Subscribe to RSS
DOI: 10.1055/s-0029-1218357
Synthesis of Carbon E,E-Diene Chain-Linked Dinucleotide Analogues
Publication History
Publication Date:
11 November 2009 (online)
Abstract
The synthesis of a dinucleotide thymidine-thymidine linked by a carbon E,E-diene chain is described. This dimer is synthesized by a coupling reaction between an (E)-vinylstannane and an (E)-iodovinyl partner prepared from acetylenic parents, which are both available from thymidine in six and five steps, respectively. In addition, a new efficient access to 3′-C-formyl thymidine is presented.
Key words
antisense agents - nucleobases - Stille reactions - alkynes - isomerizations
- 1
Zamecnik PC.Stephenson ML. Proc. Natl. Acad. Sci. U.S.A. 1978, 75: 280 -
2a
Applied Antisense Oligonucleotide Technology
Stein CA.Krieg AM. Wiley-Liss; New York: 1998. -
2b
Lee LK.Roth CM. Curr. Opin. Biotechnol. 2003, 14: 505 -
2c
Crooke ST. Annu. Rev. Med. 2004, 55: 61 -
2d
Van Aerschot A. Antiviral Res. 2006, 71: 307 -
2e
Rayburn ER.Zhang R. Drug Discov. Today 2008, 13: 513 -
2f
Seth PP.Siwkowski A.Allerson CR.Vasquez G.Lee S.Prakash TP.Wancewicz EV.Witchell D. J. Med. Chem. 2009, 52: 10 ; and cited literature - 3
Sorbera LA.Rabasseda X.Castaner J. Drugs Future 1998, 23: 1168 - For reviews on this topic, see:
-
4a
De Mesmaeker A.Häner R.Martin P.Moser HE. Acc. Chem. Res. 1995, 28: 366 -
4b
Kurreck J. Eur. J. Biochem. 2003, 270: 1628 -
4c
Aboul-Fadl T. Curr. Med. Chem. 2005, 12: 763 -
4d
Seth PP.Siwkowski A.Allerson CR.Vasquez G.Lee S.Prakash TP.Wancewicz EV.Witchell D.Swayze EE. J. Med. Chem. 2009, 52: 10 ; and cited literature -
4e For a very interesting
discussion in several aspects of nucleic acids research in the different
areas, including antisense oligonucleotides, see:
Hecht SM.
J. Am. Chem. Soc. 2009, 131: 3791 -
5a
De Mesmaeker A,Lebreton J, andWaldner A. inventors; WO 92/20,823. ; Chem. Abstr. 1993, 118, 192190m -
5b
De Mesmaeker A,Lebreton J,Waldner A,Bévièrre M.-O, andLesueur C. inventors; WO 95/20,597. ; Chem. Abstr. 1996, 124, 202954d - 6 For a review on amide substituted
oligodeoxynucleotide analogues, see:
De Mesmaeker A.Waldner A.Lebreton J.Fritsch V.Wolf RM. In Carbohydrate Modifications in Antisense ResearchSanghvi YS.Cook PD. ACS Symposium Series 580, ACS; Washington DC: 1994. p.24-39 - 7 For more work in this field, see:
De Mesmaeker A.Lebreton J.Jouanno C.Fritsch V.Wolf RM.Wendeborn S. Synlett 1997, 1287 ; and cited literature - 8
Rozners E.Katkevica D.Bizdena E.Strömberg R.
