin filaments, microtubules, a motor protein such as kinesin, an actin-binding protein such as filamin) are depicted.
Moreover, the structural link between cytoskeletal elements and transmembrane receptors (e.g., GP Ib-IX-V complex, G-protein-coupled
receptors, GPCRs, FcγRIIa, and integrin GP IIb/IIIa) is schematically illustrated.
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tail of GP IIb/IIIa) are diverse proteins such as filamin,
myosin, and actinin-α-1.14,34

Moreover, upon platelet activation, cytoskeleton microtu-
bules disassemble, which maintains the discoid platelet shape
in nonactivated platelets, and actin filaments assemble.35–37

Actin–myosin interactions, supported by the microtubule

architecture, drive platelet centripetal contraction and ensure
the maintenance of platelet structure during spreading.38–40

Actin cytoskeleton also regulates the centralization of platelet
organelles and the secretion ofα- anddensegranules.41 Finally,
cytoskeleton-generatedcontractile forces are crucial during the
late hemostatic phase of clot contraction.39,42

Fig. 2 Cytoskeletal remodeling upon platelet activation and spreading. (A, B) Rapidmorphological changes occur in platelets from the resting to
the activated state involving adhesion and spreading on a planar adhesive substrate, visualized by scanning electron microscopy. (C–F)
Remodeling of marginal tubulin band (green) and actin (magenta) is assessed by immunofluorescence microscopy (C, D) and transmission
electron microscopy after removing of platelet membrane (E, F).

Hämostaseologie Vol. 40 No. 3/2020

Role of Platelet Cytoskeleton in Platelet Biomechanics Zaninetti et al. 339

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Techniques for Biophysical Assessment of Platelet
Biomechanics
Biomechanical properties of platelets, which are mainly
contributed by the cytoskeleton, are increasingly recognized
as highly relevant for platelet function.34,43 Alterations in
biomechanical properties resulting in changes in contractil-
ity during adhesion-mediated spreading and intrinsic visco-
elastic properties governing platelet deformation can
potentially serve as label-free diagnostic markers of a patho-
physiological state of blood platelets.44,45 A wide variety of
biophysical techniques are currently used to assess cytoskel-
eton-dependent contractile force generation at piconewton
(pN) and biomechanical properties of platelets at nanometer
(nm) regimes.46–49 In this review we are focusing on micro-
pipette aspiration, atomic force microscopy (AFM), scanning
ion conductance microscopy (SICM), and real-time deform-
ability cytometry (RT-DC) that offer varying degree of sensi-
tivities and throughputs to investigate platelet biomechanics
up to single platelets (►Table 1).

Micropipette Aspiration
Micropipette aspiration is one of the earliest biophysical
approaches that were adopted for characterization of bio-
mechanical properties of single platelets. It relies on the
quantification of membrane deformation exerted by suction
pressure applied through a borosilicate glass micropipette
while the induced surface deformation is continuously

recorded in real-time by video microscopy.50 In the field of
platelets, White et al performed some of the earliest known
biophysical measurements on single-platelet biomechanics
and assessed the effect of microtubules and actin filaments
on platelet deformation.51 From the perspective of clinical
relevance, investigation of platelets from patients affected
with Bernard–Soulier syndrome (BSS) provided interesting
insights into the relations between platelet sizes and their
capability to undergo deformation.52

In addition, micropipette aspiration has been applied to
evaluate the biomechanical changes induced by platelet
agonists such as thrombin and ADP as well as antiplatelet
drugs such as acetylsalicylic acid.53,54

Atomic Force Microscopy
AFM is capable of providing a three-dimensional view of
samples at nanometer (nm) scale and to investigate inter-
molecular and/or intercellular forces in the region of sub-pN.
The main structural component is a long silicon nitride
cantilever with a sharp tip at one end that is scanned over
the sample on the x-, y-, and z-axis. It can be used both to scan
the sample providing information about the size according to
cantilever deflection, and to test its rigidity by applying
force.55 However, application of AFM to investigate platelets
is a time-consuming and low-throughput technique and
requires platelet immobilization. Despite these limitations,
major findings on platelet biomechanics have been

Table 1 Comparison of biophysical techniques for assessment of platelet biomechanics

Technique Working principle Main potential applications
(in platelet field)

Major advantages Limitations

Micropipette
aspiration

Evaluation of membrane de-
formation exerted by suction
pressure through a borosili-
cate glass micropipette; the
induced surface deformation
is quantified by video
microscopy.

