
Abstract
!

Naringin, chemically 4′,5,7- trihydroxyflavanone-
7-rhamnoglucoside, is a major flavanone glyco-
side obtained from tomatoes, grapefruits, and
many other citrus fruits. It has been experimen-
tally documented to possess numerous biological
properties such as antioxidant, anti-inflamma-
tory, and antiapoptotic activities. In vitro and in
vivo studies have further established the useful-
ness of naringin in various preclinical models of
atherosclerosis, cardiovascular disorders, diabetes
mellitus, neurodegenerative disorders, osteopo-
rosis, and rheumatological disorders. Apart from
this, naringin has also exerted chemopreventive
and anticancer attributes in various models of
oral, breast, colon, liver, lung, and ovarian cancer.
This wide spectrum of biological expediency has
been documented to be a result of either the up-
regulation of various cell survival proteins or the
inhibition of inflammatory processes, or a combi-
nation of both. Due to the scarcity of human stud-
ies on naringin, this review focuses on the various
established activities of naringin in in vitro and in
vivo preclinical models, and its potential thera-
peutic applications using the available knowledge
in the literature. Additionally, it also encompasses
the pharmacokinetic properties of naringin and
its inhibition of CYP isoenzymes, and the subse-
quent drug interactions. Moreover, further clini-
cal research is evidently needed to provide signif-
icant insights into the mechanisms underlying
the effects of naringin in humans.

Abbreviations
!

ABTS: 2,2-azinobis(3-ethylbenzothiazoline-
6-sulfonic acid) diammonium salt

Akt: protein kinase B
AMPK: AMP-activated protein kinase
AP: activator protein

BDNF: brain-derived neurotrophic factor
BMP: bone morphogenetic protein
DMBA: 7,12-dimethylbenz[a]anthracene
DNFB: 2,4-dinitrofluorobenzene
DPP: dipeptidyl peptidase
DSS: dextran sodium sulphate
EGF: epidermal growth factor
eNOS: endothelial nitric oxide synthase
ER: estrogen receptor
ERK: extracellular signal-regulated kinase
FRAP: ferric reducing antioxidant power
GSK: glycogen synthase kinase
hDuox2: human dual oxidase 2
HMG‑CoA: hydroxymethylglutaryl-coenzyme A
HUVECs: human umbilical vascular endothelial

cells
IC: inhibitory concentration
ICAM-1: intercellular adhesion molecule 1
IFN: interferon
IKK: IκB kinase
IL: interleukin
iNOS: inducible nitric oxide synthase
IRS-1: insulin receptor substrate-1
JNK: c-Jun N-terminal kinase
Kir: inward rectifying potassium channel
LPS: lipopolysaccharides
MAPK: p38 mitogen-activated protein kinase
MCP-1: monocyte chemotactic protein-1
MDR: multidrug-resistance protein
MIP-1α: macrophage inflammatory

protein-1alpha
MMP: matrix metalloproteinase
mTOR: mammalian target of rapamycin
NF-κB: nuclear factor kappa-light-chain-en-

hancer of activated B cells
NK: neurokinin
NNK: 4-(methylnitrosamino)-1-(3-pyridyl)-

1-butanone
nNOS: neuronal nitric oxide synthase
Nrf2: nuclear factor-erythroid 2-related

factor-2
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OATP: organic anion transporting polypeptide
PAF: platelet activating factor
PARP: poly (ADP-ribose) polymerase
PGC1-α: peroxisome proliferator-activated receptor gamma

coactivator
PGE2: prostaglandin E2
PhIP: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine
PPAR: peroxisome proliferator-activated receptors
RANKL: receptor activator of nuclear factor kappa-B ligand
RANTES: regulated on activation, normal T cell expressed and

secreted

Sirt1: silent mating-type information regulation 2
homolog-1

sPLA2: secretory phospholipase A2
STZ: streptozotocin
SULT: sulfotransferases
TBARS: thiobarbituric acid reactive substances
TNF-α: tumor necrosis factor-alpha
VCAM-1: vascular cell adhesion molecule-1
VEGF: vascular endothelial growth factor
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Introduction
!

Naringin was first discovered by De Vry in the flowers of grape-
fruit trees growing in Java in 1857, but he did not publish his
findings at that time [1]. Extensive research on this “novel com-
pound” was conducted in the years to come by De Vry and Hoff-
man, and, subsequently, Will [2]. The name naringin is probably
derived from the Sanskrit term “narangiʼmeaning “orange” [2]. It
is present in citrus and grape fruits, beans, cherries, cocoa, orega-
no, and tomatoes [3–8]. It is present in grapefruit juice up to con-
centrations of 800mg/L [9]. The chemical structure of naringin
was first elucidated in 1928 by Asahina and Inubuse [10] and is
depicted in l" Fig. 1. Naringin is a flavanone glycoside composed
of naringenin, an aglycone and neohesperidose attached to the
hydroxyl group at C-7 and tastes bitter due to its glucose moiety
[11]. Nevertheless, it can be converted to 1,3-diphenylpropan-1-
one, a compound 300–1800 times sweeter than sugar with a
menthol-like refreshing sweet taste when treated with potassi-
um hydroxide or another strong base [12]. Depending up on the
maturity of the fruit and themethod of purification, naringin nat-
urally occurs as a mixture of chiral isomers that markedly vary in
proportion [13].
Naringin typically exemplifies the term “phytopharmaceutical”,
which commonly refers to products obtained from plants that
are found to be useful in human disorders. Naringin being a very
Bharti S et al. Preclinical Evidence for… Planta Med 2014; 80: 437–451
common dietary constituent would invariably be present in a lot
of the dietary products consumed by humans. Thus, a human
being would be exposed to naringin intake in some form or an-
other. Literature is replete with various researches and reviews
that focus on the numerous potential therapeutic effects of narin-
gin. In fact, a wide spectrum of beneficial effects has been attrib-
uted to naringin including cardiovascular, hypolipidemic, antia-
therosclerotic, antidiabetic, neuroprotective, hepatoprotective,
and anticancer activities [14,15]. These articles highlight the fact
that naringin possesses the potential to be employed as a thera-
peutic agent in a large number and variety of human ailments. At
the same time, the occurrence of adverse reactions with allo-
pathic medications might encourage physicians to explore safer
alternatives in complementary medicine, thus prompting the de-
velopment of naringin and related flavonoids for therapeutic
purposes.
Moreover, the knowledge of pharmacokinetic properties and po-
tential interactions of naringin with other drugs would assume
paramount importance, as it would provide guidance for the
measures that should be taken and precautions to be followed
during consumption of naringin, which would also simulta-
neously apply to patients taking other medications and concom-
itantly consuming dietary constituents rich in naringin. Unfortu-
nately, information on these parameters of naringin are limited
and scattered in the literature. Hence, this review aims at sum-
Fig. 1 Naringin and its metabolism in humans.
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marizing the experimental work performed to date on biological
actions, mechanisms of action, pharmacokinetic data, and clini-
cally relevant drug interactions of naringin. To the best of our
knowledge, this attempt is the first of its kind.
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Search Methodology
!

