Synlett 2009(20): 3341-3345  
DOI: 10.1055/s-0029-1218357
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Carbon E,E-Diene Chain-Linked Dinucleotide Analogues

Valérie Fargeasa, Adjou Anéb, Didier Dubreuila, Jacques Lebreton*a
a Laboratoire CEISAM-UMR 6230, Faculté des Sciences et des Techniques, CNRS, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
Fax: +33(2)51125562; e-Mail: jacques.lebreton@univ-nantes.fr;
b Laboratoire de Chimie Organique, UFR SSMT, Université de Cocody 22, BP 582, Abidjan 22, Côte d’Ivoire
Further Information

Publication History

Received 3 September 2009
Publication Date:
11 November 2009 (online)

Abstract

The synthesis of a dinucleotide thymidine-thymidine linked by a carbon E,E-diene chain is described. This dimer is synthesized by a coupling reaction between an (E)-vinylstannane and an (E)-iodovinyl partner prepared from acetylenic parents, which are both available from thymidine in six and five steps, respectively. In addition, a new efficient access to 3′-C-formyl thymidine is presented.

    References and Notes

  • 1 Zamecnik PC. Stephenson ML. Proc. Natl. Acad. Sci. U.S.A.  1978,  75:  280 
  • 2a Applied Antisense Oligonucleotide Technology   Stein CA. Krieg AM. Wiley-Liss; New York: 1998. 
  • 2b Lee LK. Roth CM. Curr. Opin. Biotechnol.  2003,  14:  505 
  • 2c Crooke ST. Annu. Rev. Med.  2004,  55:  61 
  • 2d Van Aerschot A. Antiviral Res.  2006,  71:  307 
  • 2e Rayburn ER. Zhang R. Drug Discov. Today  2008,  13:  513 
  • 2f Seth PP. Siwkowski A. Allerson CR. Vasquez G. Lee S. Prakash TP. Wancewicz EV. Witchell D. J. Med. Chem.  2009,  52:  10 ; and cited literature
  • 3 Sorbera LA. Rabasseda X. Castaner J. Drugs Future  1998,  23:  1168 
  • For reviews on this topic, see:
  • 4a De Mesmaeker A. Häner R. Martin P. Moser HE. Acc. Chem. Res.  1995,  28:  366 
  • 4b Kurreck J. Eur. J. Biochem.  2003,  270:  1628 
  • 4c Aboul-Fadl T. Curr. Med. Chem.  2005,  12:  763 
  • 4d Seth PP. Siwkowski A. Allerson CR. Vasquez G. Lee S. Prakash TP. Wancewicz EV. Witchell D. Swayze EE. J. Med. Chem.  2009,  52:  10 ; and cited literature
  • 4e For a very interesting discussion in several aspects of nucleic acids research in the different areas, including antisense oligonucleotides, see: Hecht SM.
    J. Am. Chem. Soc.  2009,  131:  3791 
  • 5a De Mesmaeker A, Lebreton J, and Waldner A. inventors; WO  92/20,823.  ; Chem. Abstr. 1993, 118, 192190m
  • 5b De Mesmaeker A, Lebreton J, Waldner A, Bévièrre M.-O, and Lesueur C. inventors; WO  95/20,597.  ; Chem. Abstr. 1996, 124, 202954d
  • 6 For a review on amide substituted oligodeoxynucleotide analogues, see: De Mesmaeker A. Waldner A. Lebreton J. Fritsch V. Wolf RM. In Carbohydrate Modifications in Antisense Research   Sanghvi YS. Cook PD. ACS Symposium Series 580, ACS; Washington DC: 1994.  p.24-39  
  • 7 For more work in this field, see: De Mesmaeker A. Lebreton J. Jouanno C. Fritsch V. Wolf RM. Wendeborn S. Synlett  1997,  1287 ; and cited literature
  • 8 Rozners E. Katkevica D. Bizdena E. Strömberg R.
    J. Am. Chem. Soc.  2003,  125:  12125 
