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Focal cortical dysplasias are common malformations of cerebral cortical development
and are highly associated with medically intractable epilepsy. They have been classified
into neuropathological subtypes (type la, Ib, lla, IIb, and Ill) based on the severity of
cytoarchitectural disruption—tangential or radial dispersion, or loss of laminar structure
—and the presence of unique cells types such as cytomegalic neurons or balloon cells.
Most focal cortical dysplasias can be identified on neuroimaging and many require
resective epilepsy surgery to cure refractory seizures. The pathogenesis of focal cortical
dysplasias remains to be defined, although there is recent evidence to suggest that focal
cortical dysplasias arise from de novo somatic mutations occurring during brain
development. Some focal cortical dysplasia subtypes show a link to the mammalian
target of rapamycin signaling cascade; this has now extended to other cortical

= tuberous sclerosis

Focal cortical dysplasias (FCDs) comprise a spectrum of focal
developmental malformations characterized by disruption of
the normal cytoarchitecture of the cerebral cortex. They are
highly associated with medically intractable epilepsy.'™
Focal cortical dysplasia and epilepsy were first associated in
a report by Taylor* (although previously alluded to by
Crome?), who reported 10 patients (adults and children)
with refractory epilepsy undergoing surgical resection, who
showed focal abnormalities of cortical cytoarchitecture that
matched the proposed anatomical focus associated with their
seizure semiology. They hypothesized that the focal patho-
logical changes were probably developmental and that they
accounted for their seizures. The description of other focal
malformations of cortical development (MCD) subtypes shar-
ing pathological changes with FCD—such as hemimegalence-
phaly® and tuberous sclerosis complex (TSC)’—dates back to
the 1800s. There have also been recent descriptions of new
FCD syndromes, including Pretzel syndrome, autosomal dom-
inant temporal lobe epilepsy and cortical dysplasia, and
familial focal epilepsy with variable foci (see below).

Classification and Neuropathology

Historically, several different FCD classification systems have
been proposed, 210 trying to link the pathological findings
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malformations, including hemimegalencephaly.

with developmental mechanisms, although none has consis-
tently linked the pathology to the clinical presentation or
outcome. Distinct classification schemes have been proposed
to define the relevant imaging and histological features of
FCD.® The Palmini classification system® was restructured
and further subdivided FCD into type IA, IB, lIA, and IIC. The
International League Against Epilepsy (ILAE) task force of the
Diagnostic Methods Commission generated a new consensus
classification of distinct focal cortical dysplasia subtypes
based on histopathological features'® that yields consistent
interobserver and intraobserver reliability. The ILAE classifi-
cation scheme comprises a three-tiered system, including
both isolated and associated FCD variants. A new and com-
prehensive classification scheme assumes that all MCD types
result from distinct developmental and molecular genetic
causes, and that these directly affect cortical development at
distinct epochs and within distinct cell types.'!

Focal cortical dysplasia type I is characterized by abnormal
cortical layering with radial microcolumns, and is of three
subtypes. Focal cortical dysplasia type Ia shows radial micro-
columns resembling the microcolumnar organization pattern
of the early stages of cortical development; FCD type Ib shows
tangential layer alterations; FCD type Ic shows a combination
of both. All the three variants can show heterotopic neurons
in white matter and hypertrophic neurons (outside layer 5),
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as well as normal neurons with abnormal dendrites. Focal
cortical dysplasia type I may affect one or multiple lobes, yet
preoperative magnetic resonance imaging (MRI) may be
normal. Focal cortical dysplasia type I may be subtle and
challenging to detect on routine neuropathology, but should
be specifically sought in cases with normal preoperative MRI
scans.

Focal cortical dysplasia type Il is common among epilepsy
surgical series and is a major cause of antiepileptic drug-
resistant epilepsy. It is more common in extratemporal areas,
particularly in the frontal lobe, and is typically seen on
preoperative MRI scans. Focal cortical dysplasia type Ila is
characterized by dysmorphic and cytomegalic neurons, but
lacking balloon cells; FCD Type IIb is characterized by dys-
morphic/cytomegalic neurons and balloon cells. Balloon cells
have an enlarged cell body and opalescent, glassy appearing,
eosinophilic cytoplasm (=Fig. 1). Cortical tubers are a type of
FCD found in TSC, though not included in the ILAE classifica-
tion system, and occur as single or multiple lesions in more
than 80% of patients with TSC. They are linked to both
epilepsy and neurocognitive disabilities (for review, see'?).
Tubers are common in temporal and frontal regions and are
characterized histopathologically by dyslamination, and het-
erogeneous cell types, such as dysmorphic neurons, reactive
astrocytes, and so-called giant cells. Giant cells are histologi-
cally similar to the balloon cells found in FCD type IIb.