Database searches using Google Scholar, Pubmed, and Science Di-
rect were conducted until 15th December 2013 to include up-to-
date documented information in the present review article. The
search was limited to English language papers. For data mining,
the following MESH words were used in the databases men-
tioned above: naringin allergies, naringin Alzheimerʼs, naringin
anti-inflammatory, naringin antioxidant, naringin anxiety, narin-
gin apoptosis, naringin arthritis, naringin atherosclerosis, narin-
gin bioavailability, naringin bone, naringin brain, naringin cancer,
naringin cardioprotection, naringin cholesterol, naringin chro-
matography, naringin cough, naringin CYP, naringin dentistry,
naringin dermatology, naringin diabetes, naringin drug interac-
tion, naringin epilepsy, naringin gastrointestinal, naringin heart,
naringin hepatoprotection, naringin hyperglycemia, naringin hy-
perlipidemia, naringin hypertension, naringin in vitro, naringin
in vivo, naringin infection, naringin insulin, naringin kidney, nar-
ingin liver, naringin lungs, naringin malignancies, naringin meta-
bolic syndrome, naringin nephroprotection, naringin neuropro-
tection, naringin obesity, naringin osteoporosis, naringin pain,
naringin pharmacokinetics, naringin platelet, naringin proki-
netic, naringin pulmonary system, naringin radiation, naringin
radioprotection, naringin skin, naringin stroke, naringin toxicity,
naringin transporter, naringin tumor, naringin ulcer, and narin-
gin ulcerative colitis.
In almost all cases, the original articles were obtained and the rel-
evant data was extracted.
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Pharmacokinetics
!

Extensive studies to elucidate the pharmacokinetic properties of
naringin have been performed on rats [16–20], rabbits [21], dogs
[22,23], and humans [24–26].

Absorption
Naringin, upon oral administration to rats, results in several me-
tabolites like naringenin, naringenin glucuronide, and naringenin
sulphate in the blood and urine [16–20]. The hydrolysis of narin-
gin to naringenin is catalyzed by enzymes such as α-rhamnosi-
dases and β-glucosidases [20,27]. Additionally, naringin is also
transformed by the intestinal microflora into many kinds of phe-
nolic acids due to ring fission [27–29]. 4-Hydroxybenzoic acid,
2,4,6-trihydroxybenzoic acid, phloroglucinol, 4-hydroxyphenyl-
propionic acid, and 4-hydroxyphenylacetic acid have been iden-
tified as the major metabolites of naringin [22]. Besides, naringe-
nin was incubated with rat liver microsomes and produced three
metabolites (two naringenin hydroxylates and 5,7-dihydroxy-
chromone) [30]. Tsai and Tsai demonstrated that the portal and
lymphatic absorptions for naringin were about 95 and 5%, re-
spectively [18]. Naringin and naringenin are both detectable in
plasma about five hours after oral administration [16,31].
Distribution
Zou and colleagues have demonstrated that naringin and its me-
tabolites, being highly lipophilic, are distributed to almost all the
body organs with the highest concentrations being observed in
the stomach and the lowest in the brain due to reduced blood
brain barrier permeability. Naringin is concentrated in the liver
and bile by the processes of active transport [32,33].

Metabolism
Naringin undergoes extensive phase I and phase II metabolism in
the liver, as depicted in l" Fig. 1. Liu and colleagues have identi-
fied a total of 23 metabolites of naringin after oral administration
to rats (42mg/kg) and dogs (12.4mg/kg). They identified 4-hy-
droxyphenylpropionic acid (37% in dogs and 16% in rats) as ama-
jor metabolite of naringin [22].

Elimination
Elimination of naringin occurs both by the kidneys into urine and
by the liver into bile by partly undergoing bacterial ring cleavage
(of the C-ring), and subsequently the three carbon bridges to the
dihydrochalcone moiety. The excretion in urine varies from 5 to
57% of the consumption according to an observation by Fuhr
and Kummert [34]. Sixty percent of an administered dose was re-
covered from the urine and feces of dogs and 21% in rats in the
form of metabolites within 36 h after administration by Liu and
coworkers [22]. However, at 48 h post-dose, 1% of administered
naringin was recovered from the urine of rats and 8% in dogs as
free naringin and naringenin, which was similar to that in hu-
mans (about 5%) [22,24–26]. Ishii and coworkers studied the
elimination of naringin in a single healthy volunteer who re-
ceived 500mg of naringin. They observed that the peak urinary
level of naringin (~ 64 µg) was attained at around 4 h, naringenin
(~ 850 µg) at around 24 h, and naringenin glucuronides (~ 4mg)
at around 10 h [24].
Drug interactions
!

As traditional medicines become increasingly popular globally,
the significant potential for interaction between traditional med-
icines and allopathic medicines tends to hog the limelight. Nu-
merous studies have shown that naringin interferes with the ac-
tivities of transporters and enzymatic proteins in the intestines
and, hence, with the absorption and breakdown of certain drugs,
resulting in altered blood levels of these drugs. Naringin is a po-
tent inhibitor of transporter proteins such as OATP isoforms as
well MDR and SULT. This leads to decreased absorption and,
hence, bioavailability of drugs such as pitavastatin [35] via inhibi-
tion of OATP1A5 and MDR-1, imatinib via inhibition of OATP1A2
[36], and β2 agonists via SULT1 and SULT3 [37]. Naringin also in-
hibits the sulfation of various drugs such as paracetamol and
minoxidil via P-form phenolsulfo-transferase inhibition and,
thus, interferes with their metabolism, leading to increased plas-
ma levels in these drugs [38]. Contrarily, naringin enhances the
absorption of colchicine through p-glycoprotein modulation
[39]. Naringin also inhibits various CYP isoenzymes, thus increas-
ing the bioavailability of calcium channel blockers such as vera-
pamil [40] via CYP3A4 and paclitaxel via CYP3A1/2 inhibition
[41]. Nevertheless, naringin has also been shown to have no ef-
fect on the pharmacokinetics of drugs such as doxorubicin [42]
and caffeine [43].
Bharti S et al. Preclinical Evidence for… Planta Med 2014; 80: 437–451
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In another investigation, naringin has been shown tomediate the
chemosensitizing effect via reducing anticancer drug-induced p-
glycoprotein expression, a membrane-associated drug efflux
pump whose increased expression results in the resistance to
anticancer drugs such as doxorubicin [44]. Moreover, naringin al-
so inhibits the activation of carcinogens by CYP isoenzymes, thus
suggesting a role in the prevention of carcinogenesis [45].
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Effects of Naringin
!

