Synlett
DOI: 10.1055/a-2245-6718
account

Small-Molecule Activation by Low-Coordinated Germanium Compounds

Takahiro Sasamori


Dedicated to Emeritus Professor Takayuki Kawashima on the occasion of his 77th birthday.

Abstract

We have been interested in the differences between the properties of low-coordinated carbon compounds and their heavier homologues based on elements of group 14, e.g., Si and Ge. Fundamental research on the synthesis and characterization of divalent and multiply bonded compounds of heavier group 14 elements has led to a variety of isolated low-coordinated species of heavier group 14 elements that can replace transition metals in small-molecule transformations. We have focused on low-coordinated germanium compounds with double or triple bonds between germanium atoms, as well as germanium-containing aromatic compounds. Once isolated, the reactivity of these low-coordinated germanium compounds was examined with regard to small-molecule activation. In this account, the reactivity patterns of these compounds will be described.

1 Introduction

2 1,2-Dibromodigermenes and Bromogermylenes

3 Digermynes

4 1,2-Digermacyclobutene

5 1,3-Digerma-2-silaallene

6 Digerma-Aromatic Compounds

7 Germanium-Catalyzed Cyclotrimerization of Alkynes

8 Summary



Publication History

Received: 16 December 2023

Accepted after revision: 15 January 2024

Accepted Manuscript online:
15 January 2024

Article published online:
16 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 1b Miyaura N. Bull. Chem. Soc. Jpn. 2008; 81: 1535
    • 1c Suzuki A, Yamamoto Y. Chem. Lett. 2011; 40: 894
    • 2a Suzuki A. Angew. Chem, Int. Ed. 2011; 50: 6722
    • 2b Negishi E.-i. Angew. Chem. Int. Ed. 2011; 50: 6738
    • 2c Seechurn CC. C. J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 4a Yadav S, Saha S, Sen SS. ChemCatChem 2016; 8: 486
    • 4b Hadlington TJ, Driess M, Jones C. Chem. Soc. Rev. 2018; 47: 4176
    • 4c Chu T, Nikonov GI. Chem. Rev. 2018; 118: 3608
    • 4d Weetman C, Inoue S. ChemCatChem 2018; 10: 4213
    • 5a Fischer RC, Power PP. Chem. Rev. 2010; 110: 3877
    • 5b Nagase S. Bull. Chem. Soc. Jpn. 2014; 87: 167
    • 5c Mizuhata Y, Sasamori T, Tokitoh N. Chem. Rev. 2009; 109: 3479
    • 6a Kira M. Organometallics 2011; 30: 4459
    • 6b Nori-Shargh D, Mousavi SN, Boggs JE. J. Phys. Chem. A 2013; 117: 1621
    • 6c Nori-Shargh D, Weinhold F. J. Phys. Chem. A 2018; 122: 4490
    • 6d Wedler HB, Wendelboe P, Tantillo DJ, Power PP. Dalton Trans. 2020; 49: 5175
    • 6e Power PP. Chem. Commun. 2003; 2091
    • 6f Power PP. Organometallics 2007; 26: 4362
    • 6g Lein M, Krapp A, Frenking G. J. Am. Chem. Soc. 2005; 127: 6290
    • 6h Landis CR, Weinhold F. J. Am. Chem. Soc. 2006; 128: 7335
    • 6i Jacobsen H. Chem. Eur. J. 2010; 16: 976