Both giant cells and balloon cells express proteins charac-
teristic of neuroglial progenitor cells, such as SOX2, nestin,
vimentin, and c-myc, suggesting a failure to differentiate
before migration into the cortex.'? The first study to examine
lineage markers in FCD found that balloon cells and cytome-
galic neurons expressed cell markers reflecting lineage deri-
vation from the telencephalic ventricular zone, such as OTX-1
and MASH."* A subsequent study in FCD I'° showed that FCD |
specimens in younger patients characteristically have abnor-
mal expression of Tbr1 and Otx1 in layer II, supporting their
origins from radial glia; by contrast, FCDII showed distinct
labeling of balloon cells (Pax6, ER81 and Otx1) and dysmor-
phic neurons (Tbr 1, N200, and Map1b), supporting their
origins in intermediate progenitor cells. Tubers may be found

d

as early as 20 weeks gestation,'®"'® indicating that tubers

(and by extension, focal cortical dysplasias) form during
embryonic brain development, probably between weeks 10
and 20 of human gestation.

A significant advantage of the ILAE classification was that
pathological changes adjacent to or associated with substan-
tive brain lesions (such as vascular malformations and tu-
mors) could be defined as FCD type IIl. The four different
subtypes of FCD type III include Illa, associated with hippo-
campal sclerosis; IIIb, associated with tumors; Illc, associated
with vascular malformations; and Illd, associated with any
other lesion acquired during early life. Histopathologically,
FCD type Il subtypes show type I abnormalities, including
altered cortical lamination. However, finding an abnormal
band of small and clustered “granular” neurons in the outer
part of layer II can distinguish FCDI type I from subtypes Illa-
d."® Other types of focal MCD, such as TSC, hemimegalence-
phaly, and some of the newer focal cortical dysplasia syn-
dromes have not yet been subsumed into the ILAE
classification. However, cortical tubers are histologically sim-
ilar to FCDIIb; hemimegalencephaly may occur both with and
without balloon cells similar to FCDIIb; and familial focal
epilepsy with variable features may show a “bottom-of-the-
sulcus” dysplasia with a type Ila or IIb phenotype. An impor-
tant corollary to these classifications is that FCDs are often
heterogeneous lesions with local variations in regional cy-
toarchitectural abnormalities. For example, some resected
lesions may contain both type I and type FCD pathologies.
From a diagnostic perspective, while pathologists describe
the histological variations, they tend to use the most severe
FCD subtype for final diagnosis.

Clinical Presentation

Epilepsy, often intractable, remains the most common clinical
presentation for all types of FCD as well as TSC and hemi-
megalencephaly. Patients usually come to clinical attention
with seizures in early childhood, although seizures may start
at any age. In virtually all FCD subtypes, there is close
concordance between the location of the seizure onset

b

Fig.1 (A)FCDtype lIb (labeled with anti-nestin antibodies; modified from 14; scale bar = 400 microns). Note loss of cortical lamination and ovoid
shape of balloon cells. (B) Balloon cells (arrows) in cortical tuber (modified from 31; scale bar = 100 microns).
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defined by electroencephalography and the anatomic loca-
tion of the FCD defined by MRI or intraoperative visualization.
Furthermore, the anatomical location of FCD determines the
seizure semiology. Frontal lobe epilepsy may manifest as
sleep-related seizures characterized by stereotyped bilateral
movements and vocalizations, sometimes with preserved
consciousness. Patient with occipital lobe seizures may report
visual symptoms, such as seeing dots or shapes in different
colors. Regardless of semiology, recalcitrant and poorly con-
trolled seizures contribute to cognitive impairment in chil-
dren and adults. Other clinical presentations include
developmental delay, behavioral issues, autism spectrum
disorders, and sometimes focal neurologic deficits, depend-
ing on the size and location of the cortical lesion. The surgical
outcome may vary with the pathological FCD subtype.20