Antioxidant effect
In vitro: In the earliest of reports, naringin was shown to possess
strong superoxide scavenging activity (IC50 of 192.0 ± 6.7 µM)
[46] and xanthine oxidase inhibitory activity (200–400 µM) [47].
Studies conducted on erythrocytes exposed to phenazinemetho-
sulfate and diethyldithiocarbamate have provided strong evi-
dence regarding the ability of naringin (0–500 µM) to quench
ROS, decrease the oxygen-free radical-stimulated K+ permeabili-
ty, and inhibit lipid peroxidation [48]. This ability to scavenge
free radicals has also contributed to the inhibition of the nitrite-
induced oxidation of hemoglobin to methemoglobin in erythro-
cytes by naringin (0.02–2.0mM) [49] and the reduction of glu-
cose-6-phosphate dehydrogenase inactivation by low-frequency
ultrasound cavitation (0.01–50 µM) [50]. Naringin (1–100 µM)
was also shown to reverse the ROS-mediated apoptosis via cas-
pase-3 activation in human polymorphonuclear neutrophils
[51]. Jagetia and coworkers have demonstrated that naringin
(0.5–5mmol/L) significantly suppressed iron-induced lipid per-
oxidation, protein oxidation, and DNA damage [52]. As an exten-
sion of this work, the same group also revealed that naringin
(50 nM) could inhibit iron-induced oxidative stress in iron over-
loaded isolated mouse liver mitochondria [53].
The antioxidant potential of naringin could prove to be of thera-
peutic importance in diabetes mellitus and neurodegenerative
disorders. Naringin (30 µM) has reduced high glucose-induced
upregulation of ICAM-1 via its antioxidant effect, thus suggesting
a potential ameliorating effect on the macrovascular complica-
tions of diabetesmellitus [54]. Naringin (80 µmol/L) has also been
shown to inhibit the ROS-activated MAPK pathway in high glu-
cose-induced injury in H9c2 cardiac cells [55]. In PC12 neuronal
cells, naringin (3.125–25 µM) can significantly inhibit H2O2-in-
duced cytotoxicity via attenuating caspase-3 and MMP-9 expres-
sion, and bolstering the antioxidant defense system, thus amelio-
rating neurodegeneration [56]. Naringin (80mg/kg) can also sig-
nificantly reduce 3-nitropropionic acid-induced neurodegenera-
tion in rats via oxidative stress inhibition and Nrf2 activation [57]
as well as inhibition of apoptotic markers (Bax and Bad) [58].
Naringin (1mM and 200mM, respectively) has been shown to in-
hibit H2O2 and cytosine arabinoside-induced cytotoxicity and ap-
optosis in mouse leukemia P388 cells via augmenting the antiox-
idant enzyme activities [59,60]. Naringin has shown significant
protection against DNA damage induced by UV‑A radiation in
mouse embryo fibroblast C3H10T1/2 cells at doses of 10 and
23 µM [61] and gamma-irradiated human white blood cells at a
dose of 50 µM, which might be due to its ability to quench O2

[62]. Naringin (1–2 µg/ml and 1mM, respectively) significantly
attenuated the cadmium and bleomycin-induced genomic dam-
age in human lymphocytes [63] and V79 cells [64]. Similarly, it
also reduced the benz[a]pyrene phototoxicity (an air pollutant
responsible for mutagenicity and carcinogenicity) in Balb/c 3T3
cells at doses ranging from 0.1–1.0mM [65].
Bharti S et al. Preclinical Evidence for… Planta Med 2014; 80: 437–451
In a comparative study, naringenin was found to be more potent
than naringin in scavenging superoxide (with 4-nitroblue tetra-
zolium chloride, IC50 of 94.7 ± 0.9 vs. 169 ± 2.9 and with xanthine
oxidase, IC50 of 4.4 ± 0.2 vs. 230 ± 4.6) and hydroxyl radicals (with
EDTA, IC50 of 1.06 ± 0.004 vs. 1.36 ± 0.03 and without EDTA,
1.55 ± 0.1 vs. 2.66 ± 0.07). Moreover, in the same study, an ABTS
assay showed that naringenin (7.9 ± 0.2 µmol/L) exhibited a high-
er capacity to inhibit 50% of ABTS radical cation generation than
naringin (27.1 ± 0.4 µmol/L) and, at the same dose (0.1–0.5mg/
mL), has significantly higher antioxidant efficiency as exempli-
fied by the FRAP assay [66]. Additionally, naringin-Cu (II) com-
plex 1 also exhibited higher antioxidant, anti-inflammatory, and
tumor cell cytotoxic effects as comparedwith naringin alone [67].
In vivo: Naringin (3% fed to flies in culture medium) has been
shown to inhibit the protein hDuox2, a member of the NADPH
oxidase family, in a GMR-GAL4/UAS‑hDuox2 fly line screening
model, thereby implicating a strong antioxidant potential
through inhibition of ROS [68]. The same antioxidant potential
of dietary naringin (1.5–3.0 g/kg) was responsible for decreased
serum triacylglycerol levels in fish oil supplemented fattening
lambs [69]. In fact, in a comparative study, dietary naringin
(0.5 g/kg) exerted an antioxidant effect comparable to that of pro-
bucol (0.5 g/kg) and lovastatin (0.3 g/kg) administered for the
same duration [70,71].
Naringin administered at a dose of 400mg/kg has been reported
to ameliorate renal ischemia-reperfusion injury through free rad-
ical scavenging and antioxidant properties [72]. Naringin (5 and
10mg/kg) has also shown protective effects in testicular ische-
mia-reperfusion-induced oxidative stress in rats [73].
In rats, naringin at a dose of 20–80mg/kg has been shown to ex-
ert a protective effect against nickel sulphate-induced nephro-
toxicity and hepatotoxicity via attenuating the injury markers
and lipid peroxidation, as well as increasing the antioxidant sta-
tus [74,75]. Likewise, naringin at a dose of 100–400mg/kg has al-
so been shown to ameliorate ferric-nitrilotriacetate and glycerol-
induced nephrotoxicity in rats via normalizing plasma creatinine,
blood urea nitrogen, urea clearance, and bolstering renal antiox-
idant levels [76,77]. Naringin (50–500mg/kg) also prevented the
cardiomyocyte and hepatocyte DNA damage produced by dau-
norubicin in mice, probably due to its strong capacity to trap free
radicals [78]. It (5–50mg/kg) has also been shown to have a pro-
tective role in the abatement of lomefloxacin-induced genomic
instability in mice, most likely due to its antioxidant effects [79].
Naringin (50mg/kg) has been shown to protect against hypergly-
cemia-mediated oxidative stress and proinflammatory cytokine
production in high-fat fed/streptozotocin-induced type 2 diabet-
ic rats [80]. Moreover, owing to its antioxidant potential, naringin
(25–50mg/kg) substantially prevented diabetes-induced chro-
mosomal instability in rats [81].
Naringin (2mg/kg) shielded mouse bone marrow, intestines, and
the liver against radiation-induced damage by reducing the lipid
peroxidation and elevating the antioxidant status [82,83]. Simi-
larly, naringin at a dose of 100mg/kg protected the mice from
the lethal effects of whole-body irradiation [84]. Cumulatively,
these studies have established the usefulness of naringin in ROS-
associated diseases.