J. Am. Chem. Soc. 2003, 125: 12125 - 9
Whelan J. Drug Discov. Today 2005, 10: 1014 - 10
Wendeborn S.Wolf R.De Mesmaeker A. Tetrahedron Lett. 1995, 36: 6879 -
11a
Lebreton J.De Mesmaeker A.Waldner A. Synlett 1994, 54 -
11b
De Mesmaeker A.Waldner A.Sanghvi YS.Lebreton J. Bioorg. Med. Chem. Lett. 1994, 4: 395 - 12
Sharma RA.Bobeck M. J. Org. Chem. 1978, 43: 367 -
14a
Muller S.Liepold B.Roth GJ.Bestmann HJ. Synlett 1996, 521 -
14b
Ohira S. Synth. Commun. 1989, 19: 561 - The Bestmann-Ohira reagent is prepared by treatment of dimethyl(2-oxopropyl)phosphonate with tosylazide in the presence of NaH followed by purification on silica gel chromatography, see:
-
14c
Callant P.D’Haenens L.Vandewalle M. Synth. Commun. 1984, 14: 155 - 15
Wnuk SF.Robins MJ. Can. J. Chem. 1993, 71: 192 -
16a
Wnuk SF.Yuan C.-S.Borchardt RT.Balzarini J.De Clercq E.Robins MJ. J. Med. Chem. 1994, 37: 3579 -
16b
Wnuk SF.Ro B.-O.Valdez CA.Lewandowska E.Valdez NX.Sacasa PR.Yin D.Zhang J.Borchardt RT.De Clercq E. J. Med. Chem. 2002, 45: 2651 -
16c
Rapp M.Haubrich TA.Perrault J.Mackey ZB.McKerrow JH.Chiang PK.Wnuk SF. J. Med. Chem. 2006, 49: 2096 - 17
Jung PMJ.Burger A.Biellmann J.-F. J. Org. Chem. 1997, 62: 8309 - 18
Thibonnet J.Abarbri M.Parrain J.-L.Duchêne A. Tetrahedron 2003, 56: 4433 - 20
Takai K.Nitta K.Utimoto K. J. Am. Chem. Soc. 1986, 108: 7408 - For recent examples, see:
-
21a
Van Daele I.Munier-Lehmann H.Froeyen M.Balzarini J.Van Calenbergh S. J. Med. Chem. 2007, 50: 5281 -
21b
Nuzzi A.Massi A.Dondoni A. QSAR Comb. Sci. 2007, 26: 1191 - 22
Sanghvi YS.Bharadwaj R.Debart F.De Mesmaeker A. Synthesis 1994, 1163 -
23a
Hanessian S.Giroux S.Larsson A. Org. Lett. 2006, 8: 5481 -
23b See also:
Wipf P.Spencer SR. J. Am. Chem. Soc. 2005, 127: 225 - For initial work on this transformation, see:
-
24a
Chu CK.Doboszewski B.Schmidt W.Ullas GV.Van Roey P. J. Org. Chem. 1989, 54: 2767 - For recent examples, see:
- 24b See ref. 8
-
24c
Li X.Zhan Z.-YJ.Knipe R.Lynn DG. J. Am. Chem. Soc. 2002, 124: 747 - For an interesting discussion on C-3′ radical allylation on thymidine, see:
-
24d
Horton D.Chen K.No Z.Lee HC. Carbohydr. Res. 2007, 342: 259 - 26 For a general review, see:
Espinet P.Echavarren AM. Angew. Chem. Int. Ed. 2004, 43: 4704 ; and references cited therein - 28 For an example of a nucleoside linked
with a butadiynyl chain C-4′α/C-3′β,
see:
Jung F.Burger A.Biellmann J.-F. Org. Lett. 2003, 5: 383 - 29
Hofmeister H.Annen K.Laurent H.Wiechert R. Angew. Chem., Int. Ed. Engl. 1984, 23: 727 - 30
Elbaum D.Nguyen TB.Jorgensen WL.Schreiber SL. Tetrahedron 1994, 50: 1503 - 33
Boland W.Schoer N.Sieler C.Feigel N. Helv. Chim. Acta 1987, 70: 1025 - 34 For an example of stereoselective
reduction of polyacetylenic compounds using this protocol, see:
Solladié G.Adamy M.Colobert F. J. Org. Chem. 1996, 61: 4369 ; and references cited therein
References and Notes
De Mesmaeker, A., Lebreton, J. 1992, unpublished results.
19
Selected Physicochemical
Data for Compound 7
¹H NMR (400
MHz, CDCl3): δ = 1.99 (s, 9 H, t-Bu), 1.82-1.92 (m, 1 H, H2
′′),
1.89 (s, 3 H, CH3), 2.39 (ddd, 1 H, J = 10.0,
6.5, 3.0 Hz, H2
′), 4.20 (ddd, 1 H, J = 10.0,
3.0 Hz, H3
′), 4.24 (m, 1 H, H4
′),
6.23 (br s, 2 H, H5
′ and H6
′),
6.34 (dd, 1 H, J = 6.5
Hz, H1
′), 6.93 (d, 1 H, J = 1.0 Hz,
H6), 7.38-7.50 (m, 6 H, Har), 7.59-7.67
(m, 4 H, Har), 9.28 (br s, 1 H, NH) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 12.6 (CH3,
CH3), 18.9 (C, t-Bu), 26.8
(CH3, t-Bu), 39.6 (CH, C2
′),
75.4 (CH, C3
′), 80.7 (CH, C6
′),
84.8 (CH, C1
′), 88.2 (CH, C4
′),
111.3 (C, C5), 127.9, 128.0 (CH, Car), 130.2
(CH, Car), 132.7 (C, Car), 134.9 (CH, C6),
135.6, 135.8 (CH, Car), 142.1 (CH, C5
′), 150.2
(C, C=O), 163.6 (C, C=O) ppm. MS (CI/NH3): m/z (C27H31I
N2O4Si) = 620 [M + NH4
+],
603 [M + H+].