To quantify viscoelastic
properties of single platelets
at baseline and/or induced by
soluble substances (e.g.,
platelet agonists or cyto-
skeleton-destabilizing drugs)

• Label-free
• Possibility of investiga-

tion at single-cell level

• Low-throughput
• Technically highly de-

manding
• Time consuming
• Requires platelet

immobilization

AFM/colloidal
probe
spectroscopy

Scanning of the sample
along three axes by a silicon
nitride cantilever that pro-
vides information about size
and rigidity according to
cantilever deflection and/or
pressing force application.

• To evaluate platelet
elasticity at baseline and
upon adhesion to di-
verse substrates

• To characterize bio-
mechanical properties
of platelet aggregates
on various adhesive ma-
trixes and under differ-
ent shear-stress
conditions

• Label-free
• Capacity of providing a

3D view of samples at
nanometer scale

• Possibility of investiga-
tion of forces at inter-
cellular and
intermolecular levels in
the region of sub-pico-
newton

• Commercially available

• Low throughput
• Technically highly de-

manding
• Time consuming
• Requires platelet

immobilization

SICM Analysis of the sample by
assessing ionic current per-
turbation induced by the
specimen’s features in re-
sponse to hydrostatic pres-
sure application.

• To assess elasticity var-
iations upon platelet
spreading

• To correlate cytoskeletal
remodeling with stiff-
ness variations upon
platelet activation

• Label-free
• High resolution
• Commercially available

• Low throughput
• Technically demanding
• Time consuming
• Requires platelet

immobilization

RT-DC/RT-FDC Combination of flow-
cytometry principles with
cell mechano-phenotyping in
response to hydrodynamic
shear stress.

To evaluate single-platelet
deformability, stiffness, and
additional quantitative
parameters related to plate-
let morphometrics

• Label-free
• High throughput
• High resolution
• Platelets analysis in

whole blood without
prior separation

• Commercially available

• Limited to cells in
suspension

Abbreviations: AFM, atomic force microscopy; SICM, scanning ion conductance microscopy.
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demonstrated by AFM. Single-platelet elasticity module and
areas at higher (e.g., edges) and lower (i.e., granulomere)
stiffness upon platelet adhesion have been established.56 In
addition, diverse adhesion forces produced by platelets
adhering to different substrates (e.g., type 1 collagen, other
platelets) according to their level of activation have been
measured.57

Currently, our laboratory is using a modified version of
AFM called colloidal probe spectroscopy combined with
confocal laser scanning microscopy. We have implemented
this approach to investigate the biomechanical properties
such as stiffness in addition to activation status of platelet
aggregates generated under shear on different adhesive
matrices (►Fig. 3). Although colloidal probe spectroscopy
is similar to AFM in its basic functionality, instead of a sharp
tip at the terminal end of the cantilever a micrometer-sized
bead is immobilized (►Fig. 3A). In a typical colloidal probe
experiment, the tip of the colloidal probe (i.e., microbead) is
pushed gently against platelet aggregates by applying force
in the order of a few nano newtons perpendicular to the
horizontal plane of the platelet aggregate (►Fig. 3B). This
results in deflection of the cantilever, which is representative
of the resistive force of the platelet aggregates. This approach
enables us to systematically characterize biomechanical
properties of platelet aggregates formed on a wide array of
adhesive matrixes, under different shear-stress conditions
emulating vascular flow dynamics, its microenvironment,
and local architecture (►Fig. 3C–E). Specifically, the contri-
bution of nano-/microstructure of the exposed ECM and
geometrical constraints affecting hemodynamics such as
stenosis and blood vessel bifurcations on biomechanical
properties of platelet aggregates can be assessed by this
technique.We envision this approachwill also be suitable for
the assessment of effects of antiplatelet drugs, fibrinolytic
and antifibrinolytic drugs on platelet function offering a
mechanistic insight into biophysical parameters involved
in these processes.

