ergopraxis 2022; 15(06): 17-21
DOI: 10.1055/a-1768-9331
Therapie

Betätigen mit neuester Technik – Prothesen mit myoelektrischer Mustererkennung

Susanne Breier

Die Verwendung einer myoelektrischen Prothese für die obere Extremität ersetzt wichtige Bewegungsabläufe und gewährleistet so die Selbstversorgung, eine Rückkehr ins Arbeitsleben und die gesellschaftliche Teilhabe im Sinne der ICF. Susanne Breier beschreibt den Versorgungsprozess mit den Prothesen und wie Klient*innen den Umgang mit ihnen erlernen.



Publication History

Article published online:
01 June 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literaturverzeichnis

  • 1 Ison M, Artemiadis P. The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control. J Neural Eng 2014; 11(5):. 051001RESNIK PAPER13
  • 2 Auer M, Popovic I, Amsüß S.. „Myo Plus“: innovatives Steuerkonzept für transradiale myoelektrische Armprothesen. Orthopädie Technik 2019; 70 (08) 30-34
  • 3 Hahne JM, Schweisfurth MA, Müller KR, Farina D. Eine Simultansteuerung für myoelektrische Handprothesen. Orthopädie Technik 2016; 67 (03) 34-39
  • 4 Göbel PM, Kalmar J, van Vliet HW. Pattern Recognition – Funktionsverbesserung bei der Ansteuerung moderner Armprothesen. Orthopädie Technik 2015; 66 (06) 52-59
  • 5 Graupe D, Beex AA, Monlux WJ, Magnussen I. A multifunctional prosthesis control system based on time series identification of EMG signals using microprocessors. Bull Prosthet Res 1977; 10 (27) 4-16
  • 6 Ramachandran VS. et al The perception of phantom limbs: The D. O. Hebb lecture. Brain 1998; 121 (09) 1605-1630
  • 7 Moseley GL. et al Interdependence of movement and anatomy persist when amputees learn a physiologically impossible movement of their phantom limb. PNAS 2009; 106 (44) 18798-18802
  • 8 Ortiz-Catalan M, Sander N, Kristoffersen MB, Håkansson B, Brånemark R. Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient. Neuroprosthetics 2014; 08: 24
  • 9 Simon AM, Lock BA, Stubblefield KA.. Patient training for functional use of pattern recognition-controlled prostheses. JPO 2012; 24 (02) 56-64
  • 10 Stubblefield K, Finucane SB, Miller LA, Lock BA.. Training individuals to use pattern recognition to control an upper limb prosthesis. Fredericton, New Brunswick. Canada: Myoelectric Controls Symposium; 2011: 170-173
  • 11 Scheme E, Fougner A, Stavdahl O. et al Examining the adverse effects of limb position on pattern recognition based myoelectric control. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 6337-6340
  • 12 Atkins D.. Adult upper limb prosthetic training. In: Bowker HK, Michael JW, Eds. Atlas of limb prosthetics: surgical, prosthetic, and rehabilitation principles. 2nd rev. ed.Rosemont: American Academy of Orthopedic Surgeons 2002: 277-291
  • 13 Widehammar C, LidströmHolmqvist K, Hermansson L. Training for users of myoelectric multigrip hand prostheses: a scoping review. Prosthetics and Orthotics International 2021; 45 (05) 393-400
  • 14 Young AJ, Hargrove LJ, Kuiken TA. The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift. IEEE Trans Biomed Eng 2011; 58: 2537-25448
  • 15 Lock B, Simon AM, Stubblefield KA, Hargrove LJ. Prosthesis-Guided Training for Practical Use of Pattern Recognition Control of Prostheses. Fredericton, New Brunswick, Canada: Myoelectric Controls Symposium;; 2011: 61-64
  • 16 Breier S. Myoelektrische Teilhandprothesen. Et Reha 2020; 59 (04) 20-24
  • 17 Burgerhof JG, Vasluian E, Dijkstra P, Bongers RM, van der Sluis CK. The Southampton Hand Assessment Procedure revisited: A transparent lin-ear scoring system, applied to data of experienced. J Hand Ther 2017; 30 (01) 49-57
  • 18 Hermansson LM, Fisher AG, Bernspång B, Eliasson AC.. Assessment of capacity for myoelectric control: a new rasch-built measure of prosthetic hand control. J Rehabil Med 2005; 37 (03) 166-171
  • 19 Li G, Schultz AE, Kuiken TA. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses. IEEE Trans Neural Syst Rehabil Eng 2010; 18 (02) 185-192
  • 20 Simon AM, Hargrove LJ, Lock BA, Kuiken TA. Target Achievement Control Test: evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses. J Rehabil Res Dev 2011; 48 (06) 619-627
  • 21 WHO/DIMDI. Internationale Klassifikation der Funktionsfähigkeit, Behinderung und Gesundheit (ICF) der Weltgesundheitsorganisation (WHO)(2005)