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Acute lower respiratory tract infections (ALRTIs) are the
major cause of morbidity and mortality in young children,
the elderly, and immunocompromised individuals world-
wide.1 Importantly, the human respiratory syncytial virus
(hRSV) is the principal microbial agent known to cause
ALRTIs.2–5Most clinical manifestations caused by hRSV range
from mild symptoms, such as rhinorrhea, cough, congestion,
low-grade fever, reduced appetite, and respiratory distress, to

severe alveolitis, bronchiolitis, and pneumonia.6 The hetero-
geneity of the diseases caused by hRSV depends, among
others, on host risk factors, including preterm birth,7 con-
genital heart disease,7,8 chronic lung diseases,9 and
immunosuppression.10

hRSV infections are considered highly contagious, affect-
ing nearly 70% of infants before thefirst year of life and nearly
100% of children by the age of 2.11Worldwide, approximately
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Abstract The human respiratory syncytial virus (hRSV) is by far the major cause of acute lower
respiratory tract infections (ALRTIs) worldwide in infants and children younger than
2 years. The overwhelming number of hospitalizations due to hRSV-induced ALRTI each
year is due, at least in part, to the lack of licensed vaccines against this virus. Thus, hRSV
infection is considered a major public health problem and economic burden in most
countries. The lung pathology developed in hRSV-infected individuals is characterized
by an exacerbated proinflammatory and unbalanced Th2-type immune response. In
addition to the adverse effects in airway tissues, hRSV infection can also cause
neurologic manifestations in the host, such as seizures and encephalopathy. Although
the origins of these extrapulmonary symptoms remain unclear, studies with patients
suffering from neurological alterations suggest an involvement of the inflammatory
response against hRSV. Furthermore, hRSV has evolved numerous mechanisms to
modulate and evade the immune response in the host. Several studies have focused on
elucidating the interactions between hRSV virulence factors and the host immune
system, to rationally design new vaccines and therapies against this virus. Here, we
discuss about the infection, pathology, and immune response triggered by hRSV in the
host.
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34 million new cases of hRSV-associated ALRTI occur in
children younger than 5 years and as much as 200,000 deaths
are estimated annually.12 Indeed, hRSV causes a minimum of
3.4 million hospitalizations per year in the United States.12

Due to the high hospitalization rates and increased health
care system costs, hRSV infections are considered a major
public health burden globally. For instance, medical costs
related to hRSV infection in hospitalized individuals is esti-
mated at 394million USD annually, just in the United States.13

Thus, safe and effective vaccines against this virus are urgent-
ly needed.

hRSV spreads rapidly and efficiently throughout the pop-
ulation by inhalation of aerosolized droplets of infectious
viral particles, or directly through the contact of these
droplets with the ocular mucosa.14,15 One of the most rele-
vant characteristics of hRSV infection is the capacity to
produce high reinfection rates in individuals during epidemic
outbreaks. For instance, epidemiological studies indicate that
approximately 36% of individuals can be reinfected at least
once during a given season.13,16,17 Based on the current
evidence, these reinfection episodes may be due to the
elicitation of a deficient or hampered cellular and humoral
immune memory after a first exposure to the virus.4,18–20

Bronchiolitis is one of the most severe illnesses caused by
hRSV infection. The term bronchiolitis is referred to distal
bronchiole inflammation and obstruction. Such an obstruc-
tion reduces the airflow into small airways and causes an
alteration in the exhalation capacity. This phenomenon can
lead to lung hyperexpansion, lung function alterations, in-
creased mucus production, atelectasis, and wheezing.21,22

Furthermore, infection of alveolar epithelium by hRSV leads
to pneumonia, which prevents an efficient gas-exchange
process. Such infection triggers distal airway inflammation,
leading to severe pulmonary disease.22 The initial response
against hRSV infection is given by the airway epithelial cells
(AECs), which promotes the recruitment of effector immune
cells at the site of infection. hRSV-associated immunopathol-
ogy is characterized by the expression of proinflammatory
cytokines and the subsequent perivascular/peribronchial in-
filtration by mononuclear cells, mainly neutrophils and lym-
phocytes.21 This exacerbated inflammation is thought to
trigger an unbalanced and pathogenic T helper (Th)2
response.

Formore than 50 years,most research on hRSV has focused
on elucidating the mechanisms involved in respiratory pa-
thology, as well as on the design of vaccines and therapies
against hRSV.23–25 Nowadays, it is known that hRSV is able to
migrate from the airways tovarious tissues in thehost, such as
heart, kidney, liver, and brain, thereby producing diverse
clinical manifestations, including cardiopathy, hepatitis, and
encephalitis.6,26–28 As a consequence, extensive research
aimed at understanding the extrapulmonary manifestations
of hRSV infection has gained attention in the past few years.
For instance, neurological abnormalities associated with
hRSV infection in patients with severe bronchiolitis have
been detected. Such patients have shown symptoms includ-
ing seizures, apnea and altered proinflammatory cytokine
levels in cerebrospinal fluid (CSF).26However, the cellular and

molecular bases for the encephalopathy caused by hRSV
remain unknown.

hRSV Characteristics

hRSV is an enveloped, negative-sense, singled, stranded RNA
virus, which belongs to the Paramyxoviridae family, Pneumo-
virus genus.29 The virus was first described as a human
pathogen in 1957, after being associatedwith the chimpanzee
coryza virus.30 The viral genome is nonsegmented RNA,
15.2 kb in length, that encodes 10 genes and 11 proteins,
particularly because of the M2 gen, which has two open
reading frames.31 The order of the genes within the genome
from 3′ to 5′ is NS1-NS2-N-P-M-SH-F-G-M2-L, and these
genes are transcribed into 10 monocistronic, capped, meth-
ylated, and polyadenylated mRNAs (►Fig. 1).29,31