Scanning Ion Conductance Microscopy
As a complimentary approach to AFM, SICM represents a
noninvasive, label-free high-resolutionmethodology for bio-
mechanical measurements. SICM analyzes the sample by
detecting ionic current perturbation induced by the charac-
teristics of the specimen in response to hydrostatic pressure
application.58,59 With this tool, relevant insights into elastic-
ity variation occurring during platelet spreading have been
investigated.60Moreover, the relationship between cytoskel-
eton remodeling and platelet stiffness upon thrombin-medi-
ated platelet activation, or inhibition of actin polymerization,
has been elucidated.61

Real-Time Deformability Cytometry
Most of the above-described biophysical methods used for
biomechanical characterization of platelets are technically
demanding and offer low throughput.62 To specifically ad-
dress these issues, our laboratory has adopted a relatively
easy-to-perform new technology called real-time deform-
ability cytometry (RT-DC).63 RT-DC combines the technique

of flow cytometry with label-free mechano-phenotyping
(i.e., stiffness contributed by cytoskeleton) of cells using
microfluidic laboratory-on-chip that is capable of reaching
very high throughput of >1,000 single cells/second. In addi-
tion to determination of cell stiffness, RT-DC provides addi-
tional quantitative aspects related to cell size and
morphometric parameters. This facilitates typifying a mix-
ture of cells from peripheral blood by their size and simulta-
neously mechano-phenotyping these cells without prior
separation, enrichment, and labeling procedures.64,65 To
assess the effect of platelet cytoskeletal defects, recently
Scheller et al using RT-DC have elegantly shown that platelets
from mice lacking Coactosin-like 1 (Cotl1) actin-binding
protein were biomechanically softer and smaller in size in
comparison to their wild-type counterparts.45 In a latest
technical development that is termed real-time 1D-imaging
fluorescence and deformability cytometry (RT-FDC), it is
possible to combine RT-DCmeasurements with fluorescence
detection.66 We have applied RT-FDC to assess platelet
cytoskeletal-dependent biomechanical and size character-
istics combined with the platelet activation marker CD62P
(P-selectin) (►Fig. 4A, B). Using RT-FDC, we observed plate-
lets upon stimulation with thrombin receptor activator
peptide 6 (TRAP-6) become stiffer, undergo size reduction,
and show CD62P expression. Surprisingly, platelets treated
with cytochalasin D to block actin polymerization remained
softer without undergoing significant size reduction while
showing CD62P expression (►Fig. 4C, D).

Cytoskeleton Alterations in Inherited Platelet Disorders
Inherited platelet disorders (IPDs) are a group of rare dis-
eases characterized by reduced platelet count and/or im-
paired platelet function causing variable bleeding tendency
and, sometimes, other nonhematologicalfindings that can be
congenital or acquired.67 In regard to pathogenesis, most of
the authors have categorized IPDs according to the impaired
phase of platelet biogenesis, namely MK differentiation, MK
maturation, or platelet formation.68,69 The latter, which
consists of proplatelet elongation by MKs and release of
mature platelets in the flowing blood, can be peculiarly
affected by mutations occurring specifically in cytoskeleton
proteins or integrins involved in the connection of cytoskel-
eton and platelet membrane. The implication of cytoskeleton
in the pathogenesis of IPDs has been more comprehensively
addressed by some other dedicated reviews over the last few
years.70–72