Selected Physicochemical
Data for Compound 6
¹H NMR (400
MHz, CDCl3): δ = 0.70-0.80
(15 H, 3 CH3 and 3 CH2, CH3 and
CH2 n-Bu), 1.02 (s, 9 H, 3
CH3, t-Bu), 1.10-1.27
(m, 6 H, 3 CH2, n-Bu), 1.38
(m, 6 H, 3 CH2, n-Bu), 2.26
(m, 1 H, H2
′), 2.40 (m, 1 H, H2
′),
2.40 (s, 3 H, CH3), 3.14 (m, 1 H, H3
′),
3.75-3.86 (m, 2 H, H4
′ and
H5
′), 4.11 (m, 1 H, H5
′),
5.76 (dd, 1 H, J = 7.0,
19.0 Hz, H3
′′), 6.15 (d,
1 H, J = 19.0
Hz, H3
′′′), 6.16
(dd, 1 H, J = 3.0,
7.0 Hz, H1
′), 7.22-7.49
(m, 6 H, Har), 7.66 (s, 1 H, H6), 7.62-7.84
(m, 4 H, Har), 9.50 (s, 1 H, NH) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 9.4 (CH2, n-Bu), 11.9 (CH3, CH3),
13.6 (CH3, n-Bu), 19.4 (C, t-Bu), 27.1 (CH3, t-Bu), 27.4 (CH2, n-Bu), 29.0 (CH2, n-Bu), 39.3 (CH2, C2
′),
45.0 (CH, C3
′), 62.5 (CH2,
C5
′), 84.7 (CH, C1
′),
85.6 (CH, C4
′), 110.5 (C, C5),
127.8 (CH, Car), 129.8 (CH, Car), 132.5 (CH,
C3
′′′), 132.8,
133.3 (C, Car), 135.2, 135.4 (CH, Car), 135.6
(CH, C6), 145.5 (CH, C3
′′),
150.5 (C=O), 164.2 (C=O) ppm. ESI-HRMS: m/z [M + H+] calcd for
C40H61N2O4SiSn [M(¹¹9Sn) + H]+:
780.3433; found: 780.3431.
Selected Physicochemical
Data for Compound 8
¹H NMR (400
MHz, CDCl3): δ = 1.09 (s, 9 H, t-Bu), 1.10 (s, 9 H, t-Bu),
1.58 (s, 3 H, CH3A), 1.86 (s, 3 H, CH3B),
2.44-2.19 (m, 4 H, H2
′
A and
H2
′
B), 3.18-3.02
(tdd, 1 H, J = 8.0, 8.0,
8.0 Hz, H3
′
A), 3.79 (m,
1 H, H4
′
A), 3.75 (dd,
part A of an AB system, 1 H, J = 12.0,
3.0 Hz, H5
′
A), 4.13-4.03
(dd, part B of an AB system, 1 H, J = 12.0,
3.0 Hz, H5
′
A), 4.22-4.14 (1
H, dt, J = 6.0,
3.0 Hz, H4
′
B), 4.42-4.33
(dd, 1 H, J = 7.0, 4.0
Hz, H3
′
B), 5.34-5.21
(m, 1 H, Hd), 5.52-5.38 (m, 1 H, Ha),
6.05-5.90 (2 dd, 2 H, J = 8.0
Hz, Hb and Hc), 6.19-6.09 (dd, 1
H, J = 4.0,
7.0 Hz, H1
′
A), 6.40-6.30
(dd, 1 H, J = 7.0 Hz,
H1
′
B), 7.00 (s, 1 H, H6B),
7.49-7.27 (m, 12 H, Har), 7.51 (s, 1 H, H6A),
7.75-7.56 (m, 8 H, Har), 8.87-8.80
(2 br s, 2 H, 2 NH) ppm. ¹³C NMR (100
MHz, CDCl3): δ = 12.1 (CH3, CH3A),
12.3 (CH3, CH3B), 19.0 (C, t-Bu),
19.4 (C, t-Bu), 26.8 (CH3, t-Bu), 27.0 (CH3, t-Bu), 39.4 (CH2, C2
′
A),
40.0 (CH2, C2
′
B),
40.7 (CH, C3
′
A), 62. 8
