Subscribe to RSS
DOI: 10.1055/a-1478-3978
Glaucoma Diagnostic Testing: The Influence of Optic Disc Size
Article in several languages: English | deutschAbstract
Background There are various imaging techniques for the assessment of the optic disc in glaucoma patients. However, anatomically conspicuous, large or small optic discs can be quite challenging for an examiner.
Objective The Bruchʼs membrane opening (BMO) by spectral domain optical coherence tomography (SD-OCT) is a modern approach for the quantitative measures of retinal nerve fibre layer (RNFL). The study focuses on comparison analysis of the BMO method and the widely used Heidelberg retina tomograph (HRT) method – in terms of detection of glaucoma for different optic disc sizes.
Methods 216 Patients examinations during glaucoma consultation hours. Macro- (Ma) and micro-optic discs (Mi) detected by HRT are analysed via BMO analysis in SD-OCT. Correlation between BMO area and optic disc measured by HRT has been investigated and examined in terms of severity of visual field defect (MD [dB]).
Results The results of study show that for micro and macro-optic discs there is a modest correlation between the size of optic disc measured by BMO and the size of optic disc measured by HRT by applying funduscopic examination (correlation rate r = 0,53; Mi: n = 111, Ma: n = 105). For micro-optic discs with a very small BMO area (< 1.5 mm2), there is a significant tendency (linear trend test p < 0.05) towards deeper visual field defects (MD < − 5 dB).
Conclusion The BMO parameter of SD-OCT allows an assessment of glaucoma for a large range of optic disc sizes. BMO area and optic disc size measured by HRT are not correlated. Micro optic discs with a small BMO area lead to a higher risk of deep visual field defects.
Key words
optic disc size - Heidelberg Retina Tomograph (HRT) - Bruchʼs Membrane Opening (BMO) - Spectral Domain Optical Coherence Tomography (SD-OCT) - glaucomaPublication History
Received: 15 January 2021
Accepted: 23 March 2021
Article published online:
01 July 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1 Balazsi A, Drance SM, Schulzer M. et al. Neuroretinal rim area in suspected glaucoma and early chronic open-angle glaucoma: Correlation with parameters of visual function. Arch Ophthal 1984; 102: 1011-1014 DOI: 10.1001/archopht.1984.01040030813022.
- 2 Hermann MM, Garway-Heath DF, Jonescu-Cuypers CP. et al. Interobserver variability in confocal optic nerve analysis (HRT). Int Ophthalmol 2005; 26: 143-149 DOI: 10.1007/s10792-006-9022-9.
- 3 Mansoori T, Balakrishna N, Viswanath K. Influence of disc area on retinal nerve fiber layer thickness measurement by spectral domain optical coherence tomography. Indian J Ophthalmol 2014; 62: 615-618 DOI: 10.4103/0301-4738.121134.
- 4 Mills RP, Budenz DL, Lee PP. et al. Categorizing the Stage of Glaucoma From Pre-Diagnosis to End-Stage Disease. Am J Ophthalmol 2006; 141: 24-30 DOI: 10.1016/j.ajo.2005.07.044.
- 5 Hoffmann EM. Stellenwert der Heidelberg-Retina-Tomographie in der Glaukomdiagnostik. Ophthalmologe 2015; 112: 646-653 DOI: 10.1007/s00347-015-0106-7.
- 6 Huang D, Swanson EA, Lin CP. et al. Optical Coherence Tomography. Science 1991; 254: 1178-1181
- 7 Brinkmann CK. Zuverlässige Glaukomerkennung durch Spectral-Domain optische Kohärenztomographie?. Ophthalmologe 2015; 112: 654-660 DOI: 10.1007/s00347-015-0107-6.
- 8 Heidelberg Engineering GmbH. SPECTRALIS® HRA+OCT Gebrauchsanweisung. Heidelberg: Heidelberg Engineering GmbH; 2015
- 9 Reis ASC, OʼLeary N, Yang H. et al. Influence of Clinically Invisible, but Optical Coherence Tomography Detected, Optic Disc Margin Anatomy on Neuroretinal Rim Evaluation. Invest Ophthalmol Vis Sci 2012; 53: 1852-1860 DOI: 10.1167/iovs.11-9309.
- 10 Leite MT, Rao HL, Weinreb RN. et al. Agreement among spectral-domain optical coherence tomography instruments for assessing retinal nerve fiber layer thickness. Am J Ophthalmol 2011; 151: 85-92.e1 DOI: 10.1016/j.ajo.2010.06.041.
- 11 Chauhan BC, Burgoyne CF. From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am J Ophthalmol 2013; 156: 218-227.e2 DOI: 10.1016/j.ajo.2013.04.016.
- 12 Povazay B, Hofer B, Hermann B. et al. Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis. J Biomed Opt 2007; 12: 041204 DOI: 10.1117/1.2773736.