Anti-inflammatory effect
In vitro: Naringin (1mM) suppressed LPS-induced synthesis of
NO, iNOS, COX-2, TNF-α, IL-6 production, and NF-κB activation
in RAW 264.7 macrophages [85]. In the same model, naringin
(50–200 µM) has been shown to mediate its anti-inflammatory
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effect by inhibiting IL-8, MCP-1, and MIP-1α secretion and mRNA
expression, and by inhibiting the phosphorylation of ERK1/2,
JNK, and p38 MAPK, probably through blocking the activation of
the NF-κB and MAPK signaling pathways [86]. It (0.25 and
0.5mmol/L) also significantly inhibited the TNF-α/IFN-γ-induced
RANTES expression in human HaCaT cells via the NF-κB-depen-
dent signaling pathway [87]. It significantly attenuated enzy-
matic activity of sPLA2 and its associated pharmacological effects
such as myonecrosis, platelet aggregation, and cytotoxicity [88].
It (10–50 µg/ml) also interfered with monocyte adhesion and
subsequently reduced high-glucose-induced vascular inflamma-
tion in HUVECs [89]. In a study by Lee and Kim, naringin was
shown to inhibit both COX-1 and COX-2 (IC50 > 100 and 60.02, re-
spectively) and also LPS-stimulated nitric oxide production (IC50
> 100), thereby implicating its usefulness in rheumatoid arthritis
and other inflammatory diseases [90]. In addition, a naringin-
leucine (N‑Leu) combination (15–150 µM) reduced the hyperin-
flammatory status in cystic fibrosis cell lines via inhibiting the
expression levels of IKKα, IKKβ, NF-κB, and phosphorylation of
ERK1/2 kinase [91].
In vivo: Modern scientific researches, as described further, have
demonstrated that naringin exerts an anti-inflammatory effect
in numerous chronic inflammatory diseases. Naringin (10–
60mg/kg and 0.3–3mg/mouse, respectively) has shown protec-
tion against LPS-induced endotoxic shock in male ddY mice via
inhibition of TNF-α release [85] and blocked the lethal shock in
D-galactosamine-sensitized C57BL/10ScSn mice [92]. It (15–
60mg/kg) also significantly ameliorated LPS-induced acute lung
injury in mice via suppression of myeloperoxidase, iNOS activity,
TNF-α secretion, and NF-κB activation [93]. In rats exposed to en-
dotoxin, naringin (0.4–40 µg/kg) prevented the occurrence of
uveitis via inhibition of PGE2 and NO [94]. Pretreatment with
naringin (20–80mg/kg) substantially reduced chronic pulmo-
nary neutrophilic inflammation in cigarette smoke-exposed rats
[95]. In a guinea pig model of chronic bronchitis induced by ciga-
rette smoke, naringin (9.2–36.8mg/kg) attenuated airway hyper-
responsiveness and airway inflammation along with a decrease
in coughing [96]. Moreover, in the same model, naringin
(18.4mg/kg) was shown to be effective in inhibiting both airway
neurogenic inflammation and coughs through a mechanism in-
volving a significant reduction in substance P content and NK-1
receptor expression [97]. Naringin (30mg/kg) has also shown sig-
nificantly potent anti-inflammatory potential in the rat air pouch
model of inflammation [98]. In a DSS-induced ulcerative colitis
mouse model, naringin (15.8mg/kg) inhibited the production of
nitrates and nitrites (indicators of the inflammatory process), and
reduced intestinal edema, suggesting its potential therapeutic
role in the treatment of inflammatory bowel disease [99]. A col-
laborative research from our laboratory has shown that naringin
(20, 40, and 80mg/kg) significantly protects against the kainic ac-
id-induced status epilepticus and cognitive impairment in rats
via anti-inflammatory and antioxidant pathways [100]. Collec-
tively, these preclinical studies have identified a diverse range of
biological targets and intricate mechanisms of action that charac-
terize naringin as an extremely potent anti-inflammatory mole-
cule.

Therapeutic potential of naringin
Naringin has been shown to exert potential therapeutic benefits
by modulating various protein expressions in a wide gamut of
human disorders as summarized in l" Tables 1 and 2
Atherosclerosis
In vitro: Studies have shown that naringin prevents in vitro LDL
oxidation and therefore could potentially retard the progression
of atherosclerosis [101]. Another mechanism of naringin (25 µM)
that has been elucidated is the inhibition of the transfer of an ace-
tyl group from PAF to lysophospholipids that prevents the activa-
tion of endothelial cells and, hence, retards the process incrimi-
nated in the development of an atherosclerotic plaque [102]. An
initiating step in the pathophysiology of atherosclerosis is the
proliferation of vascular smooth muscle cells that is inhibited by
naringin by multiple mechanisms, namely, induction of
p21WAF1-mediated G1-phase cell cycle arrest in vascular
smooth muscle cells via activation of the Ras/Raf/ERK signaling
pathway at a concentration of 0–150 µM [103] and repression of
the PI3K/AkT/mTOR/p70S6K pathway and MMP-9 expression
through the transcription factors NF-κB and AP-1 in TNF-α-in-
duced vascular smooth muscle cells at a concentration of 10–
25 µM [104].
In vivo: The hypocholesterolemic potential of naringin suggests a
utility in therapy of atherosclerosis, which has been further sub-
stantiated by various studies, as described below. Naringin has
been shown to inhibit hepatic HMG‑CoA reductase (a rate limit-
ing enzyme of the cholesterol biosynthetic pathway) and acyl
CoA:cholesterol acyltransferase (a cholesterol esterifying en-
zyme) when administered to high-cholesterol fed rats at a dose
of 1 g/kg [105]. The inhibition of HMG‑CoA reductase was also
demonstrated by Lee and coworkers in high-cholesterol fed rab-
bits, administered dietary naringin 1 g/kg, along with that of oth-
er proteins involved in the adhesion of leukocytes to the endo-
thelium such as VCAM-1 and MCP-1 [106]. Naringin (0.5 g/kg)
has also been shown to decrease the expression of ICAM-1 in en-
dothelial cells, fatty streak formation, and neointimal macro-
phage infiltration in hypercholesterolemic rabbits [107], and also
lower plasma cholesterol levels [108]. Similar results were also
reported by Kim and coworkers in cholesterol fed LDL-receptor
knockout mice when dietary naringinwas administered at a dose
of 0.2 g/kg [109]. Naringin (0.2 g/kg) reduced the hepatic synthe-
sis of cholesterol and, subsequently, the plasma lipid levels in
Sprague-Dawley rats after 6 weeks of administration [110]. Nar-
ingin (0.2 g/kg) also prevents the adhesion of immune cells, their
infiltration in the intima of the vascular wall, and, subsequently,
smooth muscle cell proliferation as observed in diet-induced hy-
percholesterolemic mice [111]. Beneficial effects were also ob-
served in humans by Jung and coworkers, in whom dietary nar-
ingin (0.4 g/kg) reduced plasma LDL-cholesterol levels along with
apolipoprotein B levels [112]. Nevertheless, contrasting results
have also been obtained as naringin (0.5 g/kg) did not show any
affect on serum total cholesterol and LDL‑C concentrations in
moderately hypercholesterolemic men and women [113].

