Klinische Neurophysiologie 2009; 40(4): 263-269
DOI: 10.1055/s-0029-1242754
Originalia

© Georg Thieme Verlag KG Stuttgart · New York

Funktionelle Bildgebung bei der Amyotrophen Lateralsklerose: Analyse der Ruheaktivität

Functional Neuroimaging in Amyotrophic Lateral Sclerosis: Analysis of Resting ActivityK. Kollewe1 , T. F. Münte2 , 3 , 4 , A. Samii4 , R. Dengler1 , S. Petri1 , B. Mohammadi1 , 2 , 4
  • 1Klinik für Neurologie mit klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover
  • 2Abteilung für Neuropsychologie, Otto-von-Guericke-Universität, Magdeburg
  • 3Center for Behavioral Brain Sciences, Magdeburg
  • 4CNS-LAB, International Neuroscience Institute (INI), Hannover
Further Information

Publication History

Publication Date:
28 December 2009 (online)

Zusammenfassung

Die vorliegende Studie untersucht die Frage, ob die Analyse der Ruheaktivität der BOLD (Blood Oxygen Level Dependency)-fMRT mithilfe der Unabhängigkeitsanalyse (Independent-Component-Analyse, ICA) bei der Amyotrophen Lateralsklerose (ALS) Veränderungen in distinkten Netzwerken von Hirnarealen im Vergleich zu Kontrollpersonen darstellen lässt. Es wurden 20 ALS-Patienten und ebenso viele Kontrollen untersucht. Die ICA zeigte fünf verschiedene Netzwerke, die sich reliabel für Patienten und Kontrollen finden ließen. Zwei dieser Netzwerke zeigten deutliche Veränderungen in der Patienten-Gruppe. Das sogenannte Default Mode Netzwerk (DMN) zeigte bei den ALS-Patienten eine signifikant geringere Konnektivität. Dies spiegelt wahrscheinlich die mittlerweile gut dokumentierte extramotorische Beteiligung bei dieser Erkrankung wider. Das sensomotorische Netzwerk, das sich aus Hirnarealen zusammensetzt, die bei motorischen Aktionen involviert sind, zeigte im Bereich der prämotorischen Regionen ebenfalls eine erniedrigte Konnektivität bei den ALS-Patienten. Da die Resultate unabhängig von spezifischen Aufgaben sind und daher auch kompensatorische Prozesse, die durch die für Patienten höhere Aufgabenschwierigkeit erklärbar wären, bei der Interpretation nicht berücksichtigt werden müssen, erlauben diese Ergebnisse direkte Rückschlüsse auf pathophysiologische Veränderungen bei der ALS.

Abstract

This study investigates the question whether the analysis of resting state BOLD (blood oxygen level dependency) fMRI using independent component analysis (ICA) allows us to assess pathological changes in distinct networks of brain areas in amyotrophic lateral sclerosis (ALS). Twenty patients and a similar number of matched controls were investigated. ICA revealed five different brain networks that could be reliably identified on the single subject level in both ALS patients and controls. Two of these networks showed marked changes in the patient group. The so-called default mode network (DMN) showed a significantly diminished connectivity in the patient group. This is likely related to the well-documented extramotor involvement in ALS patients. Moreover, the sensorimotor network which comprises brain areas that are involved in motor processes was similarly compromised in ALS. Because these results are independent of specific tasks and thus are not confounded by problems of differential task difficulty, they allow the direct assessment of pathological changes of different brain networks in ALS.

