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Introduction

Machine-learning algorithms are one of the most disruptive
new technologies, but their use in medicine has been con-
troversial.1 They can handle multidimensional data, find
patterns humans do not perceive, and model complex inter-
actions.2 This makes them ideal for many real-world appli-
cations. Already now, they are part of our everyday lives
including navigation apps, content recommendation algo-
rithms (e.g., YouTube or TikTok), and smartphone voice
assistants. Especially for the future of medicine, they pose
a significant chance as healthcare data steadily increases
while the number of healthcare workers decreases.3

Still, many people are unsure if machine-learning algo-
rithms can and should be used in their current form in
clinical medicine.4,5 Concerns include questions about pri-
vacy, unclear regulatory oversight, biases against certain

genders and races, and dangerous implementations.6–10 A
prime example is the EPIC sepsis predictionmodel rolled out
during the pandemic without regulatory approval. It was
supposed to alert doctors to sepsis risk but often gave false
alarms, leading toworse health outcomes.11 Major mistakes,
such as including antibiotic therapy as a predictor for sepsis,
happened because clinical experts were not involved.12

However, such experiences have led to a better under-
standing of what is needed to develop safe and effective
machine-learning algorithms. It requires more than techni-
cal skills; life scientists and doctors are essential in defining
clear clinical use cases, guiding development, and testing
models in appropriately designed clinical studies.13 This also
means that the ball is now in our court, physicians, and
clinical researchers alike. We need to understand how ma-
chine-learning algorithms work, their strengths and weak-
nesses, and how we can develop them. In this way, they can
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Abstract The use of machine-learning (ML) algorithms in medicine has sparked a heated
discussion. It is considered one of the most disruptive general-purpose technologies
in decades. It has already permeated many areas of our daily lives and produced
applications that we can no longer do without, such as navigation apps or translation
software. However, many people are still unsure if ML algorithms should be used in
medicine in their current form. Doctors are doubtful to what extent they can trust the
predictions of algorithms. Shortcomings in development and unclear regulatory
oversight can lead to bias, inequality, applicability concerns, and nontransparent
assessments. Past mistakes, however, have led to a better understanding of what is
needed to develop effective models for clinical use. Physicians and clinical researchers
must participate in all development phases and understand their pitfalls. In this review,
we explain the basic concepts of ML, present examples in the field of thrombosis and
hemostasis, discuss common pitfalls, and present a methodological framework that
can be used to develop effective algorithms.
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become useful tools that improve daily clinical practice and
patient outcomes.

This review aims to introduce the fundamental principles
of medical machine learning, outline potential use cases, and
present common pitfalls in machine learning. We also dis-
cuss how to avoid these pitfalls using a methodological
framework.

Fundamentals of Machine Learning

Machine-learning models are computer programs designed
to perform tasks that would normally require human intelli-
gence.14 While they have not yet matched human experts in
many situations, they offer key advantages: (1) they can
handle multidimensional data from various sources, (2)
they manage probabilities very well, and (3) they can find
patterns in data that humans might miss by modeling
complex interactions.15 However, they lack other attributes
of human intelligence, such as creativity and flexibility,
which are also important when solving problems in
medicine.16 ►Fig. 1 contrasts the strengths of artificial and
human intelligence.

Machine-learning algorithmshave threemain capabilities
useful for medical applications: classification, pattern recog-
nition, and optimization.17 Different models are available,
ranging from logistic regression to complex ones like deep
neural networks.18 In the following section, we will describe
commonmachine-learning approaches andmodels typically
used (►Fig. 2).

Diagnosis and prognosis are classification problems.14

Patients need to be classified as having a disease or not or

predicted to experience disease progression. Automated
blood cell counting is another example of a classification
problem.19 Are the cells granulocytes or lymphocytes and
which subtypes? A typical approach for classification prob-
lems is supervised learning, where the training data are
labeled according to a reference standard, such as expert
panel ratings, a reference laboratory test, or follow-up data.20

This means that even a perfectly trained model will only
perform as well as the reference test. Standard models used
for supervised learning include logistic regression, random
forests, and support vector machines.20 As an example, our
group recently developed a machine-learning–based deci-
sion support tool for the diagnosis of heparin-induced
thrombocytopenia (HIT; https://toradi-hit.dbmr.unibe.ch/
).21 We demonstrated that our model can accurately predict
HIT as defined by the reference standard, thus solving a
salient diagnostic dilemma.21