  • 9 Whelan J. Drug Discov. Today  2005,  10:  1014 
  • 10 Wendeborn S. Wolf R. De Mesmaeker A. Tetrahedron Lett.  1995,  36:  6879 
  • 11a Lebreton J. De Mesmaeker A. Waldner A. Synlett  1994,  54 
  • 11b De Mesmaeker A. Waldner A. Sanghvi YS. Lebreton J. Bioorg. Med. Chem. Lett.  1994,  4:  395 
  • 12 Sharma RA. Bobeck M. J. Org. Chem.  1978,  43:  367 
  • 14a Muller S. Liepold B. Roth GJ. Bestmann HJ. Synlett  1996,  521 
  • 14b Ohira S. Synth. Commun.  1989,  19:  561 
  • The Bestmann-Ohira reagent is prepared by treatment of dimethyl(2-oxopropyl)phosphonate with tosylazide in the presence of NaH followed by purification on silica gel chromatography, see:
  • 14c Callant P. D’Haenens L. Vandewalle M. Synth. Commun.  1984,  14:  155 
  • 15 Wnuk SF. Robins MJ. Can. J. Chem.  1993,  71:  192 
  • 16a Wnuk SF. Yuan C.-S. Borchardt RT. Balzarini J. De Clercq E. Robins MJ. J. Med. Chem.  1994,  37:  3579 
  • 16b Wnuk SF. Ro B.-O. Valdez CA. Lewandowska E. Valdez NX. Sacasa PR. Yin D. Zhang J. Borchardt RT. De Clercq E. J. Med. Chem.  2002,  45:  2651 
  • 16c Rapp M. Haubrich TA. Perrault J. Mackey ZB. McKerrow JH. Chiang PK. Wnuk SF. J. Med. Chem.  2006,  49:  2096 
  • 17 Jung PMJ. Burger A. Biellmann J.-F. J. Org. Chem.  1997,  62:  8309 
  • 18 Thibonnet J. Abarbri M. Parrain J.-L. Duchêne A. Tetrahedron  2003,  56:  4433 
  • 20 Takai K. Nitta K. Utimoto K. J. Am. Chem. Soc.  1986,  108:  7408 
  • For recent examples, see:
  • 21a Van Daele I. Munier-Lehmann H. Froeyen M. Balzarini J. Van Calenbergh S. J. Med. Chem.  2007,  50:  5281 
  • 21b Nuzzi A. Massi A. Dondoni A. QSAR Comb. Sci.  2007,  26:  1191 
  • 22 Sanghvi YS. Bharadwaj R. Debart F. De Mesmaeker A. Synthesis  1994,  1163 
  • 23a Hanessian S. Giroux S. Larsson A. Org. Lett.  2006,  8:  5481 
  • 23b See also: Wipf P. Spencer SR. J. Am. Chem. Soc.  2005,  127:  225 
  • For initial work on this transformation, see:
  • 24a Chu CK. Doboszewski B. Schmidt W. Ullas GV. Van Roey P. J. Org. Chem.  1989,  54:  2767 
  • For recent examples, see:
  • 24b See ref. 8
  • 24c Li X. Zhan Z.-YJ. Knipe R. Lynn DG. J. Am. Chem. Soc.  2002,  124:  747 
  • For an interesting discussion on C-3′ radical allylation on thymidine, see:
  • 24d Horton D. Chen K. No Z. Lee HC. Carbohydr. Res.  2007,  342:  259 
  • 26 For a general review, see: Espinet P. Echavarren AM. Angew. Chem. Int. Ed.  2004,  43:  4704 ; and references cited therein
  • 28 For an example of a nucleoside linked with a butadiynyl chain C-4′α/C-3′β, see: Jung F. Burger A. Biellmann J.-F. Org. Lett.  2003,  5:  383 
  • 29 Hofmeister H. Annen K. Laurent H. Wiechert R. Angew. Chem., Int. Ed. Engl.  1984,  23:  727 
  • 30 Elbaum D. Nguyen TB. Jorgensen WL. Schreiber SL. Tetrahedron  1994,  50:  1503 
  • 33 Boland W. Schoer N. Sieler C. Feigel N. Helv. Chim. Acta  1987,  70:  1025 
  • 34 For an example of stereoselective reduction of polyacetylenic compounds using this protocol, see: Solladié G. Adamy M. Colobert F. J. Org. Chem.  1996,  61:  4369 ; and references cited therein
13

De Mesmaeker, A., Lebreton, J. 1992, unpublished results.