Literatur

  • 1 Abrahams S, Goldstein LH, Kew JJ. et al . Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study.  Brain. 1996;  119 ((Pt 6)) 2105-2120
  • 2 Abrahams S, Goldstein LH, Simmons A. et al . Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study.  Brain. 2004;  127 1507-1517
  • 3 Beckmann CF, DeLuca M, Devlin JT. et al . Investigations into resting-state connectivity using independent component analysis.  Philosophical transactions of the Royal Society of London. 2005;  360 1001-1013
  • 4 Biswal BB, Van Kylen J, Hyde JS. et al . Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps.  NMR in biomedicine. 1997;  10 165-170
  • 5 Bromberg MB. Pathogenesis of amyotrophic lateral sclerosis: a critical review.  Current opinion in neurology. 1999;  12 581-588
  • 6 Brooks BR, Miller RG, Swash M. et al . Munsat TL El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis.  Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;  1 293-299
  • 7 Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease.  Annals of the New York Academy of Sciences. 2008;  1124 1-38
  • 8 Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies.  Journal of cognitive neuroscience. 2000;  12 1-47
  • 9 Calhoun VD, Adali T. Unmixing fMRI with independent component analysis.  IEEE Eng Med Biol Mag. 2006;  25 79-90
  • 10 Calhoun VD, Adali T, Pearlson GD. et al . Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms.  Hum Brain Mapp. 2001;  13 43-53
  • 11 Damoiseaux JS, Rombouts SA, Barkhof F. et al . Consistent resting-state networks across healthy subjects.  Proceedings of the National Academy of Sciences of the United States of America. 2006;  103 13848-13853
  • 12 De Luca M, Beckmann CF, De Stefano N. et al . fMRI resting state networks define distinct modes of long-distance interactions in the human brain.  NeuroImage. 2006;  29 1359-1367
  • 13 De Luca M, Smith S, De Stefano N. et al . Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system.  Experimental brain research Experimentelle Hirnforschung. 2005;  167 587-594
  • 14 Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses.  Journal of neuroscience methods. 2002;  118 115-128
  • 15 Esposito F, Aragri A, Pesaresi I. et al . Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI.  Magnetic resonance imaging. 2008; 
  • 16 Esposito F, Formisano E, Seifritz E. et al . Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?.  Hum Brain Mapp. 2002;  16 146-157
  • 17 Esposito F, Scarabino T, Hyvarinen A. et al . Independent component analysis of fMRI group studies by self-organizing clustering.  NeuroImage. 2005;  25 193-205
  • 18 Formisano E, Esposito F, Di Salle F. et al . Cortex-based independent component analysis of fMRI time series.  Magnetic resonance imaging. 2004;  22 1493-1504
  • 19 Frank B, Haas J, Heinze HJ. et al . Relation of neuropsychological and magnetic resonance findings in amyotrophic lateral sclerosis: evidence for subgroups.  Clinical neurology and neurosurgery. 1997;  99 79-86
  • 20 Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis.  Hum Brain Mapp. 2005;  26 15-29
  • 21 Garrity AG, Pearlson GD, McKiernan K. et al . Aberrant “default mode” functional connectivity in schizophrenia.  The American journal of psychiatry. 2007;  164 450-457
  • 22 Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate.  NeuroImage. 2002;  15 870-878
  • 23 Goldberg TE, Berman KF, Fleming K. et al . Uncoupling cognitive workload and prefrontal cortical physiology: a PET rCBF study.  NeuroImage. 1998;  7 296-303
  • 24 Greicius MD, Flores BH, Menon V. et al . Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus.  Biol Psychiatry. 2007;  62 429-437
  • 25 Greicius MD, Menon V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation.  Journal of cognitive neuroscience. 2004;  16 1484-1492
  • 26 Greicius MD, Srivastava G, Reiss AL. et al . Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI.  Proceedings of the National Academy of Sciences of the United States of America. 2004;  101 4637-4642
  • 27 Hayasaka S, Peiffer AM, Hugenschmidt CE. et al . Power and sample size calculation for neuroimaging studies by non-central random field theory.  NeuroImage. 2007;  37 721-730
  • 28 Irwin D, Lippa CF, Swearer JM. Cognition and amyotrophic lateral sclerosis (ALS).  American journal of Alzheimer's disease and other dementias. 2007;  22 300-312
  • 29 Jafri MJ, Pearlson GD, Stevens M. et al . A method for functional network connectivity among spatially independent resting-state components in schizophrenia.  NeuroImage. 2008;  39 1666-1681
  • 30 Kennedy DP, Courchesne E. The intrinsic functional organization of the brain is altered in autism.  NeuroImage. 2008;  39 1877-1885