Cardiovascular disorders
In vitro: Naringin (0.1–0.3mM) promoted relaxation of the iso-
lated rat thoracic aortae in response to phenylephrine (a vaso-
constrictor), the mechanism for which it was postulated to be an
inhibition of Ca2+ influx and for the release of calcium from intra-
cellular stores, suggesting a vasorelaxant effect [114]. This effect
was further supported by Saponara and associates in endothe-
lium-denuded rat aortic rings administered naringin at a concen-
tration of 1–100 µM [115]. Furthermore, the K+ influx can also be
activated by naringin (100 µM) through a direct activation of the
inward rectifying potassium channels [116]. Naringin (5 µM) has
also been shown to inhibit high-glucose-induced apoptosis in
Bharti S et al. Preclinical Evidence for… Planta Med 2014; 80: 437–451



Table 1 Various disorders in
which naringin has been docu-
mented to be effective.

System Disorders Reference

Chemical/radiation-
induced damage

Radioprotection [62]

Hepatotoxicity [75]

Nephrotoxicity [76], [77]

Pulmonary system Cough and bronchitis [96], [97]

Cardiovascular Atherosclerosis and other thrombotic disorders [106], [107]

Hypertension [118]

Drug-induced cardiotoxicity [119–122]

Myocardial infarction [123]

Metabolic Type 2 diabetes [126], [127]

Metabolic syndrome [129]

Obesity [131]

Diabetes neuropathy [132]

Hyperlipidemia, insulin resistance, and hepatic steatosis [134]

Neurological Epilepsy [100]

Parkinsonʼs disease [135]

Alzheimerʼs disease [136]

Memory enhancing [137]

Stroke [138]

Spinal cord injury [139]

Cognitive dysfunction [140], [141]

Huntingtonʼs disease [142]

Depression [143]

Anxiety [144]

Cancers Breast cancer [155]

Colon cancer [160]

Cancer cervix [162]

Bladder cancer [163]

Lung cancer [164], [165]

Liver cancer [166]

Oral cavity cancers [167]

Skin cancer [168]

Sarcoma [169], [170]

Bone diseases Osteoporosis [186]

Rheumatoid arthritis [187]

Dental diseases Dental caries [191], [192]

Infections Salmonellosis [196]

Filariasis [197]

Dengue [198]

Ocular diseases Uveitis [94]

Cataract [133]

Miscellaneous Ulcerative colitis [99]

Contact dermatitis [194]

Allergic rhinitis [202]

Gastric ulcer [203], [204]
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H9c2 cardiomyocyte cells through attenuation of mitochondrial
dysfunction and modulation of the p38 signaling pathway [117].
In vivo: Naringin (0.25–1.0 g/kg) augmented nitric oxide bioavail-
ability, which contributed substantially to the amelioration of hy-
pertension and cerebral thrombosis in stroke-prone, spontane-
ously hypertensive rats [118]. The cardioprotective effects of nar-
ingin can be explained at the molecular level, whereby naringin
(10–40mg/kg) has exerted protective effects against isoprotere-
nol-induced myocardial damage by significantly increasing the
activity of Na+-K+-ATPase, while reducing those of Ca2+ and Mg2+

ATPases, as evidenced by an improvement in the electrocardio-
graphic patterns and cardiac injury markers [119–122]. More-
over, a study from our lab has also demonstrated that naringin
(20–80mg/kg) significantly decreased the infarct size in myocar-
dial ischemia-reperfusion injury in rats through regulation of
heat shock proteins 27 and 70, p-Akt/p-eNOS, and MAPKs [123].
Bharti S et al. Preclinical Evidence for… Planta Med 2014; 80: 437–451
Diabetes mellitus
In vitro: Naringin (10mM) has shown a greater inhibition of
DPP‑IV in comparison to an equivalent concentration of sitaglip-
tin, with higher insulin secretion and glucose disposal along with
the protective effects on the pancreatic islets, as reported by Par-
mar and coworkers [124]. Nevertheless, Purushotham and cow-
orkers have observed that naringin (100 µM) did not suppress he-
patic glucose production in Fao hepatoma cells [125].
In vivo: Naringin (0.2 g/kg) has been shown to prevent the pro-
gression of hyperglycemia in C57BL/KsJ-db/db mice via an in-
crease in hepatic glycolysis and glycogen concentration, and low-
ering of hepatic gluconeogenesis [126]. Moreover, in another in-
vestigation by the same group and using the same model, it
(0.2 g/kg) also led to a reduction in hyperlipidemia and hypergly-
cemia [127]. More recently, naringin (1 g/kg) has also been
shown to mitigate the obesity-related inflammatory state in cats
[128], as well as the metabolic syndrome in C57BL/6 mice (at a
dose of 0.2 g/kg) fed a high-fat diet, owing to the AMPK stimula-



Table 2 The expressions and activities of proteins modulated by naringin.

Naringin decreases Reference Naringin increases Reference

OATP1A2, MRP-1, andMDR-1 activity [35] Nrf2 expression [57]

SULT1A3 activity [37] IĸB-α expression [86]

CYP3A4 and CYP3A1/2 levels [40], [41] K+ influx [116]

P‑gp expression [44] Na+/K+ ATPase [120]

Xanthine oxidase activity [47] β-catenin and p-eNOS expression, and NO, GSH,
SOD, GSH‑Px, catalase, and LDH activities

[123]

ICAM-1 expression [54] Glucokinase activity [127]

Bax and Bad expression [58] AMPK levels [129]

hDuox2 activity [68] HDL‑C and adiponectin levels, and PPAR-γ, HSP-27,
HSP-72, and phosphorylated-IRS‑1 expression

[134]

iNOS, TNF-α, IL-6, and COX-2mRNA expression [85] SEK1 protein expression [152]

IL-8 mRNA, MIP-1αmRNA, MCPmRNA, p38MAPK,
p-p38MAPK, JNK, p-JNK, ERK, and p-ERK expression

[86] DR-5 level [162]

sPLA2 activity [88] Ras/Raf/ERK expression [163]

NF-κB expression [93] IKK activity [165]

PGE2 level [94] ER-α protein expression [173]

Substance P content and NK-1 expression [97] PI3K/Akt, c-Fos/c-Jun, and BMP-2 expression [175]

MMP-9 andmTOR expression [104] Alkaline phosphatase activity and COLI, OCN,
Runx2, and osteocalcin expression

[176], [177]

ACAT activity [108] Sox9 level [188]

HMG‑CoA reductase activity [110]

E-selectin [111]

LDL-cholesterol and apolipoprotein B levels [112]

Ca+2-ATPase andMg+2-ATPase activity [120]

Cathepsin B, cathepsin D, and β-glucuronidase activity [121]

Myocardial TBARS, serum CK‑MB level, and nitrotyrosine
expression

[123]

DPP‑IV activity [124]

Phosphoenolpyruvate carboxykinase and
glucose 6-phosphatase activity

[127]

Aldose reductase activity [133]

TC, LDL‑C, and CRP levels, and SREBP-1c and LXRα
expression

[134]

Caspase 3, caspase 9, and PARP activity [135]

GSK-3β expression [136]

AChE activity and nNOS [137]

BDNFand VEGF expression [139]

CyclinD1/CDK4 expression [163]

Myeloperoxidase activity, AP-1 expression, and IL-10 levels [165]

TNF-α expression and IL-6 levels [170]

Sirt1/PGC1-α expression [183]

Box-1 protein expression [187]

Tyrosinase activity [193]

Ca2+ entry into the cell [208]

