Subscribe to RSS
DOI: 10.1055/a-1889-9354
One-Pot Synthesis of 2-Arylquinolines via in situ Acid Catalysis
The National Natural Science Foundation of China (No. 21572117) and the Key Technology Research and Development Program of Shandong (No. 2019JZZY021015 and 2019GHY112053) provided funding.
Abstract
A simple, efficient, and practical protocol is reported, allowing quick access to diverse 2-arylquinolines from 2-vinylanilines and benzyl halides. This reaction is additive and metal catalyst-free with only solvent needed. A preliminary mechanistic investigation discloses the driving force comes from the in situ released HBr, which catalyzes the subsequent cyclization. The present synthetic route featured high functional group tolerance and simple post-processing. A variety of 2-arylquinolines were obtained up to 96% yield.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1889-9354.
- Supporting Information
Publication History
Received: 24 May 2022
Accepted after revision: 01 July 2022
Accepted Manuscript online:
01 July 2022
Article published online:
08 August 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Chen Y, Fang K, Sheu J, Hsu S, Tzeng C. J. Med. Chem. 2001; 44: 2374
- 2 Hazra A, Mondal S, Maity A, Naskar S, Saha P, Paira R, Sahu KB, Paira P, Ghosh S, Sinha C, Samanta A, Banerjee S, Mondal NB. Eur. J. Med. Chem. 2011; 46: 2132
- 3 Yang G, Zhu J, Yin X, Yan Y, Wang Y, Shang X, Liu Y, Zhao Z, Peng J, Liu H. J. Agr. Food Chem. 2019; 67: 11340
- 4 Klingenstein R, Melnyk P, Leliveld SR, Ryckebusch A, Korth C. J. Med. Chem. 2006; 49: 5300
- 5 Moran MR. M, Angel Guio EJ, Cano HN, Del Carmen Migliore B, Izquierdo R, Charris J, Lopez S, Israel A, Santiago A, Rossi R, Perdomo L, Dabian SA, Sosa VM, Villalba A, Migliore BA. L. Lett. Drug. Des. Discov. 2018; 15: 294
- 6 Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. Eur. J. Med. Chem. 2015; 97: 871
- 7 Solomon VR, Lee H. Curr. Med. Chem. 2011; 18: 1488
- 8 Ahmad S, Bhargava KP, Kishor K, Shanker K. Pharmazie 1981; 36: 403
- 9 Kumar S, Bawa S, Gupta H. Mini-Rev. Med. Chem. 2009; 9: 1648
- 10 Zhou Y, Li W, Yu L, Liu Y, Wang X, Zhou M. Dalton Trans. 2015; 44: 1858
- 11 Ronellenfitsch M, Wadepohl H, Enders M. Organometallics 2014; 33: 5758
- 12 Blaser HU, Jalett HP, Lottenbach W, Studer M. J. Am. Chem. Soc. 2000; 122: 12675
- 13 Ferri D, Bürgi T. J. Am. Chem. Soc. 2001; 123: 12074
- 14 Jeanmart S, Edmunds AJ. F, Lamberth C, Pouliot M. Bioorg. Med. Chem. 2016; 24: 317
- 15 Mehata MS. Opt. Mater. 2018; 75: 751
- 16 Mu L, Shi W, Chang JC, Lee S. Nano Lett. 2008; 8: 104
- 17 Hughes G, Bryce MR. J. Mater. Chem. 2005; 15: 94
- 18 Jin J, Guidi S, Abada Z, Amara Z, Selva M, George MW, Poliakoff M. Green Chem. 2017; 19: 2439
- 19 Heravi MM, Asadi S, Azarakhshi F. Curr. Org. Synth. 2014; 11: 701
- 20 Gök D, Kasımoğulları R, Cengiz M, Mert S. J. Heterocycl. Chem. 2014; 51: 224
- 21 Marco-Contelles J, Pérez-Mayoral E, Samadi A, Carreiras MD. C, Soriano E. Chem. Rev. 2009; 109: 2652
- 22 Yamashkin SA, Yudin LG, Kost AN. Chem. Heterocycl. Comp. 1992; 28: 845
- 23 Zhu J, Hu W, Sun S, Yu J, Cheng J. Adv. Synth. Catal. 2017; 359: 3725
- 24 Xu T, Shao Y, Dai L, Yu S, Cheng T, Chen J. J. Org. Chem. 2019; 84: 13604
- 25 Xie J, Huang H, Xu T, Li R, Chen J, Ye X. RSC Adv. 2020; 10: 8586
- 26 Reddy AC. S, Anbarasan P. J. Catal. 2018; 363: 102
- 27 Liu S, Li G, Xu F. J. Chin. Chem. Soc. Taip. 2018; 65: 888
- 28 Nan J, Chen P, Zhang Y, Yin Y, Wang B, Ma Y. J. Org. Chem. 2020; 85: 14042
- 29 Zhang X, Xu X, Yu L, Zhao Q. Tetrahedron Lett. 2014; 55: 2280
- 30 Xu H, Yu F, Huang R, Weng M, Chen H, Zhang Z. Org. Chem. Front. 2020; 7: 3368
- 31 Wei H, Li T, Zhou Y, Zhou L, Zeng Q. Synthesis 2013; 45: 3349
- 32 Motevalli K, Mirzazadeh R, Yaghoubi Z. J. Chem. Res. 2012; 36: 701
- 33 Li S, Xie C, Chu X, Dai Z, Feng L, Ma C. Eur. J. Org. Chem. 2020; 4950
- 34 Zhang Z, Du H. Org. Lett. 2015; 17: 6266
- 35 McElvain SM, Vozza JF. J. Am. Chem. Soc. 1949; 71: 896