Radiographic Findings

With greater availability of more advanced neuroimaging in
the 1990s, specifically brain MRI, it became apparent that
focal MCDs are more common in patients with intractable
epilepsy than previously thought. Newer imaging shows MCD
to be radiographically heterogeneous, with distinct signal
characteristics, extent, and location. However, focal malfor-
mations of cortical development sometimes do not show on
imaging, and can be found only on histopathological exami-
nation of resected tissue specimens.21 Nevertheless, neuro-
imaging is central to identifying and diagnosing FCDs.
Common findings on brain MRI include increased cortical
thickness, subtle changes in the smoothness of gyri or sulci,
and changes in subcortical white matter signal. Typically,
FCDs do not enhance with gadolinium, although approxi-
mately 5% of tubers in TSC enhance very slightly. In terms of
radiographic-pathologic correlation, FCD type I appears as
mild hyperintensity of the white matter in T2/fluid-attenuat-
ed inversion-recovery (FLAIR) sequences with loss of gray/
white matter differentiation. On the other hand, MRI findings
in FCD type IIb (dysmorphic neurons with balloon cells)
include thickening of the cortex with loss of gray/white
matter differentiation as well as a “transmantle sign”-taper-
ing of abnormal white matter signal from the FCD in the
cortex to the ventricular surface. About 40% of patients with
FCD type I and approximately 10% in type Il have a normal
brain MRIL. Thus, a normal brain MRI in a patient with
intractable epilepsy does not rule out FCD. Magnetic reso-
nance imaging findings favoring FCD rather than a tumor
include cortical gray matter thickening and a transmantle
sign. Tubers are not static lesions and there may be dynamic
changes over time including calcification and cystic degener-
ation. The evolution of cystic changes is associated with a TSC2
gene mutation and with having more severe seizures.”? More
recently, three tuber types (A, B, C) have been distinguished
from their MRI features.”> However, there is as yet no
histopathological classification scheme for tubers; this will
represent an important advance in understanding of epilep-
togenesis in TSC patients. In addition to MRI, functional
imaging such as fluorodeoxyglucose-positron emission to-
mography (FDG-PET) and single photon emission computed
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tomography (SPECT) can help, particularly in epilepsy locali-
zation before surgery. Focal cortical dysplasias typically show
focal regional hypometabolism on FDG-PET imaging even in
MRI-negative cases. Ictal SPECT detects enhanced cerebral
blood flow during the seizures, confirmed with video-
electroencephalogram (EEG) monitoring, and helps with
localization in almost half of the patients with FCD. The
sensitivity of FDG-PET scan in detecting FCD is 69 to 98%,
and for ictal-SPECT it is 48 to 64%.

Focal Cortical Dysplasia: Pathogenesis and
Molecular Genetics

Focal cortical dysplasia and cortical tubers are among the
most common pathological substrates associated with medi-
cally intractable pediatric epilepsy."** Tuberous sclerosis
complex is an autosomal dominant, multisystem disorder
resulting from mutations in either TSC1 or TSC2, and charac-
terized by a spectrum of neurologic deficits including autism,
intellectual disability, and intractable epilepsy.'?%° Identifi-
cation of the TSC1 and TSC2 genes and the links to mammalian
target of rapamycin (mTOR) signaling (=Fig. 2) have provided
critical insights into mechanisms of focal MCD, and in fact
have provided the paradigm to study other focal MCD sub-
types, such as FCDIIb. Tubers form during brain development
as a consequence of loss of function mutations in either TSC1
or TSC2, leading to constitutive mTOR activation and altered
development of the cerebral cortex.’® Numerous studies have
shown phosphoactivation of mTORC1 substrates p70S6ki-
nase, S6, and 4E-BP1 in resected and postmortem TSC tuber
samples.?’ 3% Two recent studies showed mTORC1 activation
in fetal tubers,'”"'® suggesting very early activation of mTOR.
Renal and pulmonary lesions in TSC follow a “two-hit”
mutational model where a somatic inactivating mutation,
including loss of heterozygosity or a point mutation in the
unaffected allele, is superimposed on the existing germline
mutation. Two recent reports suggest that tubers contain
both germline and somatic mutations, implying a mechanism
of bi-allelic gene inactivation.>"3> Mouse models showing
abnormal cortical structure have required full Tsc1 or Tsc2
knockout?3; heterozygous mice do not show significant
neuropathological changes.