Within the viral particle, nine proteins can be found: N, P,
M, SH, F, G, M2.1, M2.2, and L.29,31 Three proteins, F, G, and SH
(small hydrophobic), are expressed at the surface of the
particle, attached to the virion membrane (►Fig. 1).31,32

Both F and G proteins are the main antigenic proteins against
which the majority of the antibodies are raised after hRSV
infection.2,5 The F protein is highly conserved between hRSV
serogroups with less than the 10% of sequence diversity
between the A and B groups.33 The F protein is generated
frommRNA at the cytoplasm of the host cell and converted to
an active protein after cleavage by furin-like protease in the
Golgi apparatus. This proteolytic cleavage generates three
polypeptides, inwhich C- andN-terminal (F1 and F2 subunits)
polypeptides are linked by two disulfide bonds.11,34 The
active form of the F protein in the viral particles is a trimer
in a prefusion conformation.35 This protein mediates the
fusion of the viral envelope with the host membrane by
changing its conformation to a postfusion form after inter-
acting with the receptor.36 Importantly, the F protein can
interact with different proteins on the surface of host cells,
such as TLR4,37 ICAM-1,38 and nucleolin.39 Particularly, nu-
cleolin has been described as the main hRSV receptor that
interacts with the F protein, because it was shown that
nonpermissive cells expressing nucleolin became susceptible
to hRSV infection.39 Furthermore, no new virions could be
made after infection with a mutant virus lacking this pro-
tein.40 These data suggest that the F protein is one of themost
important hRSV proteins contributing to infection and inter-
action with host cells.

The G protein is responsible for the attachment of the virus
to thehost cell.29,31 This protein is highly glycosylated and can
interact with heparin41 and annexin II,42 based on sugar
interactions. Likely, this interaction allows a proper approach
between the F protein and nucleolin.32 In addition, the G
protein exists also as a secreted form, which has been shown
to be important for capturing antibodies generated by the
host against this protein. This soluble form prevents the
opsonization and neutralization of the virus by G-specific
antibodies.43 Furthermore, another important feature of this
protein is the capacity to impair the function of chemokines
and cytokines due to a CX3C chemokine-like motif that can
mimic and compete with these molecules for the interaction
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with their receptors and, thus, modulate CD8þ T-cell re-
sponses.44,45 Moreover, the G protein was shown to display
structural homology with tumor necrosis factor (TNF) recep-
tors and is likely to interact with TNF family cytokine mem-
bers, conducting to a misbalance in the inflammatory
response mediated by these molecules.46 Although G protein
is not totally necessary for hRSV infection, it plays an impor-
tant role at modulating the immune response triggered by
hRSV infection.

The SH protein locates at the surface membrane of the
virion has been shown to display two different forms that
vary in size depending on the hRSV serotype: one of 64
amino acids (serotype A) or 65 amino acids (serotype
B).47,48 SH protein has been described as a viroporin
belonging to the family of small/highly hydrophobic viral
proteins that are capable of forming ion channels in cellular
membranes.49 In fact, the hRSV-SH protein has been de-
scribed to allow the entrance of low-molecular-weight
compounds and change the permeability of the cellular

membrane.49–51 In addition, the SH protein seems to be
involved in the activation of the inflammasome, particu-
larly through signal 2 by the activation of the NOD-like
receptor family, pyrin domain containing 3 (NLRP3), which
triggers the cleavage of pro-IL1β and secretion of this
cytokine.50 Surprisingly, the SH protein has not been de-
scribed to be involved in virus entry into host cells, as a
mutant virus lacking the SH protein can infect and replicate
inside permissive cells (in vitro) and generate syncytia
similar to wild-type virus.11,48 However, this mutant virus
(hRSVΔSH) is attenuated in vivo, which suggests that this
protein may work as a virulence factor during hRSV infec-
tion.11,34,47 Other features described for the SH protein
include an antiapoptotic effect that promotes viral replica-
tion.48 Indeed, a hRSVΔSH mutant virus led to larger
syncytia and more apoptosis rates, as compared with WT
hRSV.48 In addition, studies with the hRSVΔSH mutant
virus showed that the SH protein inhibit NFκB by the
overexpression of TNF-α48 Although the functions of the

Fig. 1 hRSV virion and genome structure. (A) Schematic representation of hRSV virion particle. In the rectangle, each protein are represented
with their principal associated function. (B) Schematic representation of hRSV genome. Transcription is mediated by L protein which generates 11
viral mRNAs, with cap (vertical bars at the beginning) and polyA (horizontal bars at the ends). One mRNA for each proteins and width of each box
represent the quantity of transcription rate of each gene. Replication is mediated by L protein and is necessary for the generation of antigenome
product to generate new hRSV RNA. TrC segment in the 3′ is where replication promotor is located.
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SH protein have not been fully defined, it clearly promotes
hRSV replication and dissemination.

Below the virus envelope lie the other viral proteins,
namely, proteins N, P, L, M, and M2–1.29,31 The nucleoprotein
N is in close contact with the viral genome and is thought to
protect the viral RNA from nucleases and together with P and
L proteins constitute the hRSV ribonucleoprotein (RNP),
which regulate the transcription and replication of the viral
RNA.52,53 Importantly, the N protein prevents the genomic
RNA from formingdouble-stranded RNA structures, aswell as
RNA cleavage by host components.54 Noteworthy, its struc-
ture with viral RNA has been recently determined.55,56 The N
protein is generally located within cytoplasmic inclusion
bodies, where it interacts with the M2–1, P, and L proteins.
During the first hours after infection, the N protein has been

shown to associate within these structures with MDA5 and
mitochondrial antiviral signaling (MAVS), which contribute
to the innate immune response.57 The sequestering of these
molecules by the N protein would cause a poor detection of
viral genome by these nucleic acid sensors, which could
dampen the antivirus interferon (IFN) response.57 Important-
ly, it has been recently described that the N protein can be
expressed on the surface of infected epithelial and dendritic
cells (DCs).58 Expression of this protein impairs the capacity
of hRSV-infected DCs to activate T cells, probably due to a
blockade of the interaction of peptide-MHC (pMHC; MHC,
major histocompatibility complex) complexes with the T-cell
receptor (TCR).58 Such novel role for the N protein has
provided new insights relative to the localization of this
protein and how hRSV can interfere with the induction of

