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Abstract The work demonstrates the heterocycle–heterocycle inter-
conversion strategy to access 4,5-disubstituted 3-hydroxy-2-pyrrolidi-
none in moderate to good yields (50–80%). The approach has a distinct
advantage over a multicomponent reaction approach as it allows access
to unsubstituted 3-hydroxy-2-pyrrolidinone at the nitrogen position for
further functionalization.

Key words isoxazoles, pyrrolidinones, reductive rearrangement, het-
erocyle–heterocyle strategy, (3+2) cycloaddition, MCR

Access to polysubstituted nitrogen heterocycles are cru-

cial to the discovery of novel biologically active compounds

(Figure 1).[1] Pyrrolidinones, including 3-hydroxy-2-pyrro-

lidinones, are one such class of nitrogen heterocycles being

actively pursued for their biological activity ranging from

HIV-1 inhibitors,[2] antitumor oral drugs,[3] antimicrobial,[4]

and antibacterial applications.[5] Recently, they have been

accessed via a multicomponent reaction (MCR) approach

requiring an aldehyde, substituted aniline, and either acety-

lene dicarboxylates or 2-oxo-1,4-dicarboxylates. The MCR

provides a convenient approach to 2-arylated 4-hydroxy-5-

pyrrolidinones (Scheme 1).[6]

Figure 1  Naturally occurring leopoilic acid A (i) and cytochalasin B (ii)

With our ongoing interest in heterocycle–heterocycle

(H–H) interconversion strategy[7] we became interested to

extend the H–H strategy to access 5-aryl/alkyl-substituted

3-hydroxy-2-pyrrolidinones via re-organization of the cor-

responding isoxazoles under reducing conditions (Scheme

1).

The isoxazoles needed for the study were prepared via

the (3+2) cycloaddition of the corresponding nitrile oxides

with dimethyl acetylene dicarboxylate (symmetrically sub-

stituted acetylene) at room temperature in moderate to

good yields (50–84%, Scheme 2).[8]
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Scheme 1  Literature-known multicomponent reaction approach to 2-pyrrolidinones and the current planned H–H approach to 2-pyrrolidinones
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Scheme 2  Synthesis of isoxazole derivatives 6a–l via a (3+2) cycloaddi-
tion on dimethyl acetylenedicarboxyalte (DMAD)

In general, the yield for isoxazole formation was rela-

tively higher for electron-withdrawing substituents on the

aryl rings than in the presence of electron-donating substit-

uents on the ring. The low yield for the (3+2) cycloaddition

in electron-donating nitrile oxide can be attributed to self-

dimerization of nitrile oxides.[9]

Attempt to carry out reductive reorganization of isoxaz-

oles 6a–l[10] to 2-pyrrolidinones 1a–l was initially opti-

mized with 6a as model substrate with iron as choice of re-

ductant (Scheme 3).[11] Reductive rearrangement of 5a to 1a

was not observed when the reaction was carried out with

ammonium chloride as additive and ethanol as solvent,

even after prolonged heating at 80 °C (5 equiv.; Table 1, en-

try 1).

Replacement of either the reductant, i.e., iron with zinc,

or the additive, i.e., ammonium chloride with hydrochloric

acid, did not yield the desired product (entry 2, Table 1).

With hydrochloric acid as additive the starting material was

consumed albeit with extensive degradation of 6a within 5

h at 80 °C (entry 3, Table 1).

To our surprise, replacing ethanol with acetic acid as re-

action solvent, formation of 1a was observed (no additive)

at reflux, however, with conversion of only 50% even after 5

h (entry 4, Table 1). To accelerate the reaction, further opti-

mization was carried out by doubling the reductant quanti-

ty from 5 equiv. to 10 equiv., and to our delight it gave 1a in

71% yield within 1 h of the reaction time (entry 5, Table 1).

