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ZUSAMMENFASSUNG

Ziel Ziel dieser Studie war es, eine vollautomatische und zu-

verlässige Lebervolumetrie in der kontrastverstärkten MRT

basierend auf 3D-Deep-Learning-Algorithmen zu entwickeln.

Material und Methoden Datensätze von Gd-EOB-DTPA-ver-

stärkten Leber-MR-Bildern von 100 Patienten wurden von ei-

nem in der hepatobiliären Bildgebung erfahrenen Radiologen

manuell segmentiert und als Grundwahrheitssegmentierung

angenommen. Die Datensätze wurden mittels einem Kreuz-

validierungsverfahren (k = 4) in Trainings- und Validierungsda-

tensatz eingeteilt und einem neuronalen Netzwerk zur auto-

matischen Bildsegmentierung zugeführt. Zusätzlich wurde

ein Teil der Daten (n = 9) von einem zweiten Radiologen zur

Bestimmung einer Interobserver Variability segmentiert.

Ergebnisse Die manuelle Segmentierung erreichte einen

Inter-Klassen-Korrelationskoeffizienten (ICC) von 0,973, einen

Sørensen-Dice-Index von 95,2 ± 2,8 % und eine Überlappung

von 90,9 ± 4,9 %. Das neuronale Netzwerk erreichte einen ICC

von 0,98, einen Sørensen-Dice-Index von 96 ± 1,9 % und eine

Überlappung von 92 ± 3,5 % sowie eine Hausdorff-Distanz

von 24,9 ± 14,7mm.

Schlussfolgerung Diese Studie präsentiert ein vollautoma-

tisches Lebervolumetrie-Schema für MR-Bildgebung. Das neu-

ronale Netzwerk erreichte eine kompetitive Übereinstimmung

mit der Grundwahrheit bezüglich ICC, Sørensen-Dice-Index

und Überlappung im Vergleich zu einer manuellen Segmen-

tierung. Das neuronale Netzwerk erledigte die Aufgabe in nur

60 Sekunden.

Kernaussagen:
▪ Das vorgeschlagene neuronale Netzwerk hilft bei der gen-

auen Segmentierung der Leber und liefert detaillierte In-

formationen über die patientenspezifische Anatomie und

das Volumen der Leber.

▪ Mithilfe eines neuronalen Netzes kann eine vollautoma-

tische Segmentierung der Leber in MRT-Scans in Sekun-

denschnelle durchgeführt werden.

▪ Ein vollautomatisches Segmentierungsschema macht die

Lebersegmentierung in der MRT zu einem wertvollen In-

strument für die Behandlungsplanung.

ABSTRACT

Purpose To create a fully automated, reliable, and fast seg-

mentation tool for Gd-EOB-DTPA-enhanced MRI scans using

deep learning.

Materials and Methods Datasets of Gd-EOB-DTPA-en-

hanced liver MR images of 100 patients were assembled.

Ground truth segmentation of the hepatobiliary phase images

Abdomen
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was performedmanually. Automatic image segmentation was

achieved with a deep convolutional neural network.

Results Our neural network achieves an intraclass correlation

coefficient (ICC) of 0.987, a Sørensen–Dice coefficient of 96.7 ±

1.9 % (mean ± std), an overlap of 92 ±3.5%, and a Hausdorff dis-

tance of 24.9 ± 14.7mm compared with two expert readers who

corresponded to an ICC of 0.973, a Sørensen–Dice coefficient of

95.2 ± 2.8 %, and an overlap of 90.9 ± 4.9 %. A second human

reader achieved a Sørensen–Dice coefficient of 95% on a subset

of the test set.

Conclusion Our study introduces a fully automated liver vo-

lumetry scheme for Gd-EOB-DTPA-enhanced MR imaging.

The neural network achieves competitive concordance with

the ground truth regarding ICC, Sørensen–Dice, and overlap

compared with manual segmentation. The neural network

performs the task in just 60 seconds.

Key Points:
▪ The proposed neural network helps to segment the liver

accurately, providing detailed information about patient-

specific liver anatomy and volume.

▪ With the help of a deep learning-based neural network,

fully automatic segmentation of the liver on MRI scans can

be performed in seconds.