In contrast to TSC, in FCD, a sporadic disorder with few
defined family pedigrees, the pathogenesis remains un-
known, but there are some proposed potential pathogenic
mechanisms, including somatic gene mutation, or a toxic
insult to the developing brain.>4-3® The pathological similari-
ties between FCDIIb and tubers suggested a mechanistic link
between these lesions, and even that FCD represented a
sporadic, somatic mosaic form of TSC. Studies have identified
TSC1 and TSC2 gene sequence polymorphisms, but not so-
matic mutations, in FCDIIb.37+38 Focal cortical dysplasia can be
associated with DEPDC5 mutations (see below), suggesting
that syndromic forms of FCD may be identified in association
with mutations in mTOR regulatory genes.® A recent study
identified somatic trisomy of 1q21-1q44, a region that
encompasses the AKT3 gene, in FCD brain tissue but not in
blood or saliva, suggesting a somatic mutational
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Fig. 2 Schematic depicting mTOR pathway components. Growth factor (GF) receptor-mediated signaling drives the mTOR pathway. Note the
mTOR inhibitor rapamycin site of effect. At several key points, individual focal cortical dysplasia (FCD) subtypes are listed next to site of gene
mutation in the pathway. For example, tuberous sclerosis complex (TSC) is associated with mutations in either TSCT or TSC2, FCD with AKT

mutations, and FFEVF to DEPDC5 mutations. Hemimegalencephaly has been linked to mutations in PI3K, MTOR. Megalencephaly (ME) has been
associated with mutations in PI3K, TBC1D7, and MTOR. Pretzel syndrome (PS) is linked to STRADA mutations and is associated with ME and FCD. For

other associations, see text.

mechanism.*? Interestingly, another study found FCD type la
and IIA in a small cohort of patients with mutations in the
sodium channel SCN1A.# It is unclear at present how muta-
tions within this channel, which is commonly associated with
Dravet syndrome, can alter cortical development; clearly this
warrants further investigation.

Enhanced mTOR signaling, evidenced by phospho-p70S6K
and phospho-S6 isoforms first identified in FCDIIb,%”?8 set
the stage for subsequent studies (see below), which showed
mTOR activation in hemimegalencephalyzg’42 and ganglio-
glioma.*? In contrast, there is no enhanced p70S6Kinase and
S6 phosphorylation (e.g., mTOR activation) in FCD type Ia or
1b.3 The central hypothesis of these studies was that molec-
ular events causing abnormal brain development resulted in
mTOR activation, evidenced by hyperphosphorylation of
mTOR, p70S6K, and S6 proteins. As in tubers, p70S6K and
S6 phospho-isoforms were identified in cells with enlarged
somas—dysmorphic neurons and balloon cells in FCDIIb. For
example, in tubers or FCDIIb, > 80% of morphologically de-
fined balloon cells show phospho-S6 labeling.'® Furthermore,
within any one tuber or FCDIIb specimen, there can be
tremendous variability in the number and the distribution
of giant cells/balloon cells in the white matter and through
the depth of the lesion. Recent studies suggest that a range of
epilepsy-associated pathologies, including FCD type III and
Rasmussen’s encephalitis, may show enhanced mTOR
signaling.**

Enhanced mTOR signaling is further supported by altered
expression of up- and downstream components of the mTOR
pathway in FCD. For example, activation of mTOR signals via
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HIF1q, initiates vascular endothelial growth factor expression
in cortical tubers®® and in FCDIIb.*® Phosphoactivation of
STAT3, a transcription factor regulated by mTOR, is identified
in FCDIIb and tubers.?’ Interestingly, the profiles of phos-
phorylated proteins in tubers versus FCDIIb are not identical,
suggesting potentially different roles for mTOR signaling in
the formation of these lesions. For example, phosphoactiva-
tion of the upstream cascade proteins p-PDK1 (5241), p-Akt
(S473), and p-tuberin (T1462) in FCDIIb is distinct from
tubers.*’ Interestingly, recent studies have suggested possible
autophagy induction in FCDIIb and TSC by showing autopha-
gic vacuoles and p62 expression.*® Recent observations sug-
gest that the abnormal activation of mTOR may contribute to
apoptosis signaling pathways and premature activation of
neurodegeneration cascades in both FCD II and TSC.*® For
example, tau-immunoreactive neuropil fibrils occur in areas
of FCD and hyperphosphorylated tau is detected in pS6
positive dysmorphic neurons.