Fig. 2 hRSV infection of airway epithelial cells: (1) G and F proteins interact with host receptors to initiate virus entry. (2) RNP complex is release,
by the separation of RNP with M protein. (3) Replication of viral RNA. (4) Transcription and translation of viral proteins. (5) M protein is imported to
the nucleus and inhibit host cells transcription. (6) M protein is exported to the nucleus and is transported to cholesterol-rich domains.
(7) M protein starts to interact with surface proteins as beginning of assembly. (8) RNP interacts with M protein to finish the assembly process.
(9) Budding of nascent virions.
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protective T-cell responses, which is often impaired by hRSV
infection.3,19,58

The viral phosphoprotein P has been described as a cofac-
tor of the RNP complex and the most important for the L
protein. Indeed, the P protein can interact with N protein,
allowing it to access the L protein.52,59 The P protein is highly
stable as a tetramer and the C-terminal domain (PCTD from the
residue 161 to the residue 241) is critical for the interaction
with the L and N proteins.60–62 Consistent with this notion,
the phosphorylation of the P protein has been shown to play
an important role in the pathogenesis mediated by the virus,
as a virus lacking thefive phosphorylation sites in this protein
shows reduced replication in vivo in mice and cotton rats, as
well as in vitro in HEp-2 sites.63 However, this recombinant
virus can replicate normally in Vero cells, thereby suggesting
that the phosphorylation of the P protein is necessary for an
efficient viral replication.63

The RNA-dependent RNA polymerase (RdRp) L protein is
the lesser expressed of all viral proteins in the infected host
cells. The principal role of this protein is the replication and
transcription of the viral genome, regulated and supported by
the RNP complex.64 Because hRSV is a negative sense RNA
virus, the L protein transcripts the genome directly into
mRNA for the expression of each hRSVgene.59 In this process,
the L protein recognizes a promoter region in the 3′ extreme
of the negative RNA strand and starts the transcription of
each gene. Accumulating evidence suggests that transcription
is modulated by the N protein.52,53,59 During the replication
process, the L protein copies the complete virus genome from
a negative sense RNA into a positive sense RNA, which is
called an antigenome. This RNA is then used as a template to
generate new negative sense RNA, which finally will be
encapsided in the virions.59,65 A typical characteristic of
the L protein is that in the process of transcription, it gen-
erates a gradient of gene expression, from 3′ to 5′, producing
more mRNAs of the genes 3′ as compared with those 5′ in the
genome.66,67

The matrix protein M promotes viral assembly and is
essential for hRSV replication.68 Early after infection, the M
protein is located in the nucleus, where it is able to decrease
the transcriptional activity of the host cells genes.69–71 An-
other role of matrix protein is to arrest the cell cycle in the G1
phase, as shown in A549 cells. It also arrests the G1 and G2/M
phases in human bronchial epithelial cells.72 These actions,
which are p53-dependent, increase hRSV replication.72 In
addition, theMprotein is directly related to thematuration of
viral filaments.73 In this line, it has been described that hRSV
strains that are null for theMprotein showsignificantly lesser
infective progeny particles.73 Moreover, not only lesser new
viral particles are generated but also protein trafficking is
affected, particularly with the N protein being concentrated
in cytoplasmic inclusion bodies, before virus budding. This
phenomenon suggests that M protein is important for trig-
gering the trafficking of viral proteins to the budding site.73

Other studies show that the M protein is expressed in
inclusion bodies and interact with the M2–1 protein, as a
means to interact with the RNP complex.74 The M protein is
also capable of inhibiting viral transcription and interact with

hRSV G and F proteins to signal the assembly of the
virions.75,76

The M2–1 protein is involved in the transcription process
as part of the RNP complex, and acts as an antitermination/
elongation factor promoting the transcription of all hRSV
genes, aiding the L protein to proceed with transcription of
viral genes.77 Interestingly, it was also showed that NS1 and
NS2 genes can be transcribed by the L protein independently
of the hRSV M2–1 protein, suggesting that several transcrip-
tion mechanisms for viral genes exist.77 To exert its anti-
termination functions, M2–1 needs to form as tetramers.78

Importantly, without this oligomerization, the protein cannot
function correctly, which is supported by using a mutant
virus for M2–1 protein that cannot generate tetramers.78 As
M2–1 is part of the RNP complex, this protein can interact
with different protein of this complex.74,78–81 The interaction
with the N protein is particularly mediated through inter-
actionswith the viral RNA, as treatmentwith RNAses disrupts
this binding.80 Another function of this protein is the activa-
tion of nuclear factor-κB (NF-κB) and its association with the
RelA protein.82 On the other hand, the M2–2 protein is
involved in the regulation of transcription to the replication
by the virus polymerase.83,84 This effect was discovered by
studying an ΔM2–2 virus, in which the accumulation of
mRNA was higher in cells infected with this mutant virus,
as compared with WT virus.84 In addition, viral titers were
reduced over 1,000 times in the first 5 days and over 10 times
after 7 to 8 days when the ΔM2–2 virus was used.84 Thus,
these two proteins play a critical role in the regulation of
transcription and replication of hRSV RNA.