▪ A fully automatic segmentation scheme makes liver seg-

mentation on MRI a valuable tool for treatment planning.

Citation Format
▪ Winther H, Hundt C, Ringe KI et al. A 3D Deep Neural Net-

work for Liver Volumetry in 3T Contrast-Enhanced MRI.

Fortschr Röntgenstr 2021; 193: 305–314

Introduction

Assessment of hepatic functional reserve is crucial for the predic-
tion of prognosis and clinical management of patients with chron-
ic liver disease and patients undergoing liver surgery [1, 2]. Preo-
perative liver volumetry is essential for patient selection [3].

Liver segmentation remains challenging for computer-based
approaches due to high variability in liver size and shape, the low
contrast between adjacent tissues or organs, and the presence of
pathologies, e. g., tumor or cirrhosis [4]. Current methods for liver
segmentation are optimized for CT imaging. In most cases, seg-
mentation is performed by a radiologist delineating a free-hand
contour of the liver outline. This approach is time-consuming
and might overestimate the liver volume, as the calculation
includes all structures within the contours of the segmentation,
e. g., vessels or liver tumors. Semi- and fully automated systems
have been introduced to support liver volume estimation in CT
scans [5–12], although liver segmentation on magnetic reso-
nance imaging (MRI) remains mostly unexplored. However, MR
imaging has been increasingly used for liver resection and trans-
plantation planning, leading to demands for developing compu-
terized MRI liver volumetry approaches [13].

Huynh et al. [14] proposed a fully automated scheme for liver
segmentation based on watershed transformation in combination
with active contouring on scanners. The authors determined an
intraclass correlation coefficient of 0.94 with an average execu-
tion time of 8.4min per case [14]. In contrast, we analyzed con-
trast-enhanced images with Gd-EOB-DTPA, a liver-specific con-
trast agent, while Huynh et al. used a non-liver-specific contrast
agent.

Gd-EOB-DTPA is a liver-specific contrast agent. Its biochemical
properties allow general assessment of tissue perfusion in the vas-
cular phase in addition to its specific accumulation in hepatocytes
in the late phase (hepatobiliary phase) after approximately 15–
20 minutes [15–22]. Gadolinium uptake shortens the spin-lattice
relaxation time in the corresponding tissue, which leads to in-
creased signal intensity (SI) on T1-weighted images. Typically,

segmentation quality is heavily reliant on the contrast of the SI
distribution, and thus, using Gd-EOB-DTPA-enhanced MRI is ex-
pected to boost segmentation performance [16, 18, 22, 23].

This study aims to create a fully automated, reliable, and fast
segmentation tool for Gd-EOB-DTPA-enhanced MRI scans ac-
quired using 3 T scanners.

Materials and Methods

Patients

The Institutional Review Board approved this retrospective study
and written informed consent was obtained from all patients be-
fore undergoing MRI examination. 100 Gd-EOB-DTPA-enhanced
MRI liver scans were selected randomly from the clinical routine.
The patients underwent liver MRI as a complementary examina-
tion due to the presence of unknown liver lesions seen in compu-
ted tomography (CT) or ultrasound or as a control examination
after treatment of a focal malignant liver lesion. None of the re-
cruited patients had any contraindications for MRI examination
(e. g., claustrophobia and incompatible metallic implants), con-
traindications for the administration of Gd-EOB-DTPA (e. g., renal
failure) or known previous reactions to liver-specific MRI contrast
agents.

Imaging

Imaging was performed using a clinical whole-body system (Mag-
netom Skyra, Siemens Healthineers) in combination with two
body-spine array coil elements (an 18-channel body matrix coil
and a 32-channel spine matrix coil) for signal reception.

The following parameters were used for image acquisition: a
T1-weighted volume-interpolated breath-hold examination
(VIBE) sequence with fat suppression (repetition time (TR):
3.09 ms; echo time (TE): 1.16 ms; flip angle: 9; parallel imaging
factor: 2; slices: 64; reconstructed voxel size: 1.3 × 1.3 × 3.0mm3;
measured voxel size: 1.7 × 1.3 × 4.5mm3; acquisition time: 14 s),
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▶ Fig. 1 Four-fold cross-validation. The 100 cases are divided into four equally sized portions. Subsequently, three of the four portions are used for
training, and one for validation. In a four-fold cross-validation scheme, there are four possible ways to split the data into training and validation sets.
Each validation set is composed of mutually exclusive cases. Quality measures are determined for each of the four possible splits, each containing
75 training and 25 validation cases.