In MYH9-related thrombocytopenia (MYH9-RD), one of
the less rare forms of IPD, mutations affecting nonmuscular
myosin IIA impair proplatelet formation leading to a delivery
of a low number of enlarged platelets. In normal conditions,
the interaction between MKs and bone-marrow ECM regu-
lates the timing of platelet formation. Particularly, the bind-
ing of MKs with type 1 collagen, via α2β1 integrin, leads to
activation of Rho kinase ROCK that phosphorylates the
regulatory chains of nonmuscular myosin IIA, thus prevent-
ing platelet release as long as MKs have reached the vascular
niche of the bonemarrow. In fact,MYH9-RDMKs also display
premature and ectopic platelet release.73–75 The mutated
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Fig. 3 Colloidal probe spectroscopy for biomechanical assessment of platelet aggregates. (A) Pseudocolored scanning electron micrograph
of silicon nitride cantilever with a gold-coated microbead glued at its terminalend used for colloidal probe spectroscopy. (B) Similar to AFM,
colloidal probe spectroscopy combines a sensitive octapoled piezoelectric transducer for x–y scanning, and an optical lever detection system for
the analysis of the third dimension (the z-axis correlates to height movement in the piezo). The cantilever deflection is registered onto a quadrant
photodiode from the reflected laser beam that provides a quantitative signal for the applied force as the colloidal probe is pushed against platelet
aggregates, resulting in deflection of the cantilever according to the resistive force, F. According to this signal, F can be calculated based on the
Hooke’s law F ¼�k·d, where k is the calibrated spring constant of the cantilever. (C) Different imaging modalities in an experimental setup using
a combination of AFM and confocal laser scanning confocal microscopy. This allows identifying aggregates based on transmission, the
fluorescence signal from activation status of platelets based on CD62P expression, and an overlay of the channels, allowing for an additional layer
of useful information in combination with colloidal force spectroscopy. The green outline represents the cantilever above platelet aggregates
formed under shear flow on a collagen substrate. (D) Representative 2D map of a platelet aggregate assessed by colloidal probe spectroscopy
showing the map of Young’s modulus (kPa) (i.e., biomechanical properties representing stiffness variations, see the look-up table on right) and
(E) its distribution as a histogram. AFM, atomic force microscopy.
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nonmuscular myosin IIA forms aggregates of diverse number
and dimension in the cytoplasm of neutrophils, which is
already used as diagnostic criterion.76

Wiskott–Aldrich syndrome (WAS) and X-linked throm-
bocytopenia, two IPDs featured by thrombocytopenia and
mild-to-severe immunodeficiency, are caused by alterations
in the WAS gene. The corresponding protein WAS regulates
actin cytoskeleton. Even in this case, patients’ MKs show
ectopic release of platelets, which also present a small size
and a reduced life span.77,78 The β1 tubulin rings in WAS are
much more rigid and stretched—or present in eight-shaped
conformations.79

Two others IPDs due to alterations in cytoskeletal compo-
nents are ACTN1-related thrombocytopenia (ACTN1-RT) and
FLNA-related thrombocytopenia (FLNA-RT).80,81 The mutat-

ed proteins α 1 actinin and filamin A, respectively, interact
with actin and take part in diverse functions of cytoskeleton
as the maintenance of stability properties and anchoring to
the membrane. While no typical morphological changes for
ACTN1-RT have been identified, in FLNA-RT, affected subjects
can be detected by double labeling against filamin A and β1
tubulin; the former protein can be undetectable at all or,
sometimes, show diffused distribution instead of a thick
peripheral ring.81

Mutations in another key element of microtubule archi-
tecture, β1 tubulin, cause TUBB1-related thrombocytopenia
(TUBB1-RT). Also in this form, features of impaired propla-
telet processing and platelet shedding have been reported.82

In TUBB1-RT β1 tubulin, normally forming a peripheral ring
structure, is disturbed.83 These patients display enlarged