  • 31 Kennedy DP, Redcay E, Courchesne E. Failing to deactivate: resting functional abnormalities in autism.  Proceedings of the National Academy of Sciences of the United States of America. 2006;  103 8275-8280
  • 32 Kew JJ, Brooks DJ, Passingham RE. et al . Cortical function in progressive lower motor neuron disorders and amyotrophic lateral sclerosis: a comparative PET study.  Neurology. 1994;  44 1101-1110
  • 33 Kew JJ, Goldstein LH, Leigh PN. et al . The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study.  Brain. 1993;  116 ((Pt 6)) 1399-1423
  • 34 Kew JJ, Leigh PN, Playford ED. et al . Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study.  Brain. 1993;  116 ((Pt 3)) 655-680
  • 35 Kollewe K, Mauss U, Krampfl K. et al . ALSFRS-R score and its ratio: A useful predictor for ALS-progression.  J Neurol Sci. 2008; 
  • 36 Konrad C, Henningsen H, Bremer J. et al . Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study.  Experimental brain research Experimentelle Hirnforschung. 2002;  143 51-56
  • 37 Konrad C, Jansen A, Henningsen H. et al . Subcortical reorganization in amyotrophic lateral sclerosis.  Experimental brain research Experimentelle Hirnforschung. 2006;  172 361-369
  • 38 Lakerveld J, Kotchoubey B, Kubler A. Cognitive function in patients with late stage amyotrophic lateral sclerosis.  J Neurol Neurosurg Psychiatry. 2008;  79 25-29
  • 39 Laufs H, Krakow K, Sterzer P. et al . Electroencephalografic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest.  Proceedings of the National Academy of Sciences of the United States of America. 2003;  100 11053-11058
  • 40 Liang M, Zhou Y, Jiang T. et al . Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging.  Neuroreport. 2006;  17 209-213
  • 41 Lowe MJ, Phillips MD, Lurito JT. et al . Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results.  Radiology. 2002;  224 184-192
  • 42 McKeown MJ, Makeig S, Brown GG. et al . Analysis of fMRI data by blind separation into independent spatial components.  Hum Brain Mapp. 1998;  6 160-188
  • 43 Munte TF, Troger MC, Nusser I. et al . Abnormalities of visual search behaviour in ALS patients detected with event-related brain potentials.  Amyotroph Lateral Scler Other Motor Neuron Disord. 1999;  1 21-27
  • 44 Murphy JM, Henry RG, Langmore S. et al . Continuum of frontal lobe impairment in amyotrophic lateral sclerosis.  Archives of neurology. 2007;  64 530-534
  • 45 Murphy K, Garavan H. An empirical investigation into the number of subjects required for an event-related fMRI study.  NeuroImage. 2004;  22 879-885
  • 46 Paulus KS, Magnano I, Piras MR. et al . Visual and auditory event-related potentials in sporadic amyotrophic lateral sclerosis.  Clin Neurophysiol. 2002;  113 853-861
  • 47 Raichle ME, MacLeod AM, Snyder AZ. et al . A default mode of brain function.  Proceedings of the National Academy of Sciences of the United States of America. 2001;  98 676-682
  • 48 Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea.  NeuroImage. 2007;  37 1083-1090 discussion 1097–1089 
  • 49 Schoenfeld MA, Tempelmann C, Gaul C. et al . Functional motor compensation in amyotrophic lateral sclerosis.  J Neurol. 2005;  252 944-952
  • 50 Seghier ML, Lazeyras F, Pegna AJ. et al . Group analysis and the subject factor in functional magnetic resonance imaging: analysis of fifty right-handed healthy subjects in a semantic language task.  Hum Brain Mapp. 2008;  29 461-477
  • 51 Sorg C, Riedl V, Muhlau M. et al . Selective changes of resting-state networks in individuals at risk for Alzheimer's disease.  Proceedings of the National Academy of Sciences of the United States of America. 2007;  104 18760-18765
  • 52 Stanton BR, Williams VC, Leigh PN. et al . Altered cortical activation during a motor task in ALS. Evidence for involvement of central pathways.  J Neurol. 2007;  254 1260-1267
  • 53 Tian L, Jiang T, Wang Y. et al . Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder.  Neurosci Lett. 2006;  400 39-43
  • 54 van den Heuvel M, Mandl R, Hulshoff Pol H. Normalized cut group clustering of resting-state FMRI data.  PLoS ONE. 2008;  3 e2001
  • 55 Vieregge P, Wauschkuhn B, Heberlein I. et al . Selective attention is impaired in amyotrophic lateral sclerosis–a study of event-related EEG potentials.  Brain research. 1999;  8 27-35
  • 56 Williamson P. Are anticorrelated networks in the brain relevant to schizophrenia?.  Schizophrenia bulletin. 2007;  33 994-1003
  • 57 Woolley SC, Jonathan SK. Cognitive and behavioral impairment in amyotrophic lateral sclerosis.  Physical medicine and rehabilitation clinics of North America. 2008;  19 607-617 , xi 

Korrespondenzadresse

Dr. med. K. Kollewe

Klinik für Neurologie mit

klinischer Neurophysiologie

Medizinische Hochschule

Hannover

Carl-Neuberg-Straße 1

30625 Hannover

Email: Kollewe.Katja@mh-hannover.de