Anothermain task formachine-learningmodels is pattern
recognition. This can be used for subgroup identification.22

An unsupervised learning approach is often employed,
meaning the model works with unlabeled data where the
true diagnosis is unknown.23 The model aims to group
patients based on shared characteristics, but these groups
do not have to correlatewith the outcome in question. In this
situation, researchers and experts must assign meaning to
the identified clusters.24 Typical models used for unsuper-
vised learning include K-nearest neighbor, hierarchical clus-
tering, and Gaussian mixture models.23 As an example, a
group fromMainz used a hierarchical clustering algorithm to
identify endotypes (based on clinical features at presenta-
tion) in patients with acute venous thromboembolism.25

Fig. 1 Illustration of the strengths of human and artificial intelligence [rerif].
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These endotypes were found to be associated with differ-
ences in recurrence and death rates.25However, validation is
still pending.

A typical optimization problem is treatment monitoring,
typically tackled with a technique called reinforcement
learning.26 These algorithms interact with their environ-
ment and receive rewards when they achieve specific goals.
Available models include Q-learning and Asynchronous Ad-
vantage Actor-Critic.26 For example, using retrospective data
from the “Multiparameter IntelligentMonitoring in Intensive
Care II” (MIMIC-II) dataset, Nemati et al proposed a rein-
forcement learning-based algorithm for monitoring unfrac-
tionated heparin treatment.27 The model provided dosing
recommendations for heparin and was rewarded during
training when the activated partial thromboplastin time
was within 60 to 100 seconds. While themodel gave sensible
dosing recommendations in the validation dataset, it has yet
to be validated prospectively or in live patients.

Besides the main methods mentioned earlier, many other
approaches and mixed methods are available. For example,
semisupervised learning first uses a small set of labeled data
to train the initial iteration of a classifier, then refines its
predictions with unlabeled data.28 The field is rapidly evolv-
ing, with many new algorithms developed every year.

Another important development was made possible by
the steady increase in computing power: generative artificial
intelligence (AI) models. The most important difference to
the previous methods is that generative AI generates new,

previously nonexistent content. Most of these models are
based on foundationalmodels trained on enormous datasets,
such as social media posts, internet articles, or code reposi-
tories.29 For example, large language models generate text
based on user prompts by determining which next part of a
sentence (encoded as a token) fits best.30 The most well-
known example is OpenAI’s ChatGPT. The latest version,
GPT-4, can handle multimodal prompt data, including files
and images.31 These models can then be further fine-tuned
for specific applications.32 While their performance is im-
pressive, a significant risk with these large language models
is “AI hallucinations,”where themodels generate completely
inaccurate answers due to issues like overfitting, extreme
complexity, or biases in the training data.33

Use-Cases of Machine Learning in Medicine

Currently, most machine-learningmodels focus on twomain
goals: (1) improving processes through automation or sim-
plification and (2) improving quality or utility. While pro-
cess-enhancing models sometimes operate in a legal gray
area, such as administrative software, quality-enhancing
models are typically considered part of a medical device or
“software as a medical device” and therefore require regula-
tory approval.34

Models that improve processes include large language
models to generate discharge or handover notes automati-
cally. For this purpose, Epic, a prominent U.S.-based

Fig. 2 Overview of key machine-learning capabilities. [rerif]
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electronic health record vendor, has announced plans to
integrate GPT-4 into their systems.35 However, these devel-
opments mainly focus on the U.S. and English markets,
raising questions about how a similar model would perform
in other medical cultures. Another proposed process im-
provement involves using AI-powered chatbots to answer or
triage patients’ medical questions. A preliminary study by
Ayers et al compared physicians’ answers to questions posted
on a public medical forumwith those given by GPT-3.5.36 An
expert panel evaluated the empathy and quality of the
answers and decided which they preferred. The panel fa-
vored the chatbot’s answers in 78.6% of the cases and rated
the quality and empathy of the chatbot’s responses higher.36

Machine-learning models that focus on quality improve-
ment are mostly still in the premarket or research-use-only
phase, and very few have made it to clinical practice.37 As an
example of a model that aims to improve quality, Nafee et al
published a machine-learning model to improve venous
thrombosis prediction in acutely ill patients using data
from the phase 3 clinical trial for betrixaban.38 Their ensem-
ble model, which combines different architectures, outper-
formed the established IMPROVE score.38 While their model
was developed with high-quality clinical data, the descrip-
tion of themethods used is brief. Besides, themodel is not yet
validated, meaning the performance might differ in other
populations.

