Synlett 2024; 35(07): 826-831
DOI: 10.1055/a-2178-1701
letter

Solvent-Selective Synthesis of Diaryl Disulfides and Arylthio Acetic Acids Using Thioglycolic Acid and Copper Catalysts

Kyungmi Kim
,
Youngjin Shin
,
Junghyun Chae
This work was supported by Sungshin Women’s University Research Grants of 2020 (H20200111).


Abstract

An efficient Cu-catalytic protocol for the synthesis of diaryl disulfides from aryl iodides using thioglycolic acid as the sulfur source has been developed. This transformation was successful only in aqueous DMSO, and when the solvent system was switched to aqueous DMF, arylthio acetic acids, the immediate C–S coupling products, were obtained. Each synthetic protocol was optimized and applied to various aryl iodides to afford the corresponding products in good to excellent yields.

Supporting Information



Publication History

Received: 22 August 2023

Accepted after revision: 19 September 2023

Accepted Manuscript online:
19 September 2023

Article published online:
24 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Dar AA, Enjamuri N, Shadab M, Ali N, Khan AT. ACS Comb. Sci. 2015; 17: 671
    • 1b Sahu SC. J. Environ. Sci. Health, Part C: Environ. Carcinog. Ecotoxicol. Rev. 2002; 20: 61
    • 1c Xiong Y.-S, Yu Y, Weng J, Lu G. Org. Chem. Front. 2018; 5: 982
    • 1d Silva F, Khokhar SS, Williams DM, Saunders R, Evans GJ. S, Graz M, Wirth T. Angew. Chem. Int. Ed. 2018; 57: 12290
    • 1e Yang S, Feng B, Yang Y. J. Org. Chem. 2017; 82: 12430
    • 1f Lin J, Hu L, Chen C, Feng H, Yu Y, Yang Y, Zhou B. Org. Lett. 2021; 23: 1194
    • 1g Zhang L, Chou CP, Moo-Young M. Biotechnol. Adv. 2011; 29: 923
    • 2a Zhang Z, Bai Z.-W, Ling Y, He L.-Q, Huang P, Gu H.-X, Hu R.-F. Med. Chem. Res. 2018; 27: 1198
    • 2b Chandrasekhar S, Moorthy BS, Xie R, Topp EM. Pharm. Res. 2016; 33: 1370
    • 2c Shi W.-W, Shi C, Wang T.-Y, Li Y.-L, Zhou Y.-K, Zhang X.-H, Bierer D, Zheng J.-S, Liu L. J. Am. Chem. Soc. 2022; 144: 349
  • 3 Hernández M, Grande AM, Dierkes W, Bijleveld J, van der Zwaag S, García SJ. ACS Sustainable Chem. Eng. 2016; 4: 5776
  • 4 Zhang Q, Qu D.-H, Feringa BL, Tian H. J. Am. Chem. Soc. 2022; 144: 2022
    • 5a Bao Y, Yang X, Dai Z, Ji S, Zhou Q, Yang F. Adv. Synth. Catal. 2019; 361: 2154
    • 5b Zhang B, Zhang W, Wang J, Wang Q, Kambe N, Qiu R. Org. Lett. 2022; 24: 7918
    • 5c Arisawa M, Yamaguchi M. Molecules 2020; 25: 3595
    • 5d Kawȩcki R. J. Org. Chem. 2022; 87: 7514
  • 6 Choi J, Yoon NM. J. Org. Chem. 1995; 60: 3266
  • 7 Dhakshinamoorthy A, Alvaro M, Garcia H. Chem. Commun. 2010; 46: 6476
  • 8 Corma A, Ródenas T, Sabater M. J. Chem. Sci. 2012; 3: 398
  • 9 Zhang Z, Li W, Liu J, Chen X, Bu Y. J. Organomet. Chem. 2012; 706-707: 89
