Synthesis 2023; 55(06): 945-958
DOI: 10.1055/a-1961-8504
paper

Synthesis of 5,6-Dihydro-4H-pyrrolo[1,2-b]pyrazoles and Homologs from 5-Substituted 2-(Alkynyl)tetrazoles via Microwave-Induced Intramolecular Nitrile-Imine–Alkyne 1,3-Dipolar Cycloaddition

Hiroki Yoneyama
,
Mano Adachi
,
Aoshi Morita
,
Maki Nakagawa
,
Miho Baba
,
Kanako Yamawaki
,
Noboru Hayama
,
Shinya Harusawa
,
This work was financially supported by research funds from Osaka Medical and Pharmaceutical University.


Abstract

Microwave irradiation of 2-alkynyl-5-(phenyl or alkyl)tetrazoles affords 2-(phenyl or alkyl)-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazoles via intramolecular [3+2] cyclization of nitrile-imine intermediates. In the present method, the use of 5-alkyltetrazoles as the starting materials is more advantageous because of the difficulties associated with conventional photoreactions. From 2-phenylalkynyl-5-methylthio-1H-tetrazoles, the reaction efficiently produces 2-methylthio-3-phenyl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazoles. The procedure using the methylthio group is applied to the total synthesis of three naturally occurring withasomnines. The method is also extended to the construction of molecules in which bicyclic pyrazoles are fused to six- to eight-membered rings.

Supporting Information



Publication History

Received: 26 August 2022

Accepted after revision: 17 October 2022

Accepted Manuscript online:
17 October 2022

Article published online:
16 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Katayama H, Kawada Y, Kaneko K, Oshiyama T, Takatsu N. Chem. Pharm. Bull. 1999; 47: 48
    • 1b Sawyer JS, Beight DW, Britt KS, Anderson BD, Campbell RM, Goodson TJr, Herron DK, Li H.-Y, McMillen WT, Mort N, Parsons S, Smith EC. R, Wagner JR, Yan L, Zhang F, Yingling JM. Bioorg. Med. Chem. Lett. 2004; 14: 3581
    • 1c Huang Z, Liu S, Zhang L, Salem M, Greig GM, Chan CC, Natsumeda Y, Noguchi K. Life Sci. 2006; 78: 2663
    • 1d Li H.-Y, McMillen WT, Heap CR, McCann DJ, Yan L, Campbell RM, Mundla SR, King C.-HR, Dierks EA, Anderson BD, Britt KS, Huss KL, Voss MD, Wang Y, Clawson DK, Yingling JM, Sawyer JS. J. Med. Chem. 2008; 51: 2302
    • 1e Duvey G, Perry B, Poul EL, Poli S, Bonnet B, Lambeng N, Charvin D, Donovan-Rodrigues T, Haddouk H, Gagliardi S, Rocher J.-P. Bioorg. Med. Chem. Lett. 2013; 23: 4523
    • 1f Jorda R, Lopes SM. M, Řezníčková E, Ajani H, Pereira AV, Gomes CS. B, Pinho e Melo TM. V. D. Eur. J. Med. Chem. 2019; 178: 168
    • 1g Xie H, Lin X, Zhang Y, Tan F, Chi B, Peng Z, Dong W, An D. Bioorg. Med. Chem. Lett. 2020; 30: 127459
    • 1h Zhu N, Zhao P.-J, Kang Q.-J, Shen Y.-M. Nat. Prod. Res. Dev. 2008; 20: 395
    • 2a Schröter H.-B, Neumann D, Katritzky AR, Swinbourne FJ. Tetrahedron 1966; 22: 2895
    • 2b Aladesanmi A, Nia R, Nahrstedt A. Planta Med. 1998; 64: 90
    • 2c Srivastava A, Siddiqui S, Ahmad R, Mehrotra S, Ahmad B, Srivastav AN. J. Biomol. Struct. Dyn. 2022; 40: 1858
    • 3a Wube AA, Wenzig E.-M, Gibbons S, Asres K, Bauer R, Bucar F. Phytochemistry 2008; 69: 982
    • 3b Ichikawa H, Watanabe R, Fujino Y, Usami Y. Tetrahedron Lett. 2011; 52: 4448
    • 3c Usami Y, Watanabe R, Fujino Y, Shibano M, Ishida C, Yoneyama H, Harusawa S, Ichikawa H. Chem. Pharm. Bull. 2012; 60: 1550
    • 4a Foster RS, Huang J, Vivat JF, Browne DL, Harrity JP. A. Org. Biomol. Chem. 2009; 7: 4052
    • 4b Verma D, Kumar R, Namboothiri IN. N. J. Org. Chem. 2013; 78: 3482
    • 4c Xia T, Hu Z, Ji W, Zhang S, Shi H, Liu C, Pang B, Liu G, Liao X. Org. Chem. Front. 2018; 5: 850
    • 4d Regalla VR, Addada RK. R, Chatterjee A. Tetrahedron Lett. 2018; 59: 4161
    • 4e Usami Y, Kubo Y, Takagaki T, Kuroiwa N, Ono J, Nishikawa K, Nakamizu A, Tatsui Y, Harusawa S, Hayama N, Yoneyama H. Molecules 2021; 26: 3370
    • 4f Usami Y, Tsujiuchi Y, Machiya Y, Chiba A, Ikawa T, Yoneyama H, Harusawa S. Heterocycles 2020; 101: 496
    • 5a Huisgen R, Seidel M, Sauer J, McFarland JW, Wallbillich G. J. Org. Chem. 1959; 24: 892
    • 5b Huisgen R, Seidel M, Wallbillich G, Knupfer H. Tetrahedron 1962; 17: 3
    • 5c Huisgen R, Knupfer H, Sustmann R, Wallbillich G, Weberndoerfer V. Chem. Ber. 1967; 100: 1580
    • 5d Fliege W, Grashey R, Huisgen R. Chem. Ber. 1984; 117: 1194
  • 6 Padwa A, Nahm S, Sato E. J. Org. Chem. 1978; 43: 1664
  • 7 Pla D, Tan DS, Gin DY. Chem. Sci. 2014; 5: 2407
    • 8a Meie H, Heimgartner H. Helv. Chim. Acta 1985; 68: 1283
    • 8b Wang Y, Vera CI. R, Lin Q. Org. Lett. 2007; 9: 4155
    • 8c Remy R, Bochet CG. Eur. J. Org. Chem. 2018; 316
    • 8d Ortiz-Rojano L, Rojas-Martín J, Rodríguez-Diaz C, Carreño MC, Ribagorda M. Chem. Eur. J. 2019; 25: 15050
    • 8e Doan V, Noble BB, Coote ML. J. Org. Chem. 2020; 85: 10091
    • 9a Wentrup C, Benedikt J. J. Org. Chem. 1980; 45: 1407
    • 9b Fouchet B, Joucla M, Hauelin J. Tetrahedron Lett. 1981; 22: 1333
    • 10a Bégué D, Dargelos A, Wentrup C. J. Org. Chem. 2020; 85: 7952
    • 10b Pascual-Escudero A, Ortiz-Rojano L, Simón-Fuente S, Adrio J, Ribagorda M. Org. Lett. 2021; 23: 4903
    • 10c Kumar GS, Lin Q. Chem. Rev. 2021; 121: 6991
    • 10d Miura T, Hagiwara K, Nakamuro T, Nagata Y, Oku N, Murakami M. Chem. Lett. 2021; 50: 131
    • 10e Livingstone K, Little G, Jamieson C. Synthesis 2021; 53: 2395
    • 11a Someya CI, Weidauer M, Enthaler S. Catal. Lett. 2013; 143: 424
    • 11b Peruncheralathan S, Kahn TA, Ila H, Junjappa H. J. Org. Chem. 2005; 70: 10030
    • 11c Huang F, Wu P, Wang L, Chen J, Sun C, Yu Z. J. Org. Chem. 2014; 79: 10553
    • 11d Li J, An Y, Li J, Yang S, Wu W, Jiang H. Org. Chem. Front. 2017; 4: 1590