Abbreviations: ACAT: acetyl coenzyme A cholesterol O-acyltransferase; AChE: acetylcholinesterase; AMPK: AMP-activated protein kinase; AP-1: activator protein-1; BDNF: brain-

derived neurotrophic factor; BMP: bone morphogenetic protein; CDK4: cyclin-dependent kinase 4; CK‑MB: creatine kinase-MB; COX: cyclooxygenase; CRP: C-reactive protein; CYP:

cytochrome P 450; DPP‑IV: dipeptidyl peptidase-IV; DR-5: death receptor-5; eNOS: endothelial nitric oxide synthase; ERK: extracellular signal-regulated kinase; ERα: estrogen re-

ceptor alpha; GSH: reduced glutathione; GSH‑Px: glutathione peroxidase; GSK-3β: glycogen synthase kinase-3β; HDL‑C: high-density lipoprotein-cholesterol; hDuox2: human dual

oxidase 2; HMG‑CoA: 3-hydroxy-3-methyl-glutaryl-CoA reductase; HSP: heat shock protein; ICAM-1: intercellular adhesion molecule-1; IKK: IκB kinase; IL: interleukin; iNOS: indu-

cible nitric oxide synthase; IRS-1: insulin receptor substrate-1; JNK: Jun NH2-terminal protein kinase; LDH: lactate dehydrogenase; LDL‑C: low-density lipoprotein-cholesterol; LXRα:
liver X receptor-α; MCP-1: monocyte chemotactic protein-1; MDR-1: multidrug resistance-1; MIP-1α: macrophage inflammatory protein-1α; MMP-9: matrix metalloproteinase-9;

MRP-1: multidrug resistance-associated proteins; mTOR: mammalian target of rapamycin; NF-ĸB: nuclear factor-Kappa B; NK: neurokinin; nNOS: neuronal nitric oxide synthase; NO:
nitric oxide; Nrf2: nuclear factor eythroid 2-related factor-2; OATP1A2: organic anion transporting polypeptide; p38MAPK: p38 mitogen-activated protein inase; PARP: poly (ADP-

ribose) polymerase; PGE2: prostaglandin E2; P‑gp: P-glycoprotein; PI3K: phosphatidylinositide 3-kinase; PPAR-γ: peroxisome proliferator-activated receptor gamma; Runx2: runt-

related transcription factor 2; SEK-1: stress-activated protein kinase; Sirt1/PGC1-α: silent mating-type information regulation 2 homolog-1/peroxisome proliferator-activated re-

ceptor gamma coactivator; SOD: superoxide dismutase; sPLA2: secretory phospholipase A2; SREBP-1c: sterol regulatory element binding protein-1c; SULT: sulfotransferase; TBARS:

thiobarbituric acid reactive substance; TC: total cholesterol; TNF-α: tumor necrosis factor-alpha; VEGF: vascular endothelial growth factor
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tion (similar to metformin), blocking of the MAPK pathways, and
by activation of IRS-1 [129]. As an extension of their in vitro
study, Parmar and associates have reported a greater inhibitory
effect of naringin (40mg/kg, twice daily) on DPP‑IV compared to
equivalent doses of sitagliptin in diabetic rats [124]. However, Xu-
lu and coworkers reported an improvement in the atherogenic
index but not hyperglycemia in type 1 diabetic rats with the ad-
ministration of naringin (50mg/kg) [130].
Bharti S et al. Preclinical Evidence for… Planta Med 2014; 80: 437–451
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Diabetic complications
Apart from an improvement in diabetes per se, another effect, and
perhaps, more important, is the potential of naringin to retard as
well as improve diabetic complications, as outlined below. Die-
tary supplementation with naringin (100mg/kg) improved glu-
cose intolerance, plasma lipid concentrations, and liver mito-
chondrial dysfunction in rats [131]. Pretreatment with naringin
(40 and 80mg/kg) also dose-dependently ameliorated STZ-in-
duced diabetic neuropathy and partially reversed the pain re-
sponse [132]. Naringin (10mg/kg) also effectively reduced lens
aldose reductase activity in diabetic rats and therefore could de-
lay the progression of cataracts [133]. Moreover, a study from our
lab has also revealed that the upregulation of PPARγ and heat
shock proteins 27 and 72 by naringin (25, 50 and 100mg/kg) at-
tenuates insulin resistance, β-cell dysfunction and associated he-
patic steatosis, and kidney damage in a rat model of type 2 diabe-
tes [134].

Neuroprotection
In vitro: Naringin (2, 5 and 10 µM) has shown dose-dependent
protective effects on rotenone-induced cell death in human neu-
roblastoma SH-SY5Y cells by reducing the activity of caspase-3,
caspase-9, and PARP, and inhibiting JNK and p38 phosphoryl-
ation [135].
In vivo: The support for the beneficial effect exerted by naringin
in studies on Alzheimerʼs disease is substantial. Wang et al. sug-
gested that naringin (50 and 100mg/kg) substantially alleviated
cognitive deficits in an APPswe/PSΔE9 transgenic mouse model
of Alzheimerʼs disease through the inhibition of GSK-3β [136].
Naringin (80mg/kg) also exhibited memory-enhancing activity
in unstressed and stressed mice owing to suppression of brain
acetylcholinesterase activity and the decrease of nNOS [137].
Apart from Alzheimerʼs disease, naringin (50 and 100mg/kg)
has shown a protective effect against ischemia reperfusion-in-
duced cerebral injury in rats [138]. Naringin (20 and 40mg/kg)
started 1 day after spinal cord injury in rats promoted neuronal
recovery by decreasing apoptosis and augmenting BDNF and
VEGF expression [139]. Naringin (40 and 80mg/kg) has also pro-
tected rat brains from colchicine-induced and D-galactose-in-
duced cognitive dysfunction [140,141]. Another study highlights
the therapeutic potential of naringin (50mg/kg) against 3-nitro-
propionic acid-induced Huntingtonʼs-like symptoms in rats via
modulation of the nitric oxide pathway [142]. It has also been re-
ported that naringin (50 and 100mg/kg) improves post-stroke
depression in mice through nitric oxide modulation [143]. In an
elevated plus maze model of anxiety, naringin (30mg/kg) dem-
onstrated a strong anxiolytic effect [144]. Naringin (50 and
100mg/kg) has also shown protection against immobilization
stress-induced biochemical and behavioral alterations and mito-
chondrial dysfunction in mice [145]. Naringin (50, 100, and
200mg/kg) also significantly alleviated antigen-induced chronic
fatigue in a mouse model of water immersion stress via decreas-
ing immobility time, hyperalgesia, and TNF-α levels [146].