▶ Abb.1 Vierfache Kreuzvalidierung. Die 100 Fälle wurden in 4 gleich große Teile aufgeteilt. Anschließend wurden jeweils 3 der 4 Teile für das
Training und einer für die Validierung verwendet. In einem 4-fachen Kreuzvalidierungsschema gibt es 4 Möglichkeiten, die Daten in Trainings- und
Validierungssätze aufzuteilen. Jeder Validierungssatz besteht aus sich gegenseitig ausschließenden Fällen. Für jede der 4 möglichen Aufteilungen
mit jeweils 75 Trainings- und 25 Validierungsfällen wurde die Auswertung durchgeführt.

▶ Fig. 2 Topology of the neural network. The figure represents the topology of the neural network. Each blue box represents a multichannel
feature map. The size and number of channels are denoted in the upper and left corners. Color-coded arrows illustrate the different operations.

▶ Abb. 2 Topologie des neuronalen Netzes. Die Abbildung stellt die Topologie des neuronalen Netzes dar. Jede blaue Box stellt eine Mehrkanal-Ausgabe
dar. Die Größe und Anzahl der Kanäle sind in der oberen und linken Ecke angegeben. Farbkodierte Pfeile veranschaulichen die verschiedenen Operationen.
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covering the entire liver, acquired during one breath-hold in the
hepatobiliary phase (20 minutes after contrast injection).

All patients received a Gd-EOB-DTPA (Primovist, Eovist; Bayer
Schering Pharma AG, Berlin, Germany) dose that was adapted to
their respective body weights (0.025mmol/kg). The hepatocyte-
specific contrast agent Gd-EOB-DTPA was administered via bolus
injection with a flow rate of 1ml/s and flushed with 20ml of a
0.9 % saline solution.

Image Analysis

The ground truth segmentation of the corresponding MR images
in the hepatobiliary phase was performed by a senior physician
(5 years of experience) for all 100 cases according to the current
gold standard of manual liver segmentation. Liver lesions were
excluded from volumetry. This process was supported by a semi-
automated region growing algorithm featuring manual edge
correction as implemented by the open-source software Osirix
(version 7.5) [24].

Furthermore, 9 of the training images were segmented by a
second reader (5 years of experience) to estimate the inter-
expert/inter-program agreement in terms of the Dice index, over-
lap, and intraclass correlation coefficient (ICC) of the liver volume.
This reflects the typical use case of liver segmentation by different
experts using different software suites. Furthermore, this avoids
confounding issues regarding semiautomatic segmentation algo-
rithms, as the second segmentation was performed using a differ-
ent method, based on active contour (also known as “SNAKE”)
with manual edge correction, as implemented by itk-SNAP (ver-
sion 3.5) [25].

Dataset

The segmentation quality was determined using a four-fold cross-
validation protocol, as depicted in ▶ Fig. 1. This method offers the
advantage of using the complete dataset for validation. This al-
lows for a smaller dataset in total and, in turn, less manual and
time-consuming image segmentation.

Network Topology (3D)

The neural network is a derivative of 3D U-Net [26]. The architec-
ture consists of a downsampling cascade of layers for feature
extraction and subsequent symmetric upsampling cascade that
enables precise localization. In contrast to the original implemen-
tation, we apply the lessons learned from our previous study [27]
and substitute the rectified linear unit (ReLu) activation function
with a parametric rectified linear unit (PReLu). Grayscale images
with a size of 96 × 96 × 96 are fed to the input layer and subse-
quently downsampled using 3 × 3 × 3 convolutions with striding
of 2 × 2 × 2. Upsampling is performed by 3 × 3 × 3 convolution
after bilinear interpolation to double resolution. The input layer
operates on a resolution of 1.5 × 1.5 × 1.5mm. An ensemble strat-
egy with an overlap of 0.5 is used to infer the total volume. A
Gaussian distribution is used to emphasize the central field of
view portions of the prediction in regard to the outer edges. The
neural network topology of this study is depicted in ▶ Fig. 2.