- 13 Chauhan BC, Danthurebandara VM, Sharpe GP. et al. Bruchʼs Membrane Opening Minimum Rim Width and Retinal Nerve Fiber Layer Thickness in a Normal White Population. Ophthalmology 2015; 122: 1786-1794 DOI: 10.1016/j.ophtha.2015.06.001.
- 14 Chauhan BC, OʼLeary N, AlMobarak FA. et al. Enhanced Detection of Open-angle Glaucoma with an Anatomically Accurate Optical Coherence Tomography–Derived Neuroretinal Rim Parameter. Ophthalmology 2013; 120: 535-543 DOI: 10.1016/j.ophtha.2012.09.055.
- 15 Enders P, Adler W, Kiessling D. et al. Evaluation of two-dimensional Bruchʼs membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort. Acta Ophthalmol 2019; 97: 60-67 DOI: 10.1111/aos.13698.
- 16 Krieglstein GK. Hrsg. Glaukom 2006: Eine Konsensus-Konferenz. Berlin, Heidelberg: Springer; 2007
- 17 Balo KP, Mihluedo H, Djagnikpo PA. et al. [Correlation between neuroretinal rim and optic disc areas in normal melanoderm and glaucoma patients]. J Fr Ophtalmol 2000; 23: 37-41
- 18 Seider MI, Lee RY, Wang D. et al. Optic Disk Size Variability Between African, Asian, Caucasian, Hispanic and Filipino Americans Using Heidelberg Retinal Tomography. J Glaucoma 2009; 18: 595-600 DOI: 10.1097/IJG.0b013e3181996f05.
- 19 Hoffmann EM, Zangwill LM, Crowston JG. et al. Optic Disk Size and Glaucoma. Surv Ophthalmol 2007; 52: 32-49 DOI: 10.1016/j.survophthal.2006.10.002.
- 20 Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic Evaluation of the Optic Nerve Head. Surv Ophthalmol 1999; 43: 293-320 DOI: 10.1016/S0039-6257(98)00049-6.
- 21 Enders P, Schaub F, Hermann MM. et al. Neuroretinal rim in non-glaucomatous large optic nerve heads: a comparison of confocal scanning laser tomography and spectral domain optical coherence tomography. Br J Ophthalmol 2017; 101: 138-142 DOI: 10.1136/bjophthalmol-2015-307730.
- 22 Spörl E, Böhm AG, Pillunat LE. Biomechanische Aspekte in der Pathophysiologie der glaukomatösen Optikusneuropathie. In: Krieglstein GK. Hrsg. Glaukom 2007: Die Papille beim Glaukom. Berlin, Heidelberg: Springer; 2008: 1-12
- 23 Dietlein T. Normvarianten und Anomalien der Papille. In: Krieglstein GK. Hrsg. Glaukom 2007: Die Papille beim Glaukom. Berlin, Heidelberg: Springer; 2008: 51-60
- 24 Weinreb RN, Friedman DS, Fechtner RD. et al. Risk assessment in the management of patients with ocular hypertension. Am J Ophthalmol 2004; 138: 458-467 DOI: 10.1016/j.ajo.2004.04.054.
- 25 Enders P, Stern C, Schrittenlocher S. et al. [Dependency of intraocular pressure on body posture in glaucoma patients: New approaches to pathogenesis and treatment]. Ophthalmologe 2020; 117: 730-739 DOI: 10.1007/s00347C01113-6.
- 26 Oddone F, Centofanti M, Tanga L. et al. Influence of Disc Size on Optic Nerve Head versus Retinal Nerve Fiber Layer Assessment for Diagnosing Glaucoma. Ophthalmology 2011; 118: 1340-1347 DOI: 10.1016/j.ophtha.2010.12.017.
- 27 Mardin CY. Die wichtigsten ophthalmologischen Papillenveränderungen bei den Glaukomen. Klin Monbl Augenheilkd 2012; 229: 112-118 DOI: 10.1055/s-0031-1299127.
- 28 Barkana Y, Harizman N, Gerber Y. et al. Measurements of Optic Disk Size With HRT II, Stratus OCT, and Funduscopy Are Not Interchangeable. Am J Ophthalmol 2006; 142: 375-380 DOI: 10.1016/j.ajo.2006.03.065.
- 29 Enders P, Schaub F, Adler W. et al. Bruchʼs membrane opening-based optical coherence tomography of the optic nerve head: a useful diagnostic tool to detect glaucoma in macrodiscs. Eye (Lond) 2018; 32: 314-323 DOI: 10.1038/eye.2017.306.
- 30 Enders P, Adler W, Schaub F. et al. Novel Bruchʼs Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma. Invest Ophthalmol Vis Sci 2016; 57: 6596-6603 DOI: 10.1167/iovs.16-20561.
- 31 Enders P, Schaub F, Adler W. et al. The use of Bruchʼs membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs. Br J Ophthalmol 2017; 101: 530-535 DOI: 10.1136/bjophthalmol-2016-308957.
- 32 Garway-Heath DF, Poinoosawmy D, Fitzke FW. et al. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 2000; 107: 1809-1815 DOI: 10.1016/S0161-6420(00)00284-0.