  • 10 Saxena A, Kumar A, Mozumdar S. J. Mol. Catal. A: Chem. 2007; 269: 35
  • 11 Tanaka K, Ajiki K. Tetrahedron Lett. 2004; 45: 25
  • 12 Lenardão EJ, Lara RG, Silva MS, Jacob RG, Perin G. Tetrahedron Lett. 2007; 48: 7668
    • 13a Bettanin L, Saba S, Galetto FZ, Mike GA, Rafique J, Braga AL. Tetrahedron Lett. 2017; 58: 4713
    • 13b Priefer R, Lee YJ, Barrios F, Wosnick JH, Lebuis A.-M, Farrell PG, Harpp DN, Sun A, Wu S, Snyder JP. J. Am. Chem. Soc. 2002; 124: 5626
    • 13c Oka M, Kozako R, Iida H. Synlett 2021; 32: 1227
  • 14 Kesavan V, Bonnet-Delpon D, Bégué J.-P. Synthesis 2000; 2: 223
  • 15 Vandavasi JK, Hu W.-P, Chen C.-Y, Wang J.-J. Tetrahedron Lett. 2011; 67: 8895
  • 16 Zolfigol MA. Tetrahedron Lett. 2001; 57: 9509
  • 17 Misra AK, Agnihotri G. Synth. Commun. 2004; 34: 1079
    • 18a Rathore V, Upadhyay A, Kumar S. Org. Lett. 2018; 20: 6274
    • 18b Upadhyay A, Jha RK, Batabyal M, Dutta T, Koner AL, Kumar S. Dalton Trans. 2021; 50: 14576
    • 18c Talla A, Driessen B, Straathof NJ. W, Milroy L.-G, Brunsveld L, Hessel V, Noël T. Adv. Synth. Catal. 2015; 357: 2180
    • 18d Bottecchia C, Erdmann N, Tijssen PM. A, Milroy L.-G, Brunsveld L, Hessel V, Noël T. ChemSusChem 2016; 9: 1781
  • 19 Xiao H, Chen J, Liu M, Wu H, Ding J. Phosphorus, Sulfur Silicon Relat. Elem. 2009; 184: 2553
    • 20a Ribeiro Morais G, Falconer RA. Tetrahedron Lett. 2007; 48: 7637
    • 20b Kandemir D, Luleburgaz S, Gunay US, Durmaz H, Kumbaraci V. Macromolecules 2022; 55: 7806
  • 21 Ayodele ET, Olajire AA, Amuda OS, Oladoye SO. Bull. Chem. Soc. Ethiop. 2003; 17: 53
  • 22 Brzezinskal E, Ternay AL. J. Org. Chem. 1994; 59: 823
    • 23a Takagi K. Chem. Lett. 1985; 14: 1307
    • 23b Xu H.-J, Liang Y.-F, Cai Z.-Y, Qi H.-X, Yang C.-Y, Feng Y.-S. J. Org. Chem. 2011; 76: 2296
    • 23c Liu Y, Kim J, Seo H, Park S, Chae J. Adv. Synth. Catal. 2015; 357: 2205
    • 23d Xue H, Jing B, Liu S, Chae J, Liu Y. Synlett 2017; 28: 2272
  • 24 Li Z, Ke F, Deng H, Xu H, Xiang H, Zhou X. Org. Biomol. Chem. 2013; 11: 2943
  • 25 Soleiman-Beigi M, Izadi A. J. Chem. 2013; 725265
  • 26 Soleiman-Beigi M, Arzehgar Z. Synlett 2018; 29: 986
  • 27 Abbasi M, Mohammadizadeh MR, Saeedi N. New J. Chem. 2016; 40: 89
  • 28 Firouzabadi H, Iranpoor N, Abbasi M. Tetrahedron Lett. 2010; 51: 508
    • 29a Dong Z.-B, Liu X, Bolm C. Org. Lett. 2017; 19: 5916
    • 29b Ma J, Gong Z.-Y, Dong Z.-B. J. Sulfur Chem. 2023; 44: 260
    • 30a Shen LH, Wang SL, Li HY, Lai YS, Liu LJ. Asian J. Chem. 2013; 25: 3294
    • 30b Ling Y, Ye X, Ji H, Zhang Y, Lai Y, Peng S, Tian J. Bioorg. Med. Chem. 2010; 18: 3448
    • 31a Ji Q, Gao J, Wang J, Yang C, Hui X, Yan X, Wu X, Xie Y, Wang M.-W. Bioorg. Med. Chem. Lett. 2005; 15: 2891
    • 31b Tu S, Yuan H, Hu J, Zhao C, Chai R, Cao H. Chem. Pharm. Bull. 2014; 62: 1185
