Osteologie 2016; 25(02): 101-112
DOI: 10.1055/s-0037-1619002
Osteocyte: Morphology & Function
Schattauer GmbH

Proximate mechanisms involved in the formation of Secondary Osteon Morphotypes

Important considerations and a putative role of primary cilia of osteoblasts and osteocytesProximate Mechanismen bei der Bildung von Morphotypen sekundärer OsteoneWesentliche Überlegungen und die mutmaßliche Rolle der primären Zilien von Osteoblasten und Osteozyten
J. G. Skedros
1   University of Utah Department of Orthopaedic Surgery and Department of Veterans Affairs Medical Center, Salt Lake City, Utah, U.S.A.
,
M. S. Doutré
1   University of Utah Department of Orthopaedic Surgery and Department of Veterans Affairs Medical Center, Salt Lake City, Utah, U.S.A.
,
D. J. Weaver
1   University of Utah Department of Orthopaedic Surgery and Department of Veterans Affairs Medical Center, Salt Lake City, Utah, U.S.A.
› Author Affiliations
The authors are grateful for the criticisms of the manuscript provided by René van Oers and Peter Varga.
Further Information

Publication History

received: 23 February 2016

accepted after revision: 31 March 2016

Publication Date:
22 December 2017 (online)

Summary

Proximate mechanisms involved in forming extracellular matrix (ECM) variations within and between bones are not yet clear. Deficiencies in the collective understanding of details required to illuminate the process that forms a highly ordered ECM are exposed when considering that there is still significant debate as to the importance of cellular control in the assembly of the ECM vs. the observation of collagen fibrillar “self-assembly” (i. e., occurring devoid of cells). We examined data and opinions with respect to possible mechanisms involved in the formation of distinctly different ECM patterns of secondary osteon morphotypes (SOMs). Important considerations include: (1) stretch within the osteoid during fibrillogenesis, (2) various mechanotransduction mechanisms, and (3) whether or not the formation of regional variations in osteonal ECMs requires osteo blast alignment and/or rotation and migration. We propose that primary cilia of osteoblasts and osteocytes have an important role in their perception of variant-related (vectorial) stimuli, which is deemed essential in the genesis of distinctive and mechanically relevant ECM patterns of SOMs.

Zusammenfassung

Die proximaten Vorgänge, die an der Entstehung von Variationen extrazellulärer Matrix in und zwischen Knochen beteiligt sind, sind noch nicht abschließend geklärt. Es bestehen nach wie vor Defizite im kollektiven Verständnis der Details, die für das Entstehen einer hoch geordneten extrazellulären Matrix erforderlich sind. Das zeigen die nach wie vor erheblichen Diskussionen, die über die Bedeutung zellulärer Kontrolle in der Anordnung der extrazellulären Matrix gegenüber der Beobachtung einer Selbstorganisation der Kollagenfasern (d. h. ohne Zellbeteiligung) geführt werden. Wir untersuchen Daten und Auffassungen im Hinblick auf die Mechanismen, die an der Bildung von unterschiedlichen Mustern extrazellulärer Matrix von Morphotypen sekundärer Osteone beteiligt sind. Wichtige Betrachtungen umfassen: (1) ein Dehnen innerhalb des Osteoids während der Fibrillogenese, (2) verschiedene Mechanismen der Mechanotransduktion, und (3) die Frage, ob die Bildung regionaler Variationen in der osteonalen extrazellulären Matrix eine Ausrichtung der Osteoblasten erfordert und/oder eine Rotation und Migration. Wir schlagen vor, dass primäre Zilien der Osteoblasten und Osteozyten eine bedeutende Rolle bei der Wahrnehmung veränderlicher (vektorieller) Stimuli innehaben, was als wesentlich erachtet wird in der Entstehung charakteristischer und mechanisch relevanter Muster der extrazellulären Matrix von Morphotypen sekundärer Osteone.

