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Abstract A concise organocatalytic method for the facile synthesis of
some novel 1'H-spiro[cycloalkyl-1,2'-quinazolin]-4'(3'H)-ones via a
one-pot, three-component condensation of isatoic anhydride, aryl or al-
iphatic amines and a cyclic ketone is described.
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The exploration of synthetic efficiency while minimiz-
ing needless synthetic steps is key to the synthesis of com-
plex organic skeletons.! One-step synthetic strategies are
increasingly used to access drug-like molecules.? Specifical-
ly, heterocyclic frameworks bearing spiro centers possess
structural rigidity resulting from conformational restric-
tion, and they have consequently received attention due to
their enhanced activities against a number of pharmacolog-
ical targets.?

Spiroquinazolinones and their derivatives constitute a
privileged class of fused heterocycles, as they possess nota-
ble biological properties, especially antimicrobial activi-
ties.# Such scaffolds have been explored as core structures
and have been extensively studied in many bioactive natu-
ral and synthetic molecules.> Quinazolinones present nu-
merous biological actions, such as antitumor,%’ antifibrilla-
tory,® antidepressant,’ analgesic,'® diuretic,!' antihista-
mine,'? vasodilatory,'® antihypertensive,'# CNS-stimulant,!>
tranquilizing,'® anxiolytic,'” and plant-growth-regulating'8
activities. In addition, quinazolin-4(3H)-ones are useful
synthetic precursors.'®-23 In continuation of our interest in
the design and synthesis of heterocyclic candidates,?* we
describe an efficient and scalable cascade strategy for the
synthesis of diversely functionalized 1'H-spiro[cycloalkyl-
1,2'-quinazolin]-4'(3’'H)-one derivatives through a one-pot

condensation of isatoic anhydride, an aryl or aliphatic
amine, and a cyclic ketone in the presence of a catalytic
amount of acetic acid.

We started our study by investigating the 4-toluenesul-
fonic acid (PTSA)-catalyzed three-component reaction of
aniline (1a), isatoic anhydride (2), and cyclohexanone (3) as
model substrates in ethanol at reflux temperature. We
found that the desired product 4a was obtained in 51% yield
after heating at reflux for two hours. In attempts to increase
the reaction efficiency, we studied sulfamic acid and acetic
acid as catalysts (Table 1, entries 2-4). From these observa-
tions, it was clear that acetic acid (20 mol%) gave the best
yield (91%) in the shortest reaction time (entry 4). Subse-
quently, we screened a range of polar solvents (ethanol,
methanol, acetonitrile, and propan-2-ol) (entries 4-7) and
we found that methanol was the most efficient solvent for

Table 1 Optimization of Reaction Conditions for Synthesis of Spiro
Product 4a®

Entry Catalyst (mol %) Solvent Time (min)  Yield® (%)
1 - EtOH 180 trace
2 PTSA (20) EtOH 120 51
3 NH,SO;H (20) EtOH 120 57
4 AcOH (20) EtOH 75 91
5 AcOH (20) MeOH 60 94
6 AcOH (20) MeCN 120 84
7 AcOH (20) i-PrOH 120 79
8 ACOH (5) MeOH 90 83
9 AcOH (10) MeOH 60 93

10 AcOH (15) MeOH 60 94

3 Reaction conditions: isatoic anhydride (2; 3 mmol), aniline (1a; 3 mmol),
cyclohexanone (3; 3 mmol), solvent (10 mL), catalyst, reflux.
bsolated yield.
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this condensation, affording the desired spiro product 4a in Table 2 Synthesis of 1'H-Spiro[cyclohexane-1,2'-quinazolin]-4'(3'H)-
94% yield (entry 5). Screening the quantity of the catalyst one Derivatives®
showed that a yield of 93% was obtained by using 10 mol%

of acetic acid (entry 9). We also attempted to reduce the re- Entry Amine Product Time Yoieldb
action temperature from reflux to ambient temperature, (min) (%)

but the reaction was sluggish and the yield decreased (not

NH, 0
shown). Hence, the optimal conditions were determined to ‘ . /©
be refluxing methanol containing 10 mol% of acetic acid as 1 60 93
the catalyst. H)O
1a

After the optimization studies, the synthesis of a variety 4a
of functionalized 1'H-spiro[cyclohexane-1,2"-quinazolin]-
4'(3'H)-ones?>?% was performed to explore the efficiency NH;
and versatility of this method (Scheme 1), and the results 2
are presented in Table 2. Various aromatic amines bearing 2 dN 75 91
either electron-withdrawing or electron-donating substitu- N/O
ents successfully afforded the corresponding products 4b-j 1b H
in good to excellent yields (Table 2, entries 2-10). In con- o
trast, aliphatic amines 1k and 11 (Table 2, entries 11 and 12) NHz o cl
provided only moderate yields, presumably due to their O/
higher nucleophilicity compared with aryl amines. The 3 (i\)]\’\' 40 96
products were characterized by means of 'H and '*C NMR 4 7 ”)O
spectroscopy and by X-ray single-crystal analysis. 1c 4c
NH.
A S O
AcOH (10 mol%) X N N
SoxogEoy Q0 oy -
40— 80 min Br H
1a-j 4a-j 1d 4d

Scheme 1 Acetic acid-assisted three-component synthesis of 3'-aryl-

NH; F
1'H-spiro[cyclohexane-1,2'-quinazolin]-4'(3'H)-ones 7 ©/
5 ©\)J\N 40 96
10
F H
1e 4e