Besides the structural proteins mentioned earlier, the
hRSV genome also encodes two nonstructural proteins,
namely, NS1 and NS2, both with the capacity to interfere
with host type 1 IFN innate response. This process negatively
modulates DCs maturation and T-cell responses.85,86 The NS1
protein interferes with the activation of the IFN gene promo-
tor by inhibiting the phosphorylation of interferon regulatory
factor 3 (IRF-3).87NS2 also can interferewith the activation of
IRF-3 by its interaction with retinoic acid–inducible gene 1
(RIG-I), inhibiting the activation of IFN response genes
(IFNRs).88,89 The NS1 protein is able to interrupt the signaling
of JAK/STAT pathways that are activated by IFN receptor
pathways, particularly through the degradation of STAT-
2.88,89 Both proteins, NS1 and NS2, are able to promote
phosphoinositide 3-kinase (PI3K) pathways promoting the
survival of infected cells, increasing viral yield.90 In this line,
interference with the type 1 IFN response by NS1 and NS2
proteins blocks DCs maturation.86 Concomitantly, ΔNS1/NS2
and ΔNS1 viruses are able to increase the expression of
maturation markers on DCs compared with WT hRSV.86

Furthermore, this effect in DCs could interfere with their
capacity to activate T cells.85,86 Indeed, human DCs infected
with aΔNS1 virus show increased activation and proliferation
of CD8þ T, increase the activation and proliferation of Th17
protective cells, and decrease the activation of IL-4þ CD4þ T
cells, which are related to increased hRSV pathogenesis.85 In
addition, a recent study showed that the expression of NS1
and NS2 proteins by human bronchial epithelial cells
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decreases the polarization of T cells toward Th1, Th2, and
Th17 phenotypes by the NS1 protein, and Th2 and Th17
polarization by the NS2 protein.91 Thus, these two nonstruc-
tural proteins are very important virulence factors that
directly affect the immune response of the host.

Viral Infection Cycle

The infection of target cells, such as airways epithelial cells
(AECs), starts with the attachment of virions to the cell
surface aided by the G protein, which interacts with heparan
sulfates and chondroitin sulfate B glycosaminoglycans
(GAGs).92 After this interaction, which helps the virus
approach the membrane of the cell to be infected, the
F protein contacts its receptor, nucleolin (►Fig. 2).39 The
entry of hRSV has been described to occur particularly in
cholesterol-rich microdomains on the cell surface.93 Further,
the fusion membranes require the participation of Pak-1 in
the rearrangement of actin filaments.93 Entry via endocyto-
sis has been discarded because the use of Dynasore
shows that, despite dynamin-endocytic process is inhibited,
viral fusion still occurs.93 Therefore, the fusion of the hRSV
membrane with the host cell membrane depends on the
interactions of hRSVG and F proteins with their receptor and
the rearrangement of actin filaments close to cholesterol-
rich microdomains (►Fig. 2).32,93

The fusion of the viral and cell membranes triggers the
release of the viral nucleocapsid content into cytoplasm.
Here, the nucleocapsid is dissociated from the RNP complex
and repetitions of the M protein, which is mediated by the
phosphorylation of the P protein (►Fig. 2).94 Importantly, this
process is mediated not only by viral proteins but also by host
cell enzymes, such as glycogen synthase kinase-3 (GSK-3) β
and protein phosphatase 2A (PP2A).94 The transcription
process mediated by the function of L protein mainly occurs
in cellular inclusion bodies together with N and P proteins.95

As mentioned earlier, the L proteins associated with the P
protein are able to recognize the promotor region on the 3′ of
viral RNA, and initiate transcription of viral genes.59,67 The
polymerase initiates transcription in gene start (GS) regions
carrying out mRNA capping and methylating the 5′ of the
messenger.59,67 Then, the L polymerase recognizes a gene end
signal at the end of the mRNA and carries out polyadenyla-
tion.59,67 This process goes on again after recognition of a new
GS sequence downstream of a previously transcribed gene. It
is known that theminimal proteins required for transcription
are N, P, and L. TheM2–1 protein also appears to be important
because of its ability to interact with all RNP proteins,78–81

includedwith theMprotein.74 Furthermore, host proteins are
also involved in the transcription process; for instance, pro-
filin, an actin-modulatory protein, is required for an optimal
transcription.96 Additionally, host heat shock proteins (HSPs)
are also involved in this process, particularly HSP90 and
HSP70. Both proteins are expressed in lipid rafts and are
associated with the viral RNP complex. Recently, it was
described that HSP90 is critical for the stability and function-
ality of the L polymerase and that HSP70 is necessary for
efficient RNA synthesis.97,98 When the viral genome is repli-

cated, the L polymerase recognizes the TrC promoter region at
the 3′ of the antigenome and generates genomic hRSV-RNA.99

This new RNA strand is immediately encapsulated by the
N protein.59

Virus assembly, after viral RNA transcription and replica-
tion, depends on the M protein localization and occurs at
cholesterol-rich domains.73,100 As described earlier, at the
beginning of the infection cycle, the M protein is transported
to the nucleus by the interaction with importin-β1, where M
protein can interferewith cellular transcription (►Fig. 2).69,70

The M protein is exported from the nucleus to the cytoplasm
by a Crm1-dependant nuclear signal so that it localizes to
lipids rafts.71 When the M protein is associated with these
domains, the assembly and budding process begins and
involves interactions with surface proteins F, G, and SH.101