▶ Fig. 3 Visualization of the inter-reader/inter-program variance.
The upper panel shows a basic correlation plot where the abscissa
(x-axis) corresponds to the liver volume segmented by the first
reader, and the ordinate (y-axis) corresponds to the liver volume
segmented by the second reader. Spearman’s rank correlation
coefficient (rho), mean error (ME) and mean absolute percentage
error (MAPE) were calculated for the inter-reader/inter-program
analysis. The lower panel shows the associated Bland-Altman plot
of the liver volumes.

▶ Abb.3 Visualisierung der Interreader/Interprogramm-Varianz.
Das obere Panel zeigt einen Korrelationsplot, bei dem die Abszisse
(x-Achse) dem vom ersten Auswerter segmentierten Lebervolumen
und die Ordinate (y-Achse) dem vom zweiten Auswerter segmen-
tierten Lebervolumen entspricht. Spearmans Korrelationskoeffizi-
ent (rho), mittlerer Fehler (ME) und mittlerer absoluter prozentua-
ler Fehler (MAPE) wurden für die Interreader/Interprogramm-
Analyse berechnet. Das untere Panel zeigt den dazugehörigen
Bland-Altman-Plot der Lebervolumina.
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Network Training

The objective of the neural network during training is to minimize
the weak binary cross-entropy between predicted and ground
truth segmentation. The weights are initialized with random val-
ues and sampled from a uniform distribution without scaling var-
iance (uniform scaling), as proposed by [28]. The adaptive mo-
ment estimation (ADAM) algorithm is used for stochastic
optimization [29]. The initial learning rate of 10–3 was gradually
reduced to 10–6. Extensive nonlinear image augmentation was
performed during training, as described in [27].

In our experiments, we use a six-core Intel i7-5930K CPU @
3.50 GHz with 32 GB of RAM and a Maxwell-based NVIDIA
GeForce GTX TITAN X (GM200) accelerator board with 12 GB
video RAM.

Statistical Analysis

Statistical analysis was performed with Python 2.7 and R 3.2 [30].
Statistical measures are reported in the format μ ± σ, where μ is
the ensemble mean, and σ is the standard deviation (SD) in per-
cent. The ICC, Sørensen–Dice coefficient (Dice), and overlap
were calculated between the two expert readers and between hu-

man and machine. Overlap |A∩B|/|AB| is defined as the quotient
of the intersection volume of both segmentations A, B and the
volume of their unification. Note that A corresponds to the predic-
ted segmentation, and B corresponds to the ground truth seg-
mentation in our experiments.

Results

Interreader/Interprogram Variance

The inter-reader/inter-program correlation is depicted in ▶ Fig. 3.
The two expert readers account for an ICC of 0.973, a Dice index
of 95.2 ± 2.8 %, an overlap of 90.9 ± 4.9 %, with a mean absolute
volume difference of 187 ± 200ml (6.4 ± 7.5 % relative volume)
and a mean absolute percentage error (MAPE) of 7.1 ± 6.9 %.

Automated Liver Segmentation

The neural network achieves an ICC of 0.987, a Dice coefficient
of 96.0 ± 1.9 %, and an overlap of 90.0 ± 3.6 %, as depicted in
▶ Table 1. Comparing the volumes to the manual segmentation,
the proposed method achieved a mean absolute difference of

▶ Table 1 Comparative studies. Comparison of our results to previous work. The table depicts overlap metrics, such as overlap, Sørensen–Dice
coefficient (Dice), and Hausdorff distance (dH), and the intraclass correlation coefficient (ICC). The best results in the fully automated bracket are
denoted in bold.