Two recent studies suggest a viral association for FCD
11,°%>! which may link to mTOR activation as well as the
extant evidence for both innate and adaptive immune re-
sponses observed in FCD type Il. Human papilloma virus type
16 (HPV16) has been previously associated with dysplasia and
cancer of the cervix. The HPV16 oncoprotein E6 is a potent
activator of mTOR signaling and was found in FCDIIb speci-
mens by two distinct investigations,”®°' although a third
investigation did not detect human papilloma virus DNA.>?
One of these studies also found cytomegalovirus and human
herpes virus type 6.>! Exogenous expression of E6 in fetal
mouse brain causes disorganized cerebral cortical lamination.
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In view of these findings, several future steps will be neces-
sary. First, it must be shown that human papilloma virus can
actually infect the brain, for example, neurons or astrocytes,
in experimental model systems. Second, analysis of a larger
number of cases will be necessary to demonstrate the distri-
bution of FCD specimens with human papilloma virus or
other viral species such as cytomegalovirus, which has been
previously linked to some types of cortical malformation
including pachygyria.>* Third, we need to establish the
pathogenicity, if any, of human papilloma virus in FCD.
Although human papilloma virus is universally associated
with cervical cancer, there are distinct subsets of head and
neck cancer that either are or are not associated with this
virus; thus, stratification of FCD cases may be necessary.
Finally, future studies to define the mode of transmission,
such as blood borne, must be established. Alternatively,
human papilloma virus may have no pathogenic role in FCD.

Familial Focal Epilepsy with Variable Foci

Recently, mutations were identified in DEPDC5, a gene encod-
ing a protein with tandem N-terminal DEP (disheveled, egl-
10, pleckstrin) domains; this was in several Australian ped-
igrees with a clinical phenotype characterized by focal epi-
lepsy arising from distinct lobar locations in different family
members.3%>3 The syndrome, termed familial focal epilepsy
with variable foci (FFEVF), is an autosomal dominant disorder
associated with epilepsy of varying severity and variable
intellectual and neuropsychiatric disorders, including anxi-
ety, depression, and intellectual disability. Some affected
patients had “bottom-of-the-sulcus” dysplasias on brain
MRI although some patients had other MCD subtypes, such
as band heterotopia.>* Interestingly, in another report,
DEPDC5 mutations were associated with nonlesional focal
epilepsies including benign epilepsy with centrotemporal
spikes.>® DEPDC5 is an important component of the GA-
TOR-1 complex, a modulator of mTOR regulator in response
to cellular amino acid levels.”® DEPDC5 knockdown leads to
enhanced mTORC1 signaling in vitro and thus, FCD in the
setting of DEPDC5 mutation has been postulated to be medi-
ated through the mTOR pathway. Further studies will be
needed to define the role of DEPDC5 in cortical lamination
and epileptogenesis and whether mTOR inhibitors can alter
seizure frequency in FFEVF.

CASPR2 and Focal Cortical Dysplasia

Contactin-associated protein-like 2 (CASPR2) is encoded by
CNTNAP2 and functions to cluster voltage-gated potassium
channels, such as K(v)1.1, at the nodes of Ranvier. Homozy-
gous mutations of CNTNAP2 in Old-Order Amish children
were linked to cortical dysplasia, focal epilepsy, and macro-
cephaly.’’ In these patients, intractable seizures started in
early childhood, after which language regression, hyperactiv-
ity, impulsive and aggressive behavior, and intellectual dis-
ability appeared in all affected children. Interestingly in the
original report, resective surgery did not cure the seizures.
Neuropathological examination of resected temporal-lobe
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specimens showed focal cytoarchitectural abnormalities sug-
gesting a type IIA FCD, as well as widespread astrogliosis and
reduced expression of CASPR2. Further studies are clearly
warranted to define this mutation outside of the Amish
community as well as to define the role of CASPR2 in cortical
development.

mTOR, FCD, and Epileptogenesis

The mechanisms of seizure onset and propagation across the
FCD subtypes have not been fully defined.”®-®° Despite the
known association between FCD and intractable seizures,
there are many remaining challenges that will help us to
understand epileptogenesis (=Fig. 2); these include distin-
guishing the differential contributions of altered brain struc-
ture; the effects of mutations on downstream gene and
protein expression; and in the case of FCDIIb, the effects of
mTOR hyperactivation on excitability. Although enhanced
mTOR signaling is detected in Tsc1, Tsc2, and Pten knockout
mouse models associated with spontaneous seizures, hyper-
active mTOR signaling also occurs in kainic acid-induced
seizures®!-®2 or seizures resulting from electrical brain stim-
ulation®® without structural changes in the neocortex or
genetic alterations causing increased mTOR activation. En-
hanced mTOR activation has been linked to mouse models of
infantile spasms®* and seizures induced in a hypoxia model
lead to increased expression of genes encoding mTOR path-
way components.®® PI3K- and Akt-dependent mTOR activa-
tion has been reported in a rat hippocampal organotypic
culture model of posttraumatic epilepsy, and inhibition of
PI3K, mTOR, or both (using a dual inhibitor) prevented ictal
activity and cell death.®® Enhanced mTOR activation is found
in human temporal lobe epilepsy specimens.®’” Mutations in
MTOR have been recently identified in epileptic encephalop-
athies without MCD,%® suggesting that enhanced mTOR sig-
naling in the absence of structural abnormalities may lead to
epileptogenesis by a yet undefined mechanism. Thus, it
appears that while mTOR activation caused by gene muta-
tions in mTOR regulatory elements can induce epileptogen-
esis, the pathway may also serve as a biomarker for
epileptogenic brain tissue.