Accordingly, a recent report showed that the F and G proteins
are expressed on the surface of ciliated cells.102 Thereafter,
the interaction of the F protein with the M proteins promotes
assembly of the new virions (►Fig. 2).103 On the other hand,
the M2–1 protein has been shown to bind to the M protein,
promoting its assembly with the RNP complex.74 The forma-
tion of filaments that contain the virions is regulated by the
hydroxymethylglutaryl coenzyme A reductase enzyme,
which mediates changes in F-actin to generate viral filamen-
tous projection that are involved in cell-to-cell transmis-
sion.104 Finally, the budding process is not regulated by the
endosomal sorting complex required for transport machin-
ery, as occurs for other enveloped RNA viruses. In its place,
hRSV budding is controlled by the RAB11 family interacting
protein 2 (FIP2),105 which has been described as a novel
pathway for this type of process. Taken together, the hRSV-
infective cycle depends of three main processes: (1) hRSV
protein localization, where inclusion bodies and rich choles-
terol sites are principal placeswhere thehRSV proteins can be
founded; (2) hRSV protein interaction, the particular interac-
tion between RNP complex and accessory proteins for repli-
cation and transcription and the interaction of M protein to
surface protein triggering the virion budding; and (3) inter-
action of host cell proteinswith hRSV proteins and structures,
principally how host cells help in the release of nucleocapsid
at the beginning of the process and how a novel process of
budding depends of host proteins (►Fig. 2).

Innate Immune System against Respiratory
Syncytial Virus

Upon infection, AECs, DCs, andmacrophages play a key role in
the innate response against hRSV in the lungs.106 Pattern
recognition receptors (PRRs) such as Toll-like receptors
(TLRs), retinoic acid–inducible gene I (RIG-I)-like receptor
(RLR) family members, and NOD-like receptors (NLR) are
activated following hRSV infection.107 TLRs have been shown
to be fundamental for the recognition of hRSV.108–110 TLR4/
TLR6 triggers a signaling cascade that activates innate im-
mune responses by enhancing the production of TNF-α,
interleukin (IL)-6, CCL2, and CCL5.110 HRSV is also sensed
by endosomal TLR3 and TLR7, which triggers CCL5, IFN-α, and
IFN-β production by TRIF-mediated- and MyD88 pathways,
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respectively.108,109 The NLRP3 inflammasome, which belongs
to theNOD-like receptor family, senses the SHprotein of hRSV
and triggers pro-IL-β cleavage and secretion of IL-1β
cytokine.50

After PRRs are activated, NF-κB, IRFs, and ATF-2/cJun are
promoted.111 As a consequence, the expression of type 1 IFNs
and the production of inflammatory cytokines, such as IL-8
(IL-8/CXCL8), IL-4, IL-5, IL-6, and IL-10, as well as chemokines
and adhesion molecules are triggered.112,113 Such signaling
cascades also prompt the recruitment of immune cells, such
as eosinophils,monocytes, and neutrophils to the lungs.114As
a result, exacerbated Th2-mediated airway inflammation is
triggered, which contributes to lung damage (►Fig. 3).

hRSValso induces the secretion of both surfactant proteins
A andD (SP-A and SP-D) in the airways.115 These proteins play
an important role in the regulation of the immune response in
the lung.116,117 Indeed, SP-A and SP-D can also stimulate
macrophage activation by increasing chemotaxis, phagocy-
tosis, and increase cytokines secretion.118 Interestingly, SP-D
is able to bind hRSV G protein, thereby inhibiting hRSV
infection in vivo and in vitro.119 Recently, hRSV infection of
AECs has been shown to be involved in the production of
thymic stromal lymphopoietin (TSLP) and epithelial cell-
derived IL-7, an IL-7-like cytokine.120,121 Interestingly, these
cytokines, together with IL-25 and IL-33, are related with
acute exacerbations of asthma and Th2 inflammatory re-
sponses triggered by viruses.122,123 Importantly, Qiao et al
showed the induction of functional maturation of myeloid
DCs (mDCs) in hRSV-infected AECs through Th2-polarizing

molecules, such as thymus activation-regulated chemokine
(TARC/CCL17) and OX40 ligand (OX40L) activation.121 Indeed,
they suggested thatmDCs activationwasmediated by TSLP, as
TSLP-targeted siRNA abrogated mDCs activation.121

Both hRSV NS1 and NS2 proteins inhibit the secretion of
type 1 IFNs in host cells by decreasing the levels of TNF
receptor-associated factor 3.124 Furthermore, survival of in-
fected epithelial cells is achieved, thanks to NS1 and NS2,
which activate the PI3K pathway as previously men-
tioned.108,125 Consistent with this notion, suppression of
these proteins resulted in accelerated apoptosis in hRSV-
infected cells and consequently reduction in the virus yield.90

Importantly, the hRSV nucleoprotein could also attenuate the
IFN response, as colocalization of this protein with RIG-1 and
MAVS protein were found 6 hours postinfection.57

Adaptive Immune Response against
Respiratory Syncytial Virus

T cells play an important role in hRSV infection. CD4þ and
CD8þ T cells have been shown to play pivotal roles in both
hRSV clearance and pathogenesis. Such a dichotomy in the
role of virus-specific T cells has been observed for infection,
and also lung damage after challenge with the virus.126 For
instance, T cells expanded in mice experimentally infected
with hRSV have been shown to be essential for the clearance
of the hRSV, although this immune response causes an
exacerbated activation of the immune system within the
airways.127 Similarly, mice immunized with a vaccine