      For reviews, see:
    • 12a Harusawa S. Chem. Pharm. Bull. 2020; 68: 1
    • 12b Yoneyama H, Harusawa S. Heterocycles 2018; 96: 2037
  • 13 Yoneyama H, Oka N, Usami Y, Harusawa S. Tetrahedron Lett. 2020; 61: 151983
  • 14 Yoneyama H, Oka N, Usami Y, Harusawa S. Tetrahedron Lett. 2020; 61: 151517
  • 15 Purchase CF. II, White AD. Synth. Commun. 1996; 26: 2687
    • 16a Yoneyama H, Usami Y, Komeda S, Harusawa S. Synthesis 2013; 45: 1051
    • 16b Gedye R, Swith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J. Tetrahedron Lett. 1986; 27: 279
    • 16c Gedye RN, Rank W, Westaway KC. Can. J. Chem. 1991; 69: 706
    • 16d Singh GS. Asian J. Org. Chem. 2022; 11: e202100803
    • 16e Salih KS. M. Asian J. Org. Chem. 2022; 11: e202200023
    • 16f Jain A, De S, Barman P. Res. Chem. Intermed. 2022; 48: 2199
    • 16g Kumar K. J. Heterocycl. Chem. 2022; 59: 205
  • 17 Wentrup C. Chem Rev. 2017; 117: 4562
  • 18 Although the use of DMSO or toluene was ineffective for the transformation of 1a into 3a, DMF was found to be successful.
    • 19a Krupička M, Dopieralski P, Marx D. Angew. Chem. Int. Ed. 2017; 56: 7745
    • 19b Stauch T, Dreuw A. Chem. Sci. 2017; 8: 5567
  • 20 Demko ZP, Sharpless KB. J. Org. Chem. 2001; 66: 7945
  • 21 Sreedhar B, Kumar AS, Yada D. Tetrahedron Lett. 2011; 52: 3565
  • 22 Roh J, Artamonova TV, Vávrová K, Koldobskii GI, Hrabálek A. Synthesis 2009; 2175