▶ Tab. 1 Vergleichende Studien. Vergleich unserer Ergebnisse mit früheren Arbeiten. Die Tabelle zeigt Überlappungsmetriken wie Überlappung,
Sørensen–Dice Koeffizient (Dice) und Hausdorff-Distanz (dH) sowie den Intraklassen-Korrelationskoeffizienten (ICC). Die besten Ergebnisse in der
vollautomatischen Gruppe sind fettgedruckt.

method n overlap (%) dice (%) ICC dH

manual

▪ inter-reader 9 90.9 ± 4.9 95.2 ± 2.8 0.973 31.6 ± 5.9

Semiautomated

▪ Chartrand et al. [40] 21 89.3 ± 2.9 n/a n/a n/a

▪ Chartrand et al. [36] 20 92.4 ± 1.4 n/a n/a n/a

fully automated

▪ Chen et al. [46] n/a n/a ≈ 80 n/a n/a

▪ Ruskó and Bekes [47] 8 88.8 ± 4.1 94.1 ± 2.3 n/a n/a

▪ Huynh et al. [14] 23 n/a 93.6 ± 1.7 0.98 12.8 ± 2.24*

▪ López-Mir et al. [48] 17 n/a 95 ± 1.5 n/a 33.6 ± 6.1

▪ Bereciartua et al. [49] 18 n/a 90.2 ± 8.6 n/a 22.7 ±12.0

▪ Yan et al. [41] 14 n/a 86 ± 5 n/a ≈ 32**

▪ Huynh et al. [15] 27 n/a 91.1 ± 1.9 0.94 n/a

fully automated, based on the proposed

▪ 3D neural network 100 92.3± 3.5 96.0 ± 1.9 0.987 24.9 ± 14.7

* modified Hausdorff distance, not directly comparable to the otherwise reported original Hausdorff distance.
modifizierte Hausdorff-Distanz, nicht direkt vergleichbar mit der sonst berichteten ursprünglichen Hausdorff-Distanz.

** Yan et al. [41] did not explicitly report the Hausdorff distance; however, they depict it in a figure. The aforementioned value is the best approximation
by the authors.
Yan et al. [41] nennen nicht explizit die Hausdorff-Distanz; sie stellen diese jedoch in einer Abbildung dar. Der oben genannte Wert ist eine Annäherung.
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33.4 ± 93.2ml (2.2 ± 6.6 % relative volume) with a MAPE of 5.4 ±
4.9 % (▶ Fig. 4). No relevant correlation (Spearman rho: 0.3) was
found between the quality of segmentation (measured with over-
lap) and the mean signal intensity of the liver volume (▶ Fig. 5).

Segmentation Time

The neural network has a fixed input size of 963. A typical MR im-
age has a matrix shape of 320 × 320 ×64 with a spatial resolution
of 1.25 × 1.25 × 3mm. After normalizing the image to a spatial re-
solution of 1.53mm, the actual matrix shape is 267 × 267 × 128 for
the specific example. This shape is incompatible with the fixed size
of the input layer. To accommodate this issue, we employ an en-
semble strategy by inferring 963 blocks with an overlap of 50%. A
Gaussian distribution is used to emphasize the central field of view
portions of the prediction in regard to the outer edges. Therefore,
the fully automated prediction step corresponds to multiple feed-
forward passes of the neural network performed on the GPU. On
average, it takes approximately 60 seconds to predict the seg-
mentation of a whole MRI scan of the aforementioned dimen-
sions. In contrast, manual segmentation, performed by a domain
expert, accounts for approximately 10 ± 2 minutes per case.

Discussion

3D segmentation in medical image analysis is a time-consuming
and tedious task. Liver MRI segmentation remains challenging
due to the lack of well-established, fully automated frameworks.
However, this is a mandatory preliminary step before performing
liver resection and transplantation and is executed on a daily ba-
sis. The design and implementation of robust and efficient seg-
mentation algorithms are, therefore, of high importance to the
clinical routine. Many approaches rely on basic image processing
techniques, such as thresholding of intensity values, histograms,
and morphological operations in combination with complemen-
tary methods, such as atlas-guided algorithms, region growing
approaches, deformable models, and classification-based meth-
ods from the field of machine learning [31–34].

Established segmentation procedures for CT imaging have
been translated or adjusted to MR imaging. However, due to ma-
jor differences in the image morphology, these approaches may
not be directly applicable to MR imaging with comparable seg-
mentation performance [35].