Fig. 3 Immune response trigged by hRSV infection in respiratory airways. hRSV reaches the lower respiratory tract and is recognized for
respiratory epithelial cells by pattern recognition receptors (PRRs) expressed leading to the secretion of innate cytokines and chemokines such as
TSLP, IL-13, and IL-25. Inflammatory cytokines and chemokines promote the recruitment of innate immune cells into the lungs, such as eosinophils,
neutrophils, andmonocytes. The inflammatory environment induced by the innate immune cell recruitment and mucus production together with
an excessive Th2 and Th17 response generate destruction of the respiratory epithelium and the obstruction of distal bronchiolar airways.
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consisting of formalin-inactivated virus suffered “vaccine-
enhanced disease.”128 Pathology was observed as an exacer-
bated increase in the immunological response of vaccinated
mice to the virus upon challenge, which was manifested by
increased eosinophil infiltration and Th2-like responses in
the lungs.128 Importantly, in this scenario, T cells were
described as a critical cell subset mediating the “vaccine-
enhanced disease.”129 Furthermore, Th17 cells have also been
shown to contribute to hRSV airway pathology in human
newborns.130 On the contrary, mice immunized with BCG
expressing either the hRSV nucleoprotein (BCG-N) or M2
protein (BCG-M2) showed a significant recruitment of IFN-γ-
producing T cells in the lungs, promoting a Th1-response,
which was protective and led to virus clearance without
detrimental inflammation.131

Cytotoxic CD8þ T cells (CTLs) are usually responsible for
viral clearance by recognizing the F and N proteins of the
hRSV.132 However, hRSV-specific CD8þT cells have also been
shown to play a role in a detrimental immune response.
Consistent with this notion, depletion of CD8þ T cells reduced
the severity of hRSV-induced disease during primary and
secondary infection.133 Such detrimental responses have
been suggested to occur because CD8þ T cells play a role in
the regulation and activation of the CD4þ T cells toward Th2
polarized phenotypes.134 On the other hand, a reduction of
intracellular granzyme B content, diminished secretion of
IFN-γ, and impairment of perforin expression have been
observed in CD8þ T cells in the lungs of hRSV-infected
individuals.135,136

Inefficient T cells against hRSV have been reported in
infected individuals.137,138 Such suppression of T-cell activa-
tion is thought to be due to an impairment of DC-T cell
immunological synapse assembly, which has been observed
by a decrease in Golgi polarization in T cells cultured with
hRSV-infected DCs3 (►Fig. 4). This impairment of immuno-
logical synapse assembly also causes improper TCR engage-
ment, leading to the failure of antigen-specific T cells
priming.3 Interestingly, these authors reported that DC-de-
rived soluble factor mediators were not involved in this
suppression.3 By contrast, alteration of cytokine secretion

surrounding the DC-T cell environment by hRSV have been
shown tomodulate T cell response.139 Furthermore, hRSV has
also been observed to alter the quantity of surface cognate
peptide-MHC, impairing T cell activation.140 Likewise, secre-
tion of Th1-like cytokines is reduced in hRSV-infected DCs
and may decrease cytotoxic T cell activity.3 Taken together,
immunological synapse is a fine system that could be ex-
ploited by hRSV at multiple levels. Thereafter, further re-
search is needed to elicit mechanisms of hRSV to interfere in
the immunological synapse.

Regulatory T cells (Tregs), characterized by the expression
of forkhead box transcription factor (Foxp3), have emerged as
key cells in preventing hRSV inflammatory-associated dis-
ease.141,142 This notion is supported by studies in which
depletion of CD4þFOXP3þCD25þ cells prior to infection re-
sults in increased hRSV-associated pathology.141 Likewise,
thesemice display enhancedweight loss, cellular influx in the
lungs, and high eosinophils in the airway after infection.142

Interestingly, this was associated with an increase of IL-13þ T
cells and enhanced expression of the Th2-like transcription
factor GATA-3 in the airways.142 Taken together, Tregs play an
advantageous role against hRSV infection by downregulating
unfavorable proinflammatory cytokines, thereby reducing
lung damage.

In addition to the role of T cells in hRSV infection, macro-
autophagy in DCs has emerged as a key process contributing to
proper antiviral adaptive responses against hRSV.143,144 Mice
deficient for autophagy processes (beclin þ/� mice) display
higher weight loss, elevated Th2 cytokine production, and
eosinophil infiltration in the lungs.143 Indeed, DCs with im-
paired autophagymachinery presents an amelioration of IFN-γ
and IL-17 stimulation in CD4þ T cell cocultures.143

Extrapulmonary Manifestations Caused by
Severe hRSV Infection

Despite human AECs are the main target for hRSV, several
reports have shown that this virus can also infect immune
cells, such as macrophages, monocytes, DCs, and B lym-
phocytes.3,145–147 Moreover, endothelial and neuronal

Fig. 4 hRSV blocks the DC-T-cell synapse assembly. hRSV elicits immune host system by impairment T-cell activation. The DC-T-cell synapse
assembly is interfered by decreasing Golgi polarization, altering the cytokines secreted in the environment, reducing the surface cognate peptide
MHC and impairing the TCR engagement.
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cells have also been shown to be infected by this pathogen
in vitro.113,148 The infection of nonepithelial cells by hRSV
has been related to the expression of the hRSV receptor
nucleolin, as well as other surface molecules, such as GAGs
and TLR4, which interact with hRSV proteins.145 Impor-
tantly, infected immune cells are detectable in systemic
blood, as shown in infected infants by RT-PCR (reverse
trancriptase-polymerase chain reaction) (►Fig. 5)149,150

and in PBMCs in BALB/c mice.146 Such evidence supports
the notion that hRSV is able to spread through the hema-

togenous pathway, thereby reaching distant organs
(►Fig. 5).