(CH2, C5
′
A),
76.5 (CH, C4
′
B), 84.8
(CH, C1
′
A), 85.1 (CH,
C1
′
B), 85.6 (CH, C3
′
B),
86.8 (CH, C4
′
A), 110.7
(C, C5A or C5B), 111.1 (C, C5A or
C5B), 128.0 (CH, CHar), 129.2 (CH, Cd),
130.1 (CH, CHar), 131.5 (CH, Cb and Cc),
132.3 (C, Car), 132.6 (CH, Ca), 133.2 (C,
Car), 135.4, 135.5, 135.8, 135.9 (CH, CHar,
C6A and C6B), 150.3 (C, C=O), 163.6
(C, C=O) ppm. The letter A refers to the upper moiety of
the dimer 8. ESI-HRMS: m/z [M + Na+] calcd
for C55H64N4O8Si2Na:
987.4160; found: 987.4162.
To confirm the structure, this diyne was hydrogenated in MeOH in the presence of Pd/C to afford the corresponding known dimer with an alkane linkage (see ref. 11a).
32
Selected Physicochemical
Data for Compound 20
¹H NMR (400
MHz, CDCl3): δ = 1.10 (s, 9 H, t-Bu), 1.11 (s, 9 H, t-Bu),
1.62 (s, 3 H, CH3A), 1.84 (s, 3 H, CH3B),
1.87-2.08 (ddd, 1 H, J = 5.0,
9.0, 14.0 Hz, H2
′
B), 2.32-2.66
(m,
3 H, H2
′
A and
H2
′
B), 3.42 (ddd, 1 H, J = 8.0, 8.0, 8.0 Hz, H3
′
A), 3.83
(dd, part A of an AB system, 1 H, J = 2.0,
12.0 Hz, H5
′
A), 4.00 (ddd,
1 H, J = 2.0, 7.0, 12.0 Hz,
H4
′
A), 4.08 (dd, part
B of an AB system, 1 H, J = 2.0,
12.0 Hz, H5
′
A), 4.53 (d, 1
H, J = 4.0 Hz, H3
′
B),
4.67 (s, 1 H, H4
′
B), 6.20
(dd, 1 H, J = 13.0, 6.0 Hz,
H1
′
A), 6.57 (dd, 1 H, J = 6.0, 8.0 Hz, H1
′
B), 7.34-7.51
(m, 14 H, Har, H6A and H6B), 7.62-7.68
(m, 8 H, Har), 9.16 (br s, 1 H, NH), 9.30 (br s, 1 H,
NH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 12.1
(CH3, CH3A), 12.7 (CH3, CH3B,
19.0 (C, t-Bu), 19.4 (C, t-Bu), 26.8 (CH3, t-Bu), 26.9 (CH3, t-Bu), 29.6 (CH, C3
′
A),
38.9 (CH2, C2
′
A),
40.5 (CH2, C2
′
B),
62.5 (CH2, C5
′
A),
66.4, 72.9, 73.5, 80.0 (C, Ca, Cb, Cc and
Cd), 71.9 (CH, C4
′
B),
73.2 (CH, C3
′
B), 84.6
(CH, C1
′
A), 84.9 (CH,
C4
′
A), 86.7 (CH, C1
′
B),
111.3 (C5A and C5B), 127.9, 128.0 (CH, CHar),
130.1 (CH, C6A or C6B), 130.2 (CH, C6A or C6B),
132.5, 132.6 (C, Car,), 134.9 (CH, CHar),
135.3, 135.5, 135.6 (CH, CHar), 150.4 (C, C=O),
163.7 (C, C=O) ppm. The letter A refers to the upper moiety
of the dimer 20. ESI-HRMS: m/z [M + Na+] calcd
for C55H60N4O8Si2Na: 983.3847;
found: 983.3837.