As another example, Zaboras et al developed a classifier to
predict bleeding in cancer patients on anticoagulation for
cancer-associated thrombosis.39 Their Extreme Gradient
Boosting model outperformed the CAT-BLEED score, the
only available score for this purpose, in predicting bleedings
at 90, 365, and 365þ90 days after VTE.39 However, the
authors noted that the model had limited sensitivity and
would require refinement before clinical use. Additionally,
methodological limitations such as reliance on registry data,
limited calibration, and lack of external validation arose.

Besides these clinical use cases, machine-learningmodels
can also improve or simplify research.40 One example is the
automated detection of certain diseases in electronic health
records for retrospective studies. While diagnosis codes are
often available, their accuracy varies, especially since it is not
always clear if the diagnosis is current or historical. A recent
meta-analysis by Lam et al pooled data from eight studies on
natural language processing for venous thromboembolism
detection.41 The sensitivity and specificity of these models
for detecting venous thromboembolism from free-text radi-
ology or narrative reports in electronic health records were
high. However, most of these studies were conducted in
English-speaking countries.

The Implementation Gap

Despite their potential, few machine-learning models are
currently used in clinical practice. In the European Union
(EU) and the United States, machine-learning models must
be registered as medical devices, except for those in certain
legal grey areas as described earlier.34 The EU’s approval
process is decentralized and handled by “Notified Bodies,”

private institutions that perform conformity assessments.42

Although the EU has had a centralized medical device regis-
ter (EUDAMED) since 2011, it does not list machine-learn-
ing–enabled devices specifically.43 Therefore, we will
describe the landscape of machine-learning models for clini-
cal use based on the American Food and Drug Administra-
tion’s (FDA) list.

As of May 13, 2024, the FDA has approved 882 AI or
machine-learning–enabled devices.44 Most of these devices
(671; 76.1%) are in radiology, which adopted machine learn-
ing early. In contrast, the hematology section has only 17
devices (1.9%). These are mostly computer vision–based
peripheral blood smear analyzers for large medical labs.
One example is the Scopio X100HT, which, according to
the manufacturer, processes 40 slides per hour.45,46 Other
blood count devices with different intended purposes in-
clude the Sight OLO, a point-of-care device using cassettes for
differential blood counts, and the Athelas Home and One,
patient self-sample devices that detect neutropenia in
patients treated with Clozapine.47 Both were validated by
their respective manufacturers and found to perform simi-
larly with established hematology analyzers. Additionally,
23andMe has registered a device estimating hereditary
thrombophilia risk, focusing on mutations like factor V Lei-
den and prothrombin G20210A.48

Despite the large body of research in machine-learning
models, very few have made it to clinical practice. The
reasons for this are manifold. Often, models are not devel-
oped with a clear clinical question in mind but due to the
availability of data. This leads to clinically useless models.
Additionally, machine-learning experts and clinicians often
do not work in the same teams. All these points toward the
need for a concise methodological framework for the devel-
opment and validation of machine-learning models. In the
next section, we are going to outline such a framework.49–52

A Methodological Framework to Avoid
Common Pitfalls

Drawing on our experience with new biomarkers and other
diagnostic tests, we proposed a step-by-step framework to
ensure clear clinical use cases, validity, and efficiency.49–52 In
the following paragraphs,wewill discuss themost important
development and implementation pitfalls and how to avoid
them (►Fig. 3).

Defining a Clinical Need and Research Question
Defining a clinical use case is the first step in developing any
useful medical tool. Devices that do not meet a clear clinical
need are not used, wasting scarce resources. These tools
might even misinform physicians, potentially harming
patients.53 Therefore, the first phase of development should
involve focus group discussions with relevant stakeholders,
including patients and physicians.54 The European Federa-
tion of Clinical Chemistry and Laboratory Medicine outlines
four key questions to guide these discussions: (1) What
clinical management problem needs solving? (2) Are there
existing solutions? (3) What improvement or contribution
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will the new tool provide? (4) Is the new tool feasible in
everyday clinical practice?49 From the clinical need, a re-
search question can be derived, clearly defining the study
design, patient population, and desired outcomes.