hRSV infections in peripheral lungs have been associated
with severe bronchiolitis in hospitalized children.26,151 For
instance, myocardial disease has been extensively associated
with severe hRSV bronquiolitis in infants who do not neces-
sarily carry congenital heart diseases.151–153 Consistent with
this notion, elevated levels of cardiac troponin T (cTnT), a
sensitive and specific marker of myocardial damage, have
also been detected in severe hRSV-infected infants with
hypotension (low blood pressure).152,154 The first report of
myocardial failure during an hRSV-driven bronchiolitis was
described in 1972 and ended with a fatal case of interstitial
myocarditis, an inflammation of the myocardium.155 Impor-
tantly, cardiac alterations during hRSV infection can range
from arrhythmias or irregular heartbeat to mechanical dys-
function.153,156Noteworthy, hRSV-RNA has been detected in
the myocardium by PCR in a case report of myocarditis,
thereby suggesting that such alteration can be a direct effect
of viral infection.157 Additional evidence of the cardiovascu-
lar manifestation of hRSV infection has shown that 76.5% of
positive patients for severe hRSV bronchiolitis present sino-
atrial blocking, characterized by interference in the passage
of impulses from the sinoatrial node, and this manifestation
is common in patients with elevated viral load (�100,000
copies per mL).27 In addition, clinical manifestations of
pericardial effusion, an abnormal amount of fluid in the
pericardial space, were associated with severe bronchiolitis
in a 1-month-old infant (►Table 1).158

Hepatic alterations have also been related to hRSV infection,
as evidenced by the detection of elevated levels of transaminase
in patients with hRSV-associated bronchiolitis.159 Additionally,

Fig. 5 Model for hRSV spread from the lungs to the CNS. The figure
shows the possible hRSV spread from the lungs to CNS through the
hematogenous pathway.

Table 1 Extrapulmonary complications associated with hRSV infection

Complications due
to hRSV infection

Clinical manifestations Findings References

Cardiovascular Heart block
Ventricular tachycardia
Ventricular fibrillation
Myocarditis
Pericardial effusion

hRSV-RNA in a patient withmyocarditis and a
correlation between viral load and sinoatrial
blocks

27,158,177–179

Hepatic Hepatitis hRSV particles were detected in culture of
liver from an immunocompromised patient
and elevated transaminase levels

26,28

Endocrine Hyponatremia Patients with hyponatremia and hRSV bron-
chiolitis show elevated ADH levels

26,56

Renal Steroid-responsive simple
nephrotic syndrome (SRSNS)

hRSV-RNA and antigens were detected by
RT-PCR and alkaline phosphoesterase–anti-
alkaline phosphoesterase enzyme-linked as-
say (APAAP) in the urines, respectively

161

Neurological Apneas
Status epilepticus
Seizures
Encephalopathy
Encephalitis
Strabismus

hRSV-RNA by RT-PCR antibodies and elevat-
ed proinflammatory cytokines in CSF, such as
IL-6

6,26,164,165,167–170,180,181

Abbreviations: ADH, antidiuretic hormone; CSF, cerebrospinal fluid; hRSV, human respiratory syncytial virus; RT-PCR, reverse trancriptase-polimerase
chain reaction.
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severe hepatitis characterized by elevated alanine aminotrans-
ferase levels up to 3,000 IU/L have also been described and
further associatedwith impairment in coagulation.152Moreover,
high levels of transaminases were associated with severe-hRSV
disease in a study comprising 54 childrenwho neededmechani-
cal ventilation.159 Here, hRSV liver infection was confirmed for
one of the hRSV-infected immunocompetent infants in a liver
biopsy.160 Additionally, a case of adipose hepatic infiltration has
been reported in a fatal case of Reye syndrome associated with
hRSV infection,26 as well as in developed hepatitis during hRSV
infection (►Table 1).28

On the other hand, alterations of the endocrine system
have also been associated with hRSV infection, as evidenced
by a clinical study that showed that 33% of patients with
severe hRSV bronchiolitis who were under intensive care
manifested low sodium concentration in the blood, condition
named hyponatremia,26,56 and that 11% presented sodium
levels below 130 mM/L in the serum.56 Patients with hypo-
natremia and hRSV bronchiolitis have also been shown to
display elevated levels of the antidiuretic hormone (ADH).56

Furthermore, it has been reported that ADH levels are signifi-
cantly higher in patientswith bronchiolitis, as comparedwith
patients with apneas or upper respiratory tract infections
with hRSV.56 Further, increased ADH levels have been asso-
ciated with higher carbon dioxide arterial partial pressure
and excessive expansion of the lungs or hyperinflation which
was visible in chest X-rays (►Table 1).56

Renal manifestations have also been described in hRSV
infections. hRSV-RNA and viral antigens have been detected
by RT-PCR and alkaline phosphoesterase–anti-alkaline phos-
phoesterase enzyme-linked assay (APAAP) in urine samples
of children with active, steroid responsive, simple nephrotic
syndrome (SRSNS) (►Table 1).161,162 Consistent with this
notion, Liu et al evaluated the association of hRSV infection
with nephropathy in a rat model. In this study, hRSV-infected
rats showed a gradual increase in proteinuria and alterations
in tubular epithelial cells with slight inflammatory cell infil-
tration in the renal interstitium. Also, both hRSV-RNA and
viral titers were detected in the renal tissue with a peak at
8 days postinfection. These data suggest that hRSV can cause
nephrotic syndrome, although minimal in an hRSV-infected
animal model.162

Neurological Manifestations of hRSV
Infection

Epidemiological data suggest that hRSV infection may
cause neurological complications in 1.2 to 1.8% of the
cases.6,163 These neurological alterations include seizures,
central apnea, lethargy, feeding or swallowing difficulties,
tone abnormalities, strabismus, abnormalities in the CSF,
and encephalopathy.26,163–165