 
  • References

  • 1 Skedros JG, Mendenhall SD, Kiser CJ, Winet H. Interpreting cortical bone adaptation and load history by quantifying osteon morphotypes in circularly polarized light images. Bone 2009; 44 (03) 392-403.
  • 2 Skedros JG, Kiser CJ, Keenan KE, Thomas SC. Analysis of osteon morphotype scoring schemes for interpreting load history: evaluation in the chimpanzee femur. J Anat 2011; 218 (05) 480-499.
  • 3 Skedros JG, Keenan KE, Williams TJ, Kiser CJ. Secondary osteon size and collagen/lamellar organization (“osteon morphotypes”) are not coupled, but potentially adapt independently for local strain mode or magnitude. J Struct Biol 2013; 181 (02) 95-107.
  • 4 Skedros JG, Mears CS, Skedros GA. et al. The mechanical relevance of secondary osteon “mor- photypes”: implications for accommodating non-uniform strains and the etiology of stress fractures. 60th Annual Meeting of the Orthopaedic Research Society 2014; 1293-1295.
  • 5 Skedros JG, Dayton MR, Sybrowsky CL. et al. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone. J Exp Biol 2006; 209 (Pt 15): 3025-3042.
  • 6 Riggs CM, Lanyon LE, Boyde A. Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius. Anat Embryol 1993; 187: 231-238.
  • 7 Mason MW, Skedros JG, Bloebaum RD. Evidence of strain-mode-related cortical adaptation in the diaphysis of the horse radius. Bone 1995; 17 (03) 229-237.
  • 8 Martin RB, Mathews PV, Lau ST. et al. Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods. J Biomech 1996; 29: 1515-1521.
  • 9 Skedros JG. Interpreting load history in limb-bone diaphyses: important considerations and their bio- mechanical foundations. In: Crowder C, Stout S. eds. Bone Histology: An Anthropological Perspective. Boca Raton, Florida, USA: CRC Press; 2012: 153-220.
  • 10 Marotti G. The structure of bone tissues and the cellular control of their deposition. Ital J Anat Embryol 1996; 101: 25-79.
  • 11 Bromage TG, Goldman HM, McFarlin SC. et al. Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat Rec 2003; 274B (01) 157-168.
  • 12 Wagermaier W, Gupta HS, Gourrier A. et al. Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 2006; 01 (01) 1.
  • 13 Varga P, Pacureanu A, Langer M. et al. Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta Biomater 2013; 09 (09) 8118-8127.
  • 14 Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater 2014; 10 (09) 3815-3826.
  • 15 Reisinger AG, Pahr DH, Zysset PK. Principal stiffness orientation and degree of anisotropy of human osteons based on nanoindentation in three distinct planes. J Mech Behav Biomed Mater 2011; 04 (08) 2113-2127.
  • 16 Raspanti M, Guizzardi S, Strocchi R, Ruggeri A. Collagen fibril patterns in compact bone: preliminary ultrastructural observations. Acta Anat (Basel) 1996; 155 (04) 249-256.
  • 17 Klein-Nulend J, Bakker AD, Bacabac RG. et al. Mechanosensation and transduction in osteocytes. Bone 2013; 54 (02) 182-190.
  • 18 Varga P, Hesse B, Langer M. et al. Synchrotron X-ray phase nano-tomography-based analysis of the lacunar-canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis. Biomech Model Mechanobiol 2015; 14 (02) 267-282.
  • 19 Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: master orchestrators of bone. Calcif Tissue Int 2014; 94 (01) 5-24.
  • 20 Duffy MP, Jacobs CR. Seeing the unseen: cell strain and mechanosensing. Biophys J 2015; 108 (07) 1583-1584.
  • 21 van Oers RF, Wang H, Bacabac RG. Osteocyte shape and mechanical loading. Curr Osteoporos Rep 2015; 13 (02) 61-66.
  • 22 Ascenzi A, Bonucci E. The tensile properties of single osteons. Anat Rec 1967; 158 (04) 375-386.