Chartrand et al. [35] proposed a semi-automated segmenta-
tion method for CT scans and MR images using Laplacian mesh
optimization. This approach achieves an overlap of 92.4 ± 1.4 %

▶ Fig. 4 Visualization of agreement between the ground truth and predicted volumes. The left panel shows a basic correlation plot where the
abscissa (x-axis) corresponds to predicted volumes and the ordinate (y-axis) to ground truth volumes. The optimal linear regression (dashed line)
is almost identical to the identity map (solid main diagonal). Spearman’s rank correlation coefficient (rho), mean error (ME), and mean absolute
percentage error (MAPE) were calculated over all 4 × 25 predicted volumes in the four splits of the four-fold cross-validation. The right panel shows
the associated Bland-Altman plot of the liver volumes.

▶ Abb.4 Visualisierung der Übereinstimmung zwischen der Grundwahrheit und den vorhergesagten Volumina. Die linke Abbildung zeigt ein Kor-
relationsdiagramm, bei dem die Abszisse (x-Achse) den vorhergesagten Volumina und die Ordinate (y-Achse) der Grundwahrheit-Volumina ent-
spricht. Die optimale lineare Regression (gestrichelte Linie) ist fast identisch mit der Identitätskarte (durchgezogene Hauptdiagonale). Spearman
Korrelationskoeffizient (rho), mittlerer Fehler (ME) und mittlerer absoluter prozentualer Fehler (MAPE) wurden über alle 4 × 25 vorhergesagten
Volumina in den 4 Aufteilungen der 4-fachen Kreuzvalidierung berechnet. Die rechte Tafel zeigt den zugehörigen Bland-Altman-Plot der Leber-
volumina.
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for MR imaging. However, it must be stressed that the semi-auto-
mated method requires manual interaction.

Cheng et al. [36] proposed a fully automated process based on
level-sets using a prior shape model, whereas Chan and Vese [37]
combined active shape recognition with region growing. These
approaches are prone to error for strong noise or artifacts inside
the liver parenchyma and low contrast due to missing edge recog-
nition [12].

Gloger et al. [38] discussed a fully automated segmentation pro-
cedure combining region growing and a threshold-based technique.
Chartrand et al. [39] described a semi-automated method that com-
bines minimal path surface segmentation with model deformation.
Huynh et al. [14] proposed a fully automated scheme using water-
shed segmentation coupled with active contouring. These protocols
present promising results, with a Dice coefficient of up to 95 %.
However, most of these protocols are time-consuming, with a run-
time of approximately 5–8 minutes per case [14, 38, 39].

Deep convolutional neural networks have outperformed state of
the art techniques in most visual recognition tasks [40]. This tech-
nique was recently applied to CT liver segmentation by Hu et al.
[41] and Lu et al. [42] with good results in terms of volume overlap
metrics (Dice index ≈ 97% and overlap error ≈ 6%). However, deep
learning has yet to be applied to MRI liver segmentation.

Our approach uses a 3D evolution of the deep neural network
ν-net [27]. It achieves a liver segmentation performance compar-
able to human experts with an overlap of 92 %/91 % (neural
network/human experts), a Dice coefficient of 96%/95%, and an
ICC of 0.99/0.97. However, the total volume difference is lower for
the proposed method (2 %) than for human experts (6 %), while
the segmentation process is significantly faster with approximate-
ly 60 seconds per case, compared with an average of 10 minutes
per case when performed manually. The results suggest compar-
able or higher segmentation performance compared with the
aforementioned semi- and fully automated approaches.

We use semiautomatic, algorithm-based, manual segmenta-
tion as the ground truth. In a subsequent visual comparison of
prediction and ground truth segmentation, we found subjectively
less accurate segmentation quality for manual segmentation in
some of the upper and lower regions of the liver, typically the
extremes of segments VI and VIII, and in proximity of intrahepatic
lesions or vessels (▶ Fig. 6). However, this finding cannot be
objectively measured due to the lack of flawless ground truth seg-
mentation. One explanation for the imprecise segmentation qual-
ity may be the time factor. The segmentations were performed as
part of the clinical routine, and thus, time was limited. One of the
most remarkable qualities of humans is the active and dynamic
way in which we process information [43]. However, it can also in-
fluence and distort how we perceive visual information and how
we make decisions [44]. Human work thus tends to be imprecise,
due to the natural tendencies of distraction, attention deficit,
fatigue, disruption of a decision, analysis of incomplete informa-
tion, and distortion.