Acute encephalopathies resulting fromviral infection have
been classified into three mayor types: metabolic error,
cytokine storm, and excitotoxicity.166 The etiology of the
encephalopathies induced by hRSV infection remain unclear.
However, an association between the overproduction of
inflammatory cytokines and free radicals in the CSF has

been extensively associated with neurological complications.
For instance, IL-6, IL-8, and nitrogen oxide are increased in the
CSFs of hRSV-infected patients, thereby suggesting that a
cytokine storm may be involved in the pathogenesis of hRSV
encephalopathy (►Fig. 5 and ►Table 1).163,166,167 Indeed,
increased protein levels, cell infiltration, and low glucose
levels have been observed in the CSF of hRSV-infected pa-
tients.26 Interestingly, CSF abnormalities have also been
detected in infants with no apparent neurological symptoms,
suggesting that hRSV can induce subclinical neurological
alterations.168 Furthermore, brain imaging of patients with
acute hRSV encephalopathy is also unclear. These findings
include diffuse edema, an abnormal shifts of fluid in various
compartments of the brain parenchyma, that involves the
entire cerebral cortex and subsequent diffuse brain atrophy,
which results in loss of neurons and the connection between
them.163

Central apnea and seizures are the most frequent neuro-
logical alterations described in clinical reports.169 Neverthe-
less, the frequency of neurological complications can reach up
to 40% in children younger than 2 years with critical con-
sequences due to severe hRSV infection.6 Supporting evi-
dence for an association between neurological alterations and
hRSV infection is the detection of viral RNA and specific
antibodies against hRSV in CSF of patients with neurological
alterations (►Fig. 5). Furthermore, several studies have
shown that encephalopathy-associated hRSV patients display
altered cytokine profiles, as compared with patients infected
with hRSV and bronchiolitis, but without neurological
alterations.167,170

Central apnea can occur in up to 21% of children admitted
into the clinic after hRSV infection. It has been proposed that
hRSV infection can cause disruptions in neural control path-
ways by reducing nonadrenergic and noncholinergic inhibi-
tory responses, which eventuallymay cause the central apnea
symptom.171,172 Further, hRSV causes abnormal cholinergic
responses in an animal model, which suggests that hRSV can
directly alter specific central nervous system (CNS) re-
sponses173 by participating in CNS inflammation. An alterna-
tive explanation could be the significantly prolonged
laryngeal chemo reflex observed in sleeping infants with
hRSV bronchiolitis, as compared with those infected with
hRSV but that do not develop central apnea.172

Other extrapulmonary clinical manifestations by hRSV,
besides seizures, include recurrent neurological abnormali-
ties. Such abnormalities have been described in two different
types: generalized tonic–clonic and partial seizures with
altered consciousness and focal motor features or eye devia-
tion (►Table 1).165,168 Similar to hRSV encephalopathy, seiz-
ures have also been related to the overproduction of cytokines
and free radicals.163,167 Importantly, hyponatremia can also
contribute to seizures.165,168 The direct infection of cranial
nerves can also result in less common neurological alteration
as reported for hRSV infection–induced strabismus in the
form of esotropia.165

Taken together, extrapulmonary manifestations occurring
in severe cases of hRSV infections are not isolated cases. Thus,
there is an urgent need to evaluate the occurrence of these
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events in hospitalized childrenwith hRSV bronchiolitis and to
study the possible consequences of acute neurological abnor-
malities due to the infectionwith this virus. Furthermore, it is
imperative to determine whether these extrapulmonary
effects are due to direct effects of tissues with hRSV or by
inflammatory mediators dispersed from the airways or re-
sponding immune cells.

Possible Mechanisms behind the
Neurological Alterations Caused by hRSV

The neurological complications observed upon hRSV infec-
tion167 have encouraged researchers to understand the
mechanisms involved in CNS dysfunction. Studies performed
in BALB/c mice and Sprague Dawley rats have detected hRSV-
RNA and viral proteins in the brain of animals previously
infected intranasally with this pathogen.174 Studies have
found that immune cells are associated with hRSV in periph-
eral blood from hRSV-infected patients. Consistent with this
notion, hRSV-infected immune cellswouldmigrate to the CNS
by the hematogenous pathway and trespass the blood–brain
barrier.174 An unexpected and important finding regarding
the access of hRSV to the CNS was the description that
impairment in cognitive function is observed after pulmo-
nary disease was resolved in mice and rats.174 Indeed, our
group recently described that mice and rats infected with
hRSV have a deficient performance in tests that evaluate these
abilities. hRSV-infected mice performed significantly worse
than noninfected mice, both in the Marble Burying (MB) and
Morris Water Maze (MWM) tests, several weeks after viral
challenge.174 The MB test consists in measuring the ability of
rodents to dig and hide marbles, which is controlled by
hippocampal function.175 In addition, the MWM evaluates
the animal’s ability for spatial learning through spatial locali-
zation of relevant visual cues that are subsequently proc-
essed, consolidated, retained, and then retrieved in the brain
to successfully navigate and thereby locate a hidden platform
to escape from the water.176 In both tasks, hRSV-infected
animals showed significant alterations in behavioral and
learning processes, as compared with control animals. More-
over, electrophysiological assays suggested that impaired
cognitive function was due to a failure to efficiently induce
long-term potentiation responses in the stratum radiatum in
the hippocampus area. Our study supports the previously
proposed idea that hRSV can alter CNS function. Accordingly,
hRSV has been shown to infect primary neuronal cells invitro,
as well as neural processes innervating the lungs.148

The association of an exacerbated immune response
against hRSV together with hRSV-induced cognitive im-
pairment is supported by the observation that a vaccine
that induces protective T cell immunity prevents virus spread
into the CNS, as well as neurological alterations caused by
infection.174 A possible explanation is that hRSV may enter
the CNS associated with leucocytes or freely, triggering an
elevated secretion of proinflammatory cytokines that affect
normal neuronal function.

In summary, hRSV infection can cause important extrap-
ulmonary symptoms, which can lead to important and long-

lasting health sequelae in children affected by this virus.
Therefore, significant research efforts are required for the
generation of vaccines and therapies to prevent or treat the
infection caused by this virus in the most susceptible
population.
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