      For examples, see:
    • 8a Mandal SK, Roesky HW. Acc. Chem. Res. 2012; 45: 298
    • 8b Spikes GH, Fettinger JC, Power PP. J. Am. Chem. Soc. 2005; 127: 12232
  • 10 Goldberg DE, Harris DH, Lappert MF, Thomas KM. J. Chem. Soc., Chem. Commun. 1976; 261
  • 11 West R, Fink MJ, Michl J. Science 1981; 214: 1343
  • 12 Jutzi P, Leue C. Organometallics 1994; 13: 2898
    • 13a Simons RS, Pu LH, Olmstead MM, Power PP. Organometallics 1997; 16: 1920
    • 13b Pu LH, Olmstead MM, Power PP, Schiemenz B. Organometallics 1998; 17: 5602
    • 13c Stender M, Pu LH, Power PP. Organometallics 2001; 20: 1820
  • 14 Richards AF, Phillips AD, Olmstead MM, Power PP. J. Am. Chem. Soc. 2003; 125: 3204
    • 15a Sasamori T, Sugiyama Y, Takeda N, Tokitoh N. Organometallics 2005; 24: 3309
    • 15b Sasamori T, Sugahara T, Agou T, Guo J.-D, Nagase S, Streubel R, Tokitoh N. Organometallics 2015; 34: 2106
    • 16a Promyslov VM, Faustov VI, Egorov MP. Russ. Chem. Bull. 2006; 55: 1883
    • 16b Meiners F, Saak W, Weidenbruch M. Z. Anorg. Allg. Chem. 2002; 628: 2821
    • 16c Ishida S, Iwamoto T, Kira M. Heteroat. Chem. 2011; 22: 432
    • 16d Lai TY, Guo J.-D, Fettinger JC, Nagase S, Power PP. Chem. Commun. 2019; 55: 405
  • 17 Sugahara T, Ferao AE, Planells AR, Guo J.-D, Aoyama S, Igawa K, Tomooka K, Sasamori T, Hashizume D, Nagase S, Tokitoh N. Dalton Trans. 2020; 49: 7189
    • 18a Ni R, Mitsuda N, Kashiwagi T, Igawa K, Tomooka K. Angew. Chem. Int. Ed. 2015; 54: 1190
    • 18b Igawa K, Aoyama S, Kawasaki Y, Kashiwagi T, Seto Y, Ni R, Mitsuda N, Tomooka K. Synlett 2017; 28: 2110
    • 19a Stender M, Phillips AD, Wright RJ, Power PP. Angew. Chem. Int. Ed. 2002; 41: 1785
    • 19b Pu LH, Phillips AD, Richards AF, Stender M, Simons RS, Olmstead MM, Power PP. J. Am. Chem. Soc. 2003; 125: 11626
  • 20 Sugiyama Y, Sasamori T, Hosoi Y, Furukawa Y, Takagi N, Nagase S, Tokitoh N. J. Am. Chem. Soc. 2006; 128: 1023
    • 21a Lein M, Krapp A, Frenking G. J. Am. Chem. Soc. 2005; 127: 6290
    • 21b Takagi N, Nagase S. Organometallics 2001; 20: 5498
  • 22 Peng Y, Ellis BD, Wang XP, Fettinger JC, Power PP. Science 2009; 325: 1668
    • 23a Ohtaki T, Ando W. Organometallics 1996; 15: 3103
    • 23b Wiberg N, Vasisht SK, Fischer G, Mayer P. Z. Anorg. Allg. Chem. 2004; 630: 1823
    • 23c Kinjo R, Ichinohe M, Sekiguchi A, Takagi N, Sumimoto M, Nagase S. J. Am. Chem. Soc. 2007; 129: 7766
  • 24 Sasamori T, Sugahara T, Agou T, Sugamata K, Guo J.-D, Nagase S, Tokitoh N. Chem. Sci. 2015; 6: 5526
  • 25 Sugahara T, Guo J.-D, Sasamori T, Nagase S, Tokitoh N. Chem. Commun. 2018; 54: 519
  • 26 Sugahara T, Tokitoh N, Sasamori T. Inorganics 2017; 5: 79
  • 27 Sugahara T, Sasamori T, Tokitoh N. Angew. Chem. Int. Ed. 2017; 56: 9920
  • 28 Majhi PK, Sasamori T. Chem. Eur. J. 2018; 24: 9441
  • 29 Iwamoto T, Masuda H, Kabuto C, Kira M. Organometallics 2005; 24: 197
    • 30a Kinjo R, Ichinohe M, Sekiguchi A, Takagi N, Sumimoto M, Nagase S. J. Am. Chem. Soc. 2007; 129: 7766
    • 30b Han JS, Sasamori T, Mizuhata Y, Tokitoh N. Dalton Trans. 2010; 39: 9238
  • 31 Sugahara T, Guo J.-D, Sasamori T, Karatsu Y, Furukawa Y, Espinosa Ferao A, Nagase S, Tokitoh N. Bull. Chem. Soc. Jpn. 2016; 89: 1375
    • 32a Cui CM, Olmstead MM, Power PP. J. Am. Chem. Soc. 2004; 126: 5062
    • 32b Zhao L, Jones C, Frenking G. Chem. Eur. J. 2015; 21: 12405
    • 32c Tashkandi NY, Pavelka LC, Caputo CA, Boyle PD, Power PP, Baines KM. Dalton Trans. 2016; 45: 7226
  • 33 Sugahara T, Guo J.-D, Hashizume D, Sasamori T, Tokitoh N. J. Am. Chem. Soc. 2019; 141: 2263
  • 34 Sugahara T, Sasamori T, Tokitoh N. J. Am. Chem. Soc. 2018; 140: 11206
  • 35 Sugahara T, Sasamori T, Tokitoh N. Chem. Lett. 2018; 47: 719
    • 36a Tokitoh N, Sasamori T, Okazaki R. Chem. Lett. 1998; 27: 725
    • 36b Sasamori T, Mieda E, Tokitoh N. Bull. Chem. Soc. Jpn. 2007; 80: 2425
  • 37 Sugahara T, Guo J.-D, Sasamori T, Nagase S, Tokitoh N. Angew. Chem. Int. Ed. 2018; 57: 3499