    • 31c Grollier K, De Zordo-Banliat A, Bourdreux F, Pegot B, Dagousset G, Magnier E, Billard T. Chem. Eur. J. 2021; 27: 6028
    • 31d Wang T, Peng T, Wen X, Wang G, Sun Y, Liu S, Zhang S, Wang L. Molecules 2019; 24: 4034
    • 31e Yeh P.-P, Daniels DS. B, Cordes DB, Slawin AM. Z, Smith AD. Org. Lett. 2014; 16: 964
  • 32 Xiao Y, Xu Y, Cheon H.-S, Chae J. J. Org. Chem. 2013; 78: 5804
  • 33 For the use of C–S coupling partner, see: Panda N, Jena AK, Mohapatra S. Appl. Catal. A 2012; 433-434: 258
  • 34 Yiannios CN, Karabinos JV. J. Org. Chem. 1963; 28: 3246
  • 35 General Procedure for the Synthesis of Diaryl Disulfides Cu(OAc)2·H2O (0.1 mmol) and K2CO3 (2.0 mmol) were charged in a test tube, which was degassed and filled with argon. Aryl iodide (1.0 mmol), DMSO (2.0 mL), and H2O (1.0 mL) were added in the test tube, followed by thioglycolic acid (3.0 mmol). The reaction mixture was stirred at 120 °C for 16 h. After cooled to room temperature, the reaction mixture was neutralized with 1 N HCl solution. Then, the aqueous phase was extracted with ethyl acetate (2 × 30 mL). The combined organic layers were washed with H2O and brine, dried over Na2SO4, and concentrated in vacuo. Purification of the crude product by column chromatography on silica gel afforded the desired product (eluent: n-hexane to n-hexane–ethyl acetate (20:1)). 1,2-Di-p-tolyldisulfane (2b) 1H NMR (500 MHz, chloroform-d): δ = 7.38 (d, J = 8.2 Hz, 4 H), 7.10 (d, J = 7.9 Hz, 4 H), 2.32 (s, 6 H).13C{1H} NMR (125 MHz, chloroform-d): δ = 137.4, 133.9, 129.8, 128.5, 21.1. MS (EI): m/z = 246.05.
  • 36 General Procedure for the Synthesis of Arylthio Acetic Acid CuI (0.05 mmol) and K2CO3 (4.0 mmol) were charged in a test tube, which was degassed and filled with argon. Aryl iodide (1.0 mmol), DMF (2.0 mL), and H2O (1.0 mL) were added followed by thioglycolic acid (3.0 mmol). The reaction mixture was stirred at 120 °C for 20 h. After cooled to room temperature, the reaction mixture was acidified with 1 N HCl solution. The aqueous phase was extracted with ethyl acetate twice, and the combined organic layers were washed with H2O and brine, dried over Na2SO4, and concentrated in vacuo. Purification of the crude product by column chromatography on silica gel afforded the desired product [eluent: n-hexane: ethyl acetate (1:2) to ethanol–dichloromethane (1:9)]. 4-Methyl Phenyl Thioacetic Acid (3b) FT-IR: 2917, 2688, 1696, 1200, 798 cm–1. 1H NMR (500 MHz, chloroform-d): δ = 7.38–7.29 (m, 2 H), 7.13 (d, J = 8.4 Hz, 2 H), 3.62 (s, 2 H), 2.33 (s, 3 H). 13C{1H} NMR (125 MHz, chloroform-d): δ = 175.3, 137.7, 131.0, 130.6, 129.9, 37.3, 21.1. HR-MS (EI): m/z calcd for C9H10O2S: 182.0404; found: 182.0402.