Human electrophysiological studies have shown the intrin-
sic epileptogenicity of FCDs.%°~71 Patients with FCD and TSC
have altered numbers and distribution of glutamate and GABA
receptor subunits; also electrophysiological recording in sur-
gical FCD specimens in vitro have identified neuronal cells—
likely cytomegalic dysmorphic neurons—with hyperexcitable
intrinsic membrane properties.”’ 73 In contrast, balloon cells
show neither hyperexcitability nor epileptogenicity. Hyperex-
citability likely reflects developmental alterations of the bal-
ance between excitation and inhibition in the pathogenesis of
epileptic focal discharges in FCD including changes in gluta-
mate and GABA receptor expression.”4~’” Several other studies
point to a deregulation of inhibitory synaptic transmission in
FCD.”®7? Focal cortical dysplasia specimens show downregu-
lation of GABAAR subunits and reduced numbers of inhibitory
(GABAergic) neurons, suggesting impaired GABAergic inhibi-
tion.'>89-82 Electrophysiological studies performed in brain
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slices from FCD tissue show immature GABA receptor-mediat-
ed responses; GABA receptor-mediated synchronization ap-
pears to be involved in the mechanism leading to in vitro ictal
activity in FCD.”%83

Clinical Therapeutics

There have been no clinical trials of mTOR inhibitors such as
rapamycin or everolimus for epilepsy associated with FCD.
Everolimus reduces the size and volume subependymal giant
astrocytomas (SEGA) in TSC.8* In a cohort of 26 patients, 16
suffered from seizures, and everolimus treatment modestly
improved seizure control in 9 patients. Everolimus also
reduces seizure frequency in TSC patients.®> Clearly, mTOR
inhibition may provide a new target for patients with mTOR-
associated refractory epilepsy. Polyhydramnios-megalence-
phaly-symptomatic epilepsy syndrome (Pretzel syndrome) is
a neurodevelopmental disorder found in the Old-Order Men-
nonite community associated with severe epilepsy and
caused by mutations in the mTOR regulatory gene STRADA.2°
A small trial in five children with Pretzel syndrome for
between 8 months and 4 years showed that rapamycin
(sirolimus in clinical parlance) prevented seizures.” This
was the first study to show epilepsy prevention with an
mTOR inhibitor and suggested that early treatment could
dramatically alter clinical seizure onset. Clearly, we need
further consideration of using mTOR inhibitors in other
mTOR-associated FCD such as hemimegalencephaly or famil-
ial focal epilepsies that are linked to mTOR signaling genes,
such as DEPDC5.

Future Considerations

mTOR hyperactivation during brain development appears to
lead to abnormal cortical lamination, cell size, and cell
lineage, culminating in intractable epilepsy associated with
FCD and TSC, as well as hemimegalencephaly and several
other new FCD syndromes. The logical next experimental
steps will be to define how each genotype alters mTOR
activation, and in turn disrupts cortical development, and
to define other factors that contribute to the heterogeneous
features of each focal MCD subtype. From a clinical perspec-
tive, the mTOR pathway provides new avenues for clinical
investigation and for clinical therapeutic trials. In contrast, a
uniform mechanism to account for type  FCDs that appear not
to be associated with mTOR activation, remains to be identi-
fied. We have much work ahead to uncover pathogenic
mechanisms for these FCD subtypes, including further inves-
tigation into environmental risk factors for FCD, such as viral
infection and toxic exposure that may lead to somatic
mutations.

Note

There has been a recent publication reporting somatic
mutations in MTOR in FCDIIa and FCDIIb (Lim ]S, Kim WI,
Kang HC, et al. Brain somatic mutations in MTOR cause
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focal cortical dysplasia type Il leading to intractable epi-
lepsy. Nat Med 2015;21(4):395-400).
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