Fig. 4 Real-time 1D-imaging fluorescence and deformability cytometry (RT-FDC) as a biophysical tool for assessing single platelet
biomechanics. (A) Schematic of RT-FDC setup showing a microfluidic chip connected to flow units with dedicated inlets for sheath fluid and for
cells/platelets, which combine into to a channel with narrow constriction zone where cell/platelets undergo deformation as a result of
hydrodynamic compression brought about by sheath fluid. A high-powered light emitting diode (LED) illuminates platelets flowing through the
narrow constriction zone. Images are registered by a scientific complementary metal–oxide–semiconductor (sCMOS) camera working at high
frame rates (�2,000 images/s) that is synchronized with the frequency of illumination time. This combined together with dedicated optical
setup, excitation lasers of different wave lengths, and avalanche photodiodes for fluorescence detection working in sync with camera allows for
simultaneous mechano-phenotyping and detection of activation markers of >1,000 platelets per second. (B) Platelet deformation (i.e.,
cytoskeleton-dependent biomechanical properties governing stiffness) is determined on the fly in real time by computational image processing
algorithm that takes into account the area and perimeter of the deformed platelet as it passes through the region of interest. (C, D)
Representative results of a typical RT-FDC measurement showing unstimulated platelets deform more (i.e., softer) while those treated with
agonist (TRAP-6) deform less (i.e., stiffer) while expressing activationmarker CD62P. Whereas, platelets preincubated with cytochalasin D lead to
increased deformation (i.e., softer) and in combination with TRAP-6 co-stimulation platelets remain softer while still being able to undergo
activation. Data show density maps of deformation against area (μm2) from n� 1,500 individual platelets from a single experiment.
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platelets in which β1 tubulin resembles the appearance of a
ball of yarn (►Fig. 5). Finally, in macro-thrombocytopenia
due to a gain-of-function variant in DIAPH1, α-tubulin rings
are also much more rigid and maintain their ring formwhen
the blood is cooled down to 4°C, a condition under which
normally microtubules disassemble.77

Beyond binding to their specific extracellular ligands (e.g.,
vonWillebrand Factor and fibrinogen), platelet receptor com-
plex GP Ib-IX-V and integrin GP IIb/IIIa also stabilize the
interaction between cytoskeleton and membrane. Alterations
of this dynamic equilibrium canperturb proplatelet formation
leading to ectopic and inefficient platelet production.69 For
instance, in regard to monoallelic BSS, the heterozygous
c.515C> T transition in GPIBA gene (i.e., Bolzano mutation)
drives a dominant form of macro-thrombocytopenia with
defective proplatelet formation because of impaired cross-
talking between plasma membrane and platelet cytoskeleton
via the intracellular chain of GPIbα.84 Conversely, gain-of-
function mutations in ITGA2B or ITGB3 (coding GPIIb and
GPIIIa) cause a dominant variant of Glanzmann thrombasthe-
nia with mild thrombocytopenia, large platelets, and consti-
tutive activation of GP IIb/IIIa.85 The impaired function of this
integrin specifically triggers cytoskeleton remodeling and, in
turn, alterations in the latest phase of platelet biogenesis.

Although the role of cytoskeleton has been largely eluci-
dated in normal megakaryopoiesis and in the pathogenesis
of some IPDs, much less is known about the possible impact
of the reported cytoskeletal alterations on the biomechanical
properties of platelets. Understanding the associated alter-
ations of biomechanical consequences in IPDs represents an
unmet need. It might be that changes in the biomechanical
properties caused by IPDs could explain, for example, the
variability of hemorrhagic diathesis observed in patients
sharing similar levels of platelet counts and functional
parameters as assessed by traditional tools. Moreover, since
cytoskeletal elements represent possible pharmaceutical
targets, unraveling biomechanical alteration of single or
group of IPDs can lay the ground for the development of
new therapeutic options to prevent and contrast bleeding
symptoms in these patients.67,86

Time Capsule

Key Advantages to Be Expected in 2050

• Super-resolution immunofluorescence microscopy will
enable visualization of finer details of platelet cytoskeletal
defects below diffraction limits, thus allowing a nano-
scopic and mechanistic view of platelet function.

• Wider application of biophysical methods such as AFM
and RT-DC will broaden our knowledge about underlying
biomechanical principles affecting platelet cytoskeleton
and their impact on platelet function.

• In the field of IPDs, the implementation of biomechanical
investigations is anticipated to clarify pathogenic mecha-
nisms of a relevant group of disorders, and to pave the way
for a major role in diagnostic work-up and management.

• From a clinical point of view, the use of biomechanical
assessment as point-of-care testing is expected to repre-
sent a key modality to stratify patients for bleeding (and
thrombotic) risk, thus allowing tailored therapy and
monitoring approaches. RT-DC, for the first time, allows
such an approachwith a high enough throughput suitable
to clinical needs.
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