Liver segmentation was performed on T1-weighted images
using the hepatobiliary phase, expecting a boost in performance
due to the specific contrast uptake of hepatocytes. In patients
with normal liver function, this leads to a significant increase in
the liver parenchyma’s signal intensity [45, 46]. Within these pa-
tients, segmentation of the liver, parenchyma is not a challenge.
In patients with liver fibrosis or even cirrhosis, the liver parenchy-
ma’s signal intensity is decreased depending on the degree of
liver fibrosis [47]. Within the analyzed dataset of 100 randomly se-
lected cases, patients with low parenchyma contrast, in terms of
liver fibrosis, were included. In a subgroup investigation, we ana-
lyzed the quality of segmentation (measured with the overlap)
and the mean signal intensity of the liver volume. No relevant cor-
relation was found between the signal intensity of the liver par-
enchyma and the overlap (Spearman rho: 0.3), indicating robust
segmentation of the liver parenchyma even in reduced uptake of
Gd-EOB-DTPA in hepatocytes. In cases with reduced uptake of
Gd-EOB-DTPA, manual segmentation took considerably longer,
whereas the network was able to segment these scans quickly.

Benign liver lesions are often identified initially on a (contrast-
enhanced) abdominal ultrasound scan or CT scan. Supplementary
MRI examinations, in particular with liver-specific contrast medi-
um, are mainly used in the case of contradictory statements. This
leads to an underrepresentation of benign liver lesions in this pa-
tient group. In the case of focal nodular hyperplasia (FNH), there
was only one case within the dataset. Due to the four-fold cross-
validation, the model that performed the prediction for the one
FNH case had not a single training example for an FNH lesion.

▶ Fig. 5 Visualization of the agreement based on the level of signal
intensity. The figure shows a scatterplot in which the abscissa (x-axis)
corresponds to the mean signal intensity of the liver parenchyma and
the ordinate (y-axis) to the agreement, measured by the overlap in %,
between the ground truth and the predicted segmentation. The
Spearman correlation coefficient (rho) was calculated between the
overlap and the mean signal intensity of the liver volume.

▶ Abb.5 Visualisierung der Übereinstimmung in Abhängigkeit der
Signalintensität. Die Abbildung zeigt ein Streudiagramm, bei dem
die Abszisse (x-Achse) der mittleren Signalintensität des Leberpar-
enchyms und die Ordinate (y-Achse) der Übereinstimmung, ge-
messen anhand der Überlappung in % zwischen der Grundwahrheit
und der vorhergesagten Segmentierungen, entspricht. Der Spear-
man Korrelationskoeffizient (rho) wurde zwischen der Überlappung
und der mittleren Signalintensität des Lebervolumens berechnet.
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Most likely, due to FNH lesions having functioning hepatocytes
with prolonged storage of Gd-EOB-DTPA, the model misclassified
the lesion as liver parenchyma. Therefore, this study does not
allow any conclusions to be drawn in regard to FNH lesions.

Another limitation of this and all the aforementioned studies is
the poor comparability of the results. All MRI-based studies have
been reported on a different set of training and validation cases.
Therefore, although our results indicate better performance than
prior state-of-the-art techniques, this benefit cannot be verified
without testing the validation sets of the other studies. For this
reason, we are publishing our full training and test set with the
original MRI scans and the corresponding manual segmentation
to enable further studies to perform a direct comparison.

Furthermore, it is known that neural networks tend to overfit
the training data. Therefore, we plan to further evaluate these
results in a multicenter setup in a follow-up study.

Conclusion

Our proposed deep learning-based method enables robust, fast,
and fully automated liver segmentation using MR scans and reli-
able volume estimation with an interclass correlation coefficient
of 0.987. Segmentation of the liver parenchyma can be per-
formed in just seconds, making liver segmentation on MRI a valu-

able tool for treatment planning, especially for patients undergo-
ing liver surgery.
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