19

Selected Physicochemical Data for Compound 7
¹H NMR (400 MHz, CDCl3): δ = 1.99 (s, 9 H, t-Bu), 1.82-1.92 (m, 1 H, H2 ′′), 1.89 (s, 3 H, CH3), 2.39 (ddd, 1 H, J = 10.0, 6.5, 3.0 Hz, H2 ), 4.20 (ddd, 1 H, J = 10.0, 3.0 Hz, H3 ), 4.24 (m, 1 H, H4 ), 6.23 (br s, 2 H, H5 and H6 ), 6.34 (dd, 1 H, J = 6.5 Hz, H1 ), 6.93 (d, 1 H, J = 1.0 Hz, H6), 7.38-7.50 (m, 6 H, Har), 7.59-7.67 (m, 4 H, Har), 9.28 (br s, 1 H, NH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 12.6 (CH3, CH3), 18.9 (C, t-Bu), 26.8 (CH3, t-Bu), 39.6 (CH, C2 ), 75.4 (CH, C3 ), 80.7 (CH, C6 ), 84.8 (CH, C1 ), 88.2 (CH, C4 ), 111.3 (C, C5), 127.9, 128.0 (CH, Car), 130.2 (CH, Car), 132.7 (C, Car), 134.9 (CH, C6), 135.6, 135.8 (CH, Car), 142.1 (CH, C5 ), 150.2 (C, C=O), 163.6 (C, C=O) ppm. MS (CI/NH3): m/z (C27H31I N2O4Si) = 620 [M + NH4 +], 603 [M + H+].

25

Selected Physicochemical Data for Compound 6
¹H NMR (400 MHz, CDCl3): δ = 0.70-0.80 (15 H, 3 CH3 and 3 CH2, CH3 and CH2 n-Bu), 1.02 (s, 9 H, 3 CH3, t-Bu), 1.10-1.27 (m, 6 H, 3 CH2, n-Bu), 1.38 (m, 6 H, 3 CH2, n-Bu), 2.26 (m, 1 H, H2 ), 2.40 (m, 1 H, H2 ), 2.40 (s, 3 H, CH3), 3.14 (m, 1 H, H3 ), 3.75-3.86 (m, 2 H, H4 and H5 ), 4.11 (m, 1 H, H5 ), 5.76 (dd, 1 H, J = 7.0, 19.0 Hz, H3 ′′), 6.15 (d, 1 H, J = 19.0 Hz, H3 ′′′), 6.16 (dd, 1 H, J = 3.0, 7.0 Hz, H1 ), 7.22-7.49 (m, 6 H, Har), 7.66 (s, 1 H, H6), 7.62-7.84 (m, 4 H, Har), 9.50 (s, 1 H, NH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 9.4 (CH2, n-Bu), 11.9 (CH3, CH3), 13.6 (CH3, n-Bu), 19.4 (C, t-Bu), 27.1 (CH3, t-Bu), 27.4 (CH2, n-Bu), 29.0 (CH2, n-Bu), 39.3 (CH2, C2 ), 45.0 (CH, C3 ), 62.5 (CH2, C5 ), 84.7 (CH, C1 ), 85.6 (CH, C4 ), 110.5 (C, C5), 127.8 (CH, Car), 129.8 (CH, Car), 132.5 (CH, C3 ′′′), 132.8, 133.3 (C, Car), 135.2, 135.4 (CH, Car), 135.6 (CH, C6), 145.5 (CH, C3 ′′), 150.5 (C=O), 164.2 (C=O) ppm. ESI-HRMS: m/z [M + H+] calcd for C40H61N2O4SiSn [M(¹¹9Sn) + H]+: 780.3433; found: 780.3431.