Training Data Selection and Face Validity
One of the key advantages of machine-learning models is
their ability to detect subtle data patterns, but this also
makes them prone to overfitting, where they find patterns
only present in the training data.17 To avoid overfitting,
selecting high-quality training data is crucial. The first
consideration should be the appropriate patient population
and study design.55 Ideally, a model should be developed for
the specific patient population it will serve. For diagnostic
models, this means including patients suspected of having
the disease, and for prognostic models, it should include
patients at risk.55 Prospective studies or randomized clinical
trials are generally preferable to retrospective ones because
they collect predictors before outcomes, inherently blinding
the study. However, careful planning is necessary to avoid
biases, such as selection or spectrum bias.56 Retrospective
studies, while less resource-intensive and able to generate
larger datasets, are often biased.

To ensure a clinically useful model, special considerations
are critical with regard to the selection of predictors (feature
engineering and selection). While features with the highest
predictive value should be selected from a strictly machine-
learning perspective, additional factors are important in
medicine.57 Some features, like biopsies, may not be ethical

or economically viable to collect from every patient. There-
fore, it is important also to involve focus groups during the
feature selection process and consider these factors. Addi-
tionally, since physicians are ultimately responsible for pa-
tient care, face validity and transparency are essential.58 Face
validity, a psychological concept, indicates whether a test
appears to measure what it is supposed to. Tests with low
face validity risk are not being used.58 Surveys of U.S. physi-
cians show that while most are open to using machine-
learning models, they require an understanding of the mod-
el’s inputs and how they arrive at their outputs.59 This
highlights the importance of also using interpretable ma-
chine-learning techniques to trace how a model makes its
predictions.60

Implementation
The implementation of a model is often overlooked but
crucial for clinical adoption. Even the most accurate model
is useless if not used. Given the time constraints doctors face,
the tool must integrate smoothly into the current work-
flow.61 Ideally, it should be implemented within the elec-
tronic health record or laboratory information system.
Another straightforward method is developing a web appli-
cation using frameworks like Shiny for R or Flask for Python,
which provide easy implementation for researchers.62,63

External Validation
Validating the model in an external cohort is essential to
confirm its diagnostic performance.64 Internal validation,

Fig. 3 Areas of potential pitfalls in the development of medical machine learning. [rerif]
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often the final development phase, involves testing the
model against a hold-out or time-displaced set from the
original training cohort. However, this provides only a rough
performance estimate.17 External validation is necessary to
obtain an unbiased estimate and identify potential over-
fitting.64 This involves conducting a similar study to the
development study, applying the same considerations. Ad-
ditionally, the impact of the diagnostic tool on patient out-
comes can be measured through a randomized controlled
trial, although this is rarely done due to high costs.

Regulatory Approval
Regulatory approval is the basis for the legal use and insur-
ance reimbursement of a machine-learning model in clinical
practice. In the European Union, machine-learning models
are classified as “software as a medical device” and are
governed by the Medical Device Regulation (MDR).34 The
MDRuses a risk-based approach, requiring all but the lowest-
risk categories to undergo systematic clinical evaluation and
post-market surveillance.34 The regulation also emphasizes
the importance of prospective real-world data. Obtaining
approval is a long and costly process, feasible only in collab-
oration with an industry partner. Without regulatory ap-
proval, models can effectively be used only as research tests
that should not impact patient care.

Conclusion

Machine-learning algorithms hold the potential to transform
healthcare by enhancing care and optimizing processes amid
rising costs and personnel shortages. Despite the promising
advancements, an implementation gap remains due to vari-
ous methodological and practical challenges. Ensuring high-
quality training data, appropriate feature selection, and
robust validation, including external cohort validation, are
critical steps to mitigate overfitting and confirm perfor-
mance. Effective integration into clinical workflows and
obtaining regulatory approval, which involves systematic
evaluation and post-market surveillance, are essential for
clinical adoption. By adhering to a comprehensive methodo-
logical framework, these challenges can be addressed, en-
ablingmachine-learningmodels to realize their full potential
in clinical practice.
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