In the "H NMR spectrum of compound 4b, as a represen-
tative example, the aliphatic protons (-CH,-) of the cyclo-

hexane moiety appeared as multiplets at 6 =0.91, 1.25, OCH,

1.55, and 2.04 ppm; the secondary amine (-NH-) proton NHe 0

appeared as a singlet at §=7.01 ppm; and the aromatic 6 | A Ny %0 %9

protons were observed as multiplets at 6 = 6.68-7.65 ppm. ZocH, ( P

In the 3C NMR spectrum, the carbons in the cyclohexane 1t H/O

ring appeared as resonances at § = 21.1, 24.0 and 34.5 ppm, af

and the amide carbon (-CONX) exhibited as a peak at o

0 =162.8 ppm. Furthermore, the structures of compounds NH,

4a (Figure 1) and 4e (Figure 2) were confirmed by single- N 0 /@

crystal X-ray analysis.?’ 7 | P (iﬁl\N 45 93
To extend the scope of the reaction, we applied the opti- ci =z N/O

mized protocol to the synthesis of 1'H-spiro[cyclopentane- 19 4:"

1,2'-quinazolin]-4'(3'H)-ones by reaction with cyclopenta-
none (5; Scheme 2). Aromatic amines 1a-j bearing various o

functional groups at various positions reacted with isatoic © (f‘\'\' /©/

anhydride (2) smoothly in the presence of cyclopentanone 8 | P 75 90
(5), and the corresponding targets (6a-j) were obtained. CHS N/O

The results are summarized in Table 3.
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Entry Amine Product Time Yield® Entry Amine Product Time Yield®
(min) (%) (min) (%)
NH, o O/OCHa NH, o /©/CI
X N A N
9 | 80 88 3 | 45 97
L Lh
OCHj3 H Cl H
1i 4i 1c 6c
CHs NH, o /©/Bf
NH,
(0] N N
N 4 | 45 94
0 | XN 80 86 Ay /D
Z CHs F Br H
1j N 1d 6d
4j
NH F
2 T
HoN N
o 5 45 95
N
11 N 90 84 F H
1e 6e
N
1k H/O OCHs
4k
i ﬁ)
N
NH, f J/ 6 N 85 90
N & OCHj3 N
12 90 81 1f H
N
1 H 6f
al
Cl
3 Reaction conditions: isatoic anhydride (2; 3 mmol), amine 1 (3 mmol), NH,
cyclohexanone (3; 3 mmol), AcOH (10 mol%), MeOH (10 mL), reflux. 9
b i X
Isolated yield. 7 | N 50 9
& Cl N/D
1g H
Table 3 Synthesis of 1'H-Spiro[cyclopentane-1,2'-quinazolin]-4'(3'H)- 6g
one Derivatives®
NH, CHs
(0]
Entry Amine Product Time Yield® X N/©/
(min) (%) 8 ( 80 89
=
(0] 3
NHz @ 1h 6h
\ N
1 | P /D 60 91 NH, o OCHs
N
1a A
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Entry Amine Product Time Yield®
(min) (%)
HoN
o}
1 @N 95 86
6k
0 J/
NH,
A N
12 | /b 110 81
N
1l H

2 Reaction conditions: isatoic anhydride (2; 3 mmol), amine (1; 3 mmol),
cyclopentanone (5; 3 mmol) AcOH (10 mol%), MeOH (10 mL), reflux.
b Isolated yields.

The 'H NMR spectrum of compound 6b showed multi-
plets at § =1.43, 1.71, and 1.89 ppm corresponding to the
aliphatic protons of the cyclopentane group. The secondary
amine (-NH-) proton appeared as a singlet at § = 6.93 ppm,
and the aromatic protons appeared as multiplets at
8 =6.69-7.67 ppm. In the 3C NMR spectrum, the amide
carbon (-CONX) was evident as a resonance at 6 =163.0
ppm.2° Moreover, the structure of 6e was confirmed by sin-
gle-crystal X-ray analysis (Figure 3).

G

Figure 1 ORTEP of compound 4a (CCDC 1543174)%

NH, o)
@°
+ +
o
H
NH,

3or5

0]
AcOH (10 mol%) | X N
B ———
MeOH, 65 °C = N/\/

45 min H

Figure 3 ORTEP of compound 6e (CCDC 1543283)%8

Finally, we examined the reaction with benzene-1,4-di-
amine (7) instead of an aromatic monoamine (Scheme 3),
and this pseudo-five-component reaction led to the novel
bis{1'H-spiro[cycloalkane-1,2"-quinazolin]-4'(3'H)-ones} 8
and 9 in good yields. Their structures were confirmed by 'H
and '*C NMR spectroscopic analyses.

In conclusion, we have disclosed an efficient and concise
approach for the one-pot synthesis of various 1’'H-spiro[cy-
cloalkyl-1,2"-quinazolin]-4'(3'H)-one derivatives through a

le) AN
| —rR
AcOH(10moI%) | N N
_R+ ( /& “MeOH,65°C r N/b
N
1a-j

45-90 min
5 6a—j

Scheme 2 Three-component synthesis of 3'-aryl-1'H-spiro[cyclopen-

tane-1,2'-quinazolin]-4'(3'H)-ones

he

8or9 -

Scheme 3 Pseudo-five-component synthesis of bis{1'H-spiro[1,2'-quinazolin]-4'(3'H)-ones}
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three-component reaction in the presence of a catalytic
amount of acetic acid. The method tolerates an array of
functional groups and has the advantages of mild reaction
conditions, short reaction times, experimental simplicity,
and excellent yields.
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