Hepatoprotection
In vitro: Naringin at a concentration of 1000 µM inhibited PhIP-
induced genotoxicity in human liver slices, highlighting a protec-
tive effect against naturally occurring genotoxins in food such as
PhIP and other cooked food mutagens [147]. Naringin (100 µM)
also possesses tremendous potential in protecting rat hepato-
cytes from environmental toxins such as okadaic acid and micro-
cystin-LR-induced overphosphorylation, disruption of the kera-
Bharti S et al. Preclinical Evidence for… Planta Med 2014; 80: 437–451
tin cytoskeletal network, and apoptotic cell death, though it was
ineffective in preventing toxin-induced apoptosis of human or rat
hepatoma cells [148]. Likewise, in another study by Berven and
colleagues, naringin (100 µM) has exerted protective effects in
isolated rat hepatocytes against okadaic acid-induced apoptotic
cell death and disruption of the keratin intermediate filament
network and canalicular sheaths, though these effects could not
be replicated in vivo [149]. In other studies, it significantly pre-
vented the okadaic acid-induced inhibition of hepatocyte au-
tophagy and endocytosis at a dose range of 5–100 µM [150] and
phosphorylation of intracellular proteins in rat hepatocytes such
as glycine N-methyltransferase at a dose of 100 µM [151] and
plectin at dose of 100 µM [152].
In vivo: Naringin (0.05–0.125 g/L) alleviated the adverse effects of
ethanol ingestion in rats by increasing ethanol and lipid metabo-
lism [153]. At a dose of 100mg/day, it also inhibited steatosis, ne-
crosis, and fibrosis, as evidenced in a rat model of alcoholic liver
disease, probably via the decreased expression of Sirt1/PGC1-α
(enzymes involved in regulating energy metabolism in response
to calorie restriction) [154].

Cancers
The therapeutic potential of naringin has been elucidated in
myriad malignancies as follows:
Breast cancer: Naringin has been shown to inhibit the prolifera-
tion of human breast carcinoma MDA‑MB‑435 cells in vitro as
well as DMBA-induced mammary tumor formation in female
Sprague-Dawley rats [155]. Molecular docking has also shown
naringin to potentially inhibit estrone sulfatase and, hence, atten-
uate the hormonal stimulation of breast cancer cells [156]. Ex-
periments on ER (+) MCF-7 and MDA‑MB‑231 breast cancer cells
have concluded that naringin (0.86 × 10−5 – 17.2 × 10−5M) pos-
sesses both estrogenic (at low concentrations) and antiestrogenic
(at high concentrations) activities primarily through selectively
binding with estrogen receptors alpha and beta (ERα and ERβ)
[157]. Schindler and Mentlein demonstrated that naringin
(0.1 µmol/L) significantly inhibited the release of VEGF from
MDA breast cancer cells and, hence, reduced the occurrence of
angiogenesis, which is one of the initiating factors for distant me-
tastases of cancer cells [158].
Colon cancer: Naringin (1–300 µM) has been shown to inducemi-
gration of murine immortomouse/Min colon epithelial, Apc± cells
through modulation of matrix metalloproteinase activity, thus
enhancing the differentiation of these cells and reducing the ac-
cumulation of mutations [159]. Similarly, naringin (200mg/kg)
also ameliorated azoxymethane-induced aberrant crypt foci for-
mation in rats by suppressing proliferation and increasing apo-
ptosis of colon epithelial cells [160]. Naringin (100 and 200mg/
kg) accelerated the regression of preneoplastic lesions and the
colorectal structural reorganization in a rat model of 1,2-dimeth-
ylhydrazine-induced carcinogenesis [161].
Genito-urinary tract cancer: Pretreatment with naringin stimu-
lated death receptor and mitochondria-mediated apoptosis and,
hence, reduced survival of human cervical SiHa cancer cells with
an IC50 of 750 µM [162]. In human 5637 bladder cancer cells, nar-
ingin (0–150 µM) dose-dependently inhibited the cell growth
and proliferation by activating the Ras/Raf/-dependent ERK sig-
naling pathway [163].
Lung cancer: In A549 human lung cancer cell lines, naringin
(23 µM) suppressed the enhancing effect of beta-carotene on
DNA damage induced by NNK, a potent tobacco-related carcino-
gen in humans [164]. In the same cell line model, naringin
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(100 µM) also reduced EGF-induced MUC5AC secretion through
the inhibition of MAPKs/AP‑1 and IKKs/IκB/NF-κB signaling path-
ways [165].
Liver cancer: Naringin (40mg/kg) has been shown to offer signifi-
cant protection in N-nitrosodiethylamine-induced (200mg/kg)
liver carcinogenesis in rats [166].
Cancers of the oral cavity: In a hamster cheek pouch model, nar-
ingin (0.20–0.25mg/kg) significantly reduced the tumor burden
in DMBA-induced oral cancer [167].
Skin cancer: In an in vitro study on human keratinocytes and fi-
broblasts, naringin (100 nM) prevented the formation of double
strand DNA breaks following exposure to UV‑A radiation, which
is considered to be an important etiological factor for skin cancer
in humans [168].
Soft tissue tumors: Oral administration of naringin (30–300mg/
kg) inhibited tumor growth in sarcoma S-180-implanted mice
[169]. In rats with Walker 256 carcinosarcoma, naringin (25mg/
kg) suppressed tumor growth by approximately 75% through de-
creasing IL-6 and TNF-α levels [170].
Interaction with other anticancer agents: In Ehrlich ascites tumor
bearing mice, naringin (100mg/kg) enhanced the tumor cell
growth inhibition (cytotoxic effect) of irinotecan (50mg/kg) as
the combination demonstrated a greater suppression of liver
cancer cells [171,172].

Bone diseases
Isoflavonoids isolated from plants have been suggested to fight
osteoporosis and promote bone health, as documented in the fol-
lowing studies:
In vitro: In rat osteoblast-like UMR-106 cells, naringin (10 nM to
1 µM) increased cell proliferation and ALP activity [173]. Simi-
larly, in the same cell line model, naringin (0.1–0.001 µmol/L), in
a dose-dependent fashion, augmented osteoblastic activity via
the inhibition of HMG‑CoA reductase [174]. Naringin (0.3–
10 µM) has been shown to enhance alkaline phosphatase activity,
the osteocalcin level, osteopontin synthesis, and cell proliferation
in primary cultured osteoblasts [175]. Naringin has also been
shown to improve osteogenic proliferation and differentiation in
MC3T3-E1 cells via upregulation of Runx2, COLI, and OCN protein
expressions (at a dose of 2 µg/mL) [176] as well as modulation of
BMP-2, alkaline phosphatase, and osteocalcin (at a dose of 0.1–
10 µmol/L) [177]. However, the same study by Ding and cow-
orkers failed to show any significant effect on cell calcification
[177]. Naringin (1–100 µg/mL) also enhanced the proliferation
and osteogenic differentiation of human bone mesenchymal
stem cells [178].
In vivo: Naringin has been shown to prevent bone loss following
an ovariectomy in C57/BL6J mice when administered at 0.2–
0.4mg/g [173]. Wu and coworkers proposed that naringin
(0.1mg/kg) prevented the decrease of BMP-2 (protein involved
in osteoblastic differentiation and bone formation) and, hence,
significantly reduced the bone loss in response to ovariectomies
in mice [175]. The estrogenic property of naringin at a dose of
100mg/mL has also been reported to enhance new bone forma-
tion in New Zealand white rabbits [179]. It also improved bone
quality in orchidectomized rats at a dose of 200mg/L [180]. This
was further confirmed in diabetic mice by Zhou and coworkers
who demonstrated that naringin (10mg/kg) restores the calvarial
thickness and bone volume almost towards normal along with an
increase in the concentration of osteocalcin [181]. Naringin im-
proved bone mineral density by 10.2% at the distal metaphyseal
area at a dose of 5 g/L [182] as well as the alveolar bone at a dose
range from 0.01 to 100mg/L [183] in rats, providing evidence for
the attenuation of bone resorption. More recent studies have fur-
ther shown that in addition to osteoclast differentiation, naringin
also abrogates osteoclastogenesis at a dose of 1–100 µg/mL [184]
and bone resorption via the inhibition of RANKL-induced NF-κB
and ERK activation at a dose range of 0.1–0.5mM [185]. In anoth-
er study, naringin treatment (20–100mg/kg) significantly nor-
malized the serum alkaline phosphatase and bone weight coeffi-
cient, and resulted in a higher femur bone mineral density in a
model of retinoic acid-induced osteoporosis in rats [186]. Narin-
gin (15–150mg/kg) has been shown to inhibit the onset of colla-
gen-induced arthritis in the joints of mice via inhibition of Box-1
protein expression as a consequence of its anti-inflammatory ac-
tion [187].