When the reaction time was extended to 2 h, a 5–10% drop

in yield was observed suggesting decomposition of product

under these conditions (entry 6, Table 1). Attempts to carry

out reductive reorganization under hydrogenating condi-

tions did not yield 1a despite consumption of staring mate-

rial (entry 7, Table 1).

The optimized conditions for reductive reorganization

(entry 5, Table 1), i.e., iron as reductant (10.0 equiv.) in ace-

tic acid under reflux conditions for 1 h, were used for gen-

eral applicability of the method on other isoxazoles 6b–l.

Indeed, formation of 1b–l was observed in all the cases in

moderate to good yields (50–80%, Table 2). Interestingly,

trends in the yield after isolation of 1a–l were similar to

those observed in the synthesis of isoxazoles 6a–l, i.e., elec-

tron-withdrawing groups on aryl ring at 2-position in 6a–l

gave higher yields of rearranged product (1d–f,h, Table 2)

than alkyl/electron-donating substituents on the aryl ring

(1b,g,i,l, Table 2).

This could be due to stabilization of the developing

charge during the reduction step. It was also observed that

the yield of alkyl-substituted isoxazole gave reasonable to

good yields of 1 (1c,k, Table 2) under the reaction condi-

tions.[12]

A plausible mechanism for the reductive rearrangement

might be attributed to an initial SET between the reductant

and 6 followed by protonation to form an intermediate A.

Intermediate A could lead to the desired product following

either path 1 or path 2 characterized by tautomerization,

cyclization, and reduction. Path 1 involves an initial tau-

tomerization (B), cyclization (C), reduction (1′), or path 2

involves further reduction (D), tautomerization (E), cyclisa-

tion (1′) and tautomerization to yield 1 (Scheme 4).

In conclusion the present work demonstrates the con-

version of isoxazoles 6a–l[10] into polysubstituted 2-pyrro-

lidinones (1a–l, 50–80% yield) under reductive rearrange-

ment conditions with iron as reductant in acetic acid as sol-

vent. The approach has a distinct advantage in accessing

unsubstituted 2-pyrrolidinones at the nitrogen center al-

lowing further scope of derivatization. The work further

demonstrates the usefulness of heterocycle–heterocycle in-

terconversion approach to access polysubstituted 2-pyrro-

lidinones from their corresponding isoxazoles. Further

work is necessary to understand the overall mechanism and

to exploit the full potential of this methodology.
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Table 1  Optimization of the Reductive Rearrangement of 6 to 1

Entry Solvent Reductant 
(equiv.)

Temp 
(°C)

Time 
(min)

Conversion 
(yield, %)

1 EtOH Fe/NH4Cl (5) 80 300 no reaction

2 EtOH Zn/NH4Cl (5) 80 300 no reaction

3 EtOH Fe/HCl (5) 80 300 multiple spots

4 AcOH Fe (5) 110 300 50

5 AcOH Fe (10) 110 60 100 (71)

6 AcOH Fe (10) 110 120 100 (65)

7 EtOH Pd/C, H2 (5 
bar)

110 120 multiple spots
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1148

P. Kamath et al. LetterSynlett

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.
Table 2  Synthesis of Isoxazole Esters 6a–l by Cycloaddition of the Corresponding Oximes 7a–l and Their Reductive Rearrangement to Pyrrolidine 
Diones 1a–l 

Entry Oxime 7a Isoxazole 6 Yield of 6 (%) Pyrrolidine dione 1 (reduction) Yield of 1 (%)

a 71 71

b 68 60

c 80 77

d 74 77

Scheme 4  Plausible mechanism for the reductive rearrangement of isoxazoles 5 to 2-pyrrolidinone 1 using iron as reductant in acetic acid as solvent
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e 70 80

f 82 78

g 65 61

h 84 62

i 58 55

j 78 68

k 60 60

l 50 50

a Oximes 7a–l were prepared using the literature protocol.

Entry Oxime 7a Isoxazole 6 Yield of 6 (%) Pyrrolidine dione 1 (reduction) Yield of 1 (%)
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