27

Selected Physicochemical Data for Compound 8
¹H NMR (400 MHz, CDCl3): δ = 1.09 (s, 9 H, t-Bu), 1.10 (s, 9 H, t-Bu), 1.58 (s, 3 H, CH3A), 1.86 (s, 3 H, CH3B), 2.44-2.19 (m, 4 H, H2 A and H2 B), 3.18-3.02 (tdd, 1 H, J = 8.0, 8.0, 8.0 Hz, H3 A), 3.79 (m, 1 H, H4 A), 3.75 (dd, part A of an AB system, 1 H, J = 12.0, 3.0 Hz, H5 A), 4.13-4.03 (dd, part B of an AB system, 1 H, J = 12.0, 3.0 Hz, H5 A), 4.22-4.14 (1 H, dt, J = 6.0, 3.0 Hz, H4 B), 4.42-4.33 (dd, 1 H, J = 7.0, 4.0 Hz, H3 B), 5.34-5.21 (m, 1 H, Hd), 5.52-5.38 (m, 1 H, Ha), 6.05-5.90 (2 dd, 2 H, J = 8.0 Hz, Hb and Hc), 6.19-6.09 (dd, 1 H, J = 4.0, 7.0 Hz, H1 A), 6.40-6.30 (dd, 1 H, J = 7.0 Hz, H1 B), 7.00 (s, 1 H, H6B), 7.49-7.27 (m, 12 H, Har), 7.51 (s, 1 H, H6A), 7.75-7.56 (m, 8 H, Har), 8.87-8.80 (2 br s, 2 H, 2 NH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 12.1 (CH3, CH3A), 12.3 (CH3, CH3B), 19.0 (C, t-Bu), 19.4 (C, t-Bu), 26.8 (CH3, t-Bu), 27.0 (CH3, t-Bu), 39.4 (CH2, C2 A), 40.0 (CH2, C2 B), 40.7 (CH, C3 A), 62. 8 (CH2, C5 A), 76.5 (CH, C4 B), 84.8 (CH, C1 A), 85.1 (CH, C1 B), 85.6 (CH, C3 B), 86.8 (CH, C4 A), 110.7 (C, C5A or C5B), 111.1 (C, C5A or C5B), 128.0 (CH, CHar), 129.2 (CH, Cd), 130.1 (CH, CHar), 131.5 (CH, Cb and Cc), 132.3 (C, Car), 132.6 (CH, Ca), 133.2 (C, Car), 135.4, 135.5, 135.8, 135.9 (CH, CHar, C6A and C6B), 150.3 (C, C=O), 163.6 (C, C=O) ppm. The letter A refers to the upper moiety of the dimer 8. ESI-HRMS: m/z [M + Na+] calcd for C55H64N4O8Si2Na: 987.4160; found: 987.4162.

31

To confirm the structure, this diyne was hydrogenated in MeOH in the presence of Pd/C to afford the corresponding known dimer with an alkane linkage (see ref. 11a).

32

Selected Physicochemical Data for Compound 20
¹H NMR (400 MHz, CDCl3): δ = 1.10 (s, 9 H, t-Bu), 1.11 (s, 9 H, t-Bu), 1.62 (s, 3 H, CH3A), 1.84 (s, 3 H, CH3B), 1.87-2.08 (ddd, 1 H, J = 5.0, 9.0, 14.0 Hz, H2 B), 2.32-2.66 (m,
3 H, H2 A and H2 B), 3.42 (ddd, 1 H, J = 8.0, 8.0, 8.0 Hz, H3 A), 3.83 (dd, part A of an AB system, 1 H, J = 2.0, 12.0 Hz, H5 A), 4.00 (ddd, 1 H, J = 2.0, 7.0, 12.0 Hz, H4 A), 4.08 (dd, part B of an AB system, 1 H, J = 2.0, 12.0 Hz, H5 A), 4.53 (d, 1 H, J = 4.0 Hz, H3 B), 4.67 (s, 1 H, H4 B), 6.20 (dd, 1 H, J = 13.0, 6.0 Hz, H1 A), 6.57 (dd, 1 H, J = 6.0, 8.0 Hz, H1 B), 7.34-7.51 (m, 14 H, Har, H6A and H6B), 7.62-7.68 (m, 8 H, Har), 9.16 (br s, 1 H, NH), 9.30 (br s, 1 H, NH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 12.1 (CH3, CH3A), 12.7 (CH3, CH3B, 19.0 (C, t-Bu), 19.4 (C, t-Bu), 26.8 (CH3, t-Bu), 26.9 (CH3, t-Bu), 29.6 (CH, C3 A), 38.9 (CH2, C2 A), 40.5 (CH2, C2 B), 62.5 (CH2, C5 A), 66.4, 72.9, 73.5, 80.0 (C, Ca, Cb, Cc and Cd), 71.9 (CH, C4 B), 73.2 (CH, C3 B), 84.6 (CH, C1 A), 84.9 (CH, C4 A), 86.7 (CH, C1 B), 111.3 (C5A and C5B), 127.9, 128.0 (CH, CHar), 130.1 (CH, C6A or C6B), 130.2 (CH, C6A or C6B), 132.5, 132.6 (C, Car,), 134.9 (CH, CHar), 135.3, 135.5, 135.6 (CH, CHar), 150.4 (C, C=O), 163.7 (C, C=O) ppm. The letter A refers to the upper moiety of the dimer 20. ESI-HRMS: m/z [M + Na+] calcd for C55H60N4O8Si2Na: 983.3847; found: 983.3837.