Dentistry
In vitro: Naringin (0.1 µM) has been shown to augment the
growth of the spheno-occipital synchondrosis via increased
Sox9 levels [188]. It (0.01–100mg/L) also promotes the prolifera-
tion of human periodontal ligament cells via modulating alkaline
phosphatase activity, collagen protein-1 expression, and osteo-
protegerin mRNA levels [189]. It (0.0625–0.25 g/mL) also inter-
feres with the growth of periodontal pathogens such as Actinoba-
cillus actinomycetemcomitans and Porphyromonas gingivalis
[190].
In vivo: Dietary supplementation with naringin in experimental
animals has shown significant beneficial effects on dental health
and development. Dietary naringin (5.7 g/kg) significantly re-
duced the molar crestal alveolar bone-cemento-enamel junction
distance during alveolar development in young male albino rats
[191], as well as the incidence of occlusal dental caries induced
by a high-sucrose diet in young rats [192].

Dermatology
Naringin possess tyrosinase inhibitory activity (IC50 of 1.9mM)
and could be useful in skin whitening [193]. It (20 and 50mg/kg)
has also prevented the development of picryl chloride-induced
contact dermatitis in mice, a type IV allergic reaction [194].

Pulmonary system
Though naringin is neither a central nor peripheral antitussive,
Gao and colleagues observed an antitussive effect of naringin at
30mg/kg in guinea pigs due to hitherto unexplored mechanisms
[195].

Infections
Naringin (1 and 3mg) resulted in significant protection against
Salmonella typhimurium aroA-induced lethal shock in LPS-re-
sponder mice via attenuation of TNF-α levels and CD14 and
high-mobility group-1 expressions and normalization of pro-
thrombin time, fibrinogen concentration, and platelet numbers
[196]. Naringin has been shown to possess antifilarial activity in
vitro against Brugia malayi with an IC50 of 78.8 ± 11.5 µg/mL
against female adult worms [197], as well as weak anti-dengue
activity with anti-adsorption effects against dengue virus type-2
with an IC50 of 168.2 µg/mL [198]. Furthermore, naringin (20–
250 µg/ml) does not inhibit the growth of the normal commensal
bacteria in the gut and, hence, does not increase the risk of super-
infections [199]. Similarly, Celiz and associates also observed that
naringin did not inhibit any bacterial growth at a concentration
of 0.25mmol/L [200].
Bharti S et al. Preclinical Evidence for… Planta Med 2014; 80: 437–451
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Allergies
Lambev and colleagues demonstrated that naringin (200mg/kg)
inhibited mastocystic histamine release induced by compound
48/80 in male albino rats; however, it did not affect the histamine
levels in the blood [201]. In another study, naringin (0.1 or 1mM
and 1.0mg/kg, respectively) significantly inhibited compound
48/80-induced histamine release from rat peritoneal mast cells
and IgE-dependent passive cutaneous anaphylaxis reaction in
mice via inhibiting IL-6 levels. Moreover, in the same study, nar-
ingin (0.1 or 1mg/kg) also decreased clinical symptoms and
proinflammatory cytokines levels in the allergic rhinitis in mice
[202]. In another study by Itoh et al., naringin (20–100mg/kg)
dose-dependently inhibited DNFB-induced triphasic cutaneous
reaction (ear swelling) at 1 h (immediate phase response), 24 h
(late phase response), and 8 days (very late phase response) after
DNFB challenge, an animal model for type I allergic reaction
[194].

Gastrointestinal tract
Naringin (200mg/kg) has significantly reduced the ulcer index
and improved gastric mucosal morphology in acetylsalicylic ac-
id-induced ulceration in rats [203]. Moreover, naringin (400mg/
kg) has also been shown to prevent the development of gastric
ulcers following ethanol ingestion in rats, presumably by mecha-
nisms not involving prostaglandins [204]. In another model of
gastrointestinal motility dysfunction, naringin (50mg/kg, orally
and 5mg/kg, i. v.) has been shown to exhibit in vivo prokinetic ac-
tivity via activation of ghrelin receptors [205].

Experimental tool
Activation of Kir 3.4 by naringin (100 µM) has been shown to
hamper angiotensin-II-stimulated membrane voltage and aldo-
sterone secretion, and therefore could be useful as an experimen-
tal tool in the study of aldosterone production from the adrenal
glands [206]. In addition, experiments on rat vas deferens have
shown that naringin (2 × 10−6 – 1 × 10−7M) is a better α2 agonist
than clonidine, thus suggesting its employment as an experimen-
tal drug to detect the α-receptor modulation of newly designed
or discoveredmolecules [207]. In a study by Shaik and colleagues,
naringin (0–40 µM) was shown to inhibit suicidal erythrocyte
death via suppressing the calcium entry and therefore could be
of importance in related cell signaling pathways [208].
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Thus, the aforementioned data suggests that naringin possesses
therapeutic potential in various human disorders. Nevertheless,
the employment of naringin in clinical therapy is fraught with
numerous shortcomings, as of today. Firstly, the amount of data
on the use of naringin in humans is very limited and, as such,
the accurate effect of naringin in these human disorders, if any,
can merely be predicted. Therefore, further clinical studies are
imperative to determine a conclusive role for naringin in human
therapeutics. Secondly, naringin is a normal dietary constituent.
As such, the regular intake of food would undoubtedly introduce
naringin into the human body, but it is unclear whether this ad-
ministration is sufficient to meet the therapeutic levels in hu-
mans, or if additional external supplementation is indispensable.
Moreover, the duration of which naringin should be adminis-
tered is also unclear, as it is unlikely that a short-term intake of
naringin would lead to therapeutic improvement. The effect of
Bharti S et al. Preclinical Evidence for… Planta Med 2014; 80: 437–451
naringin may only be reached by a continuous uptake. Thirdly,
the significant potential of naringin for drug interactions should
also receive due consideration when used concomitantly with
other allopathic medications. Nevertheless, naringin does seem
to represent the light at the end of the tunnel as a supportive
remedy for allopathic treatment considering its wide range of
purported efficacy and the relatively lesser incidence of adverse
reactions.
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