  • 23 Ascenzi A, Bonucci E. The compressive properties of single osteons. Anat Rec 1968; 161 (03) 377-391.
  • 24 von Ebner V. Über den feineren Bau der Skeletteile der Kalkschwämme usw. Wiener Stizber 1887; 95: 213-236.
  • 25 Gebhardt W. Über funktionell wichtige Anord- nungsweisen der feineren und gröberen Bauelemente des Wirbeltierknochens. II. Spezieller Teil. Der Bau der Haversschen Lamellensysteme und seine funktionelle Bedeutung. Arch Entw Mech Org 1906; 20: 187-322.
  • 26 Skedros JG, Holmes JL, Vajda EG, Bloebaum RD. Cement lines of secondary osteons in human bone are not mineraldeficient: new data in a historical perspective. Anat Rec A Discov Mol Cell Evol Biol 2005; 286 (01) 781-803.
  • 27 Kerschnitzki M, Wagermaier W, Roschger P. et al. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol 2011; 173 (02) 303-311.
  • 28 Pazzaglia UE, Congiu T, Marchese M. et al. Morphometry and patterns of lamellar bone in human Haversian systems. Anat Rec (Hoboken) 2012; 295 (09) 1421-1429.
  • 29 Ascenzi MG, Lomovtsev A. Collagen orientation patterns in human secondary osteons, quantified in the radial direction by confocal microscopy. J Struct Biol 2006; 153 (01) 14-30.
  • 30 Weiner S, Traub W, Wagner HD. Lamellar bone: structure-function relations. J Struct Biol 1999; 126: 241-255.
  • 31 Giraud-Guille MM. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 1988; 42 (03) 167-180.
  • 32 Yamamoto T, Domon T, Takahashi S. et al. Twisted plywood structure of an alternating lamellar pattern in cellular cementum of human teeth. Anat Embryol (Berl) 2000; 202 (01) 25-30.
  • 33 Yamamoto T, Li M, Liu Z. et al. Histological review of the human cellular cementum with special ref- erence to an alternating lamellar pattern. Odontol- ogy 2010; 98 (02) 102-109.
  • 34 Marotti G, Ferretti M, Palumbo C. The problem of bone lamellation: an attempt to explain different proposed models. J Morphol 2013; 274 (05) 543-550.
  • 35 Schneider P, Meier M, Wepf R, Muller R. Towards quantitative 3D imaging of the osteocyte lacuno- canalicular network. Bone 2010; 47 (05) 848-858.
  • 36 Cool SM, Forwood MR, Campbell P, Bennett MB. Comparisons between bone and cementum com- positions and the possible basis for their layered appearances. Bone 2002; 30 (02) 386-392.
  • 37 Donnelly E, Ascenzi MG, Farnum C. Primary cilia are highly oriented with respect to collagen direction and long axis of extensor tendon. J Orthop Res 2010; 28 (01) 77-82.
  • 38 Parfitt AM. Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 1994; 55 (03) 273-286.
  • 39 Jones SJ, Boyde A, Pawley JB. Osteoblasts and col- lagen orientation. Cell Tissue Res 1975; 159 (01) 73-80.
  • 40 Yamamoto T, Hasegawa T, Sasaki M. et al. Structure and formation of the twisted plywood pattern of collagen fibrils in rat lamellar bone. J Electron Microsc (Tokyo- 2012; 61 (02) 113-121.
  • 41 Hosaki-Takamiya R, Hashimoto M, Imai Y. et al. Collagen production of osteoblasts revealed by ultrahigh voltage electron microscopy. J Bone Miner Metab. 2015 Jul 30..
  • 42 Vatsa A, Breuls RG, Semeins CM. et al. Osteocyte morphology in fibula and calvaria - is there a role for mechanosensing?. Bone 2008; 43 (03) 452-458.
  • 43 Muhammad H, Rais Y, Miosge N, Ornan EM. The primary cilium as a dual sensor of mechanochemical signals in chondrocytes. Cell Mol Life Sci 2012; 69 (13) 2101-2107.
  • 44 Malone AM, Anderson CT, Tummala P. et al. Primary cilia mediate mechanosensing in bone cells by a calciumindependent mechanism. Proc Natl Acad Sci U S A 2007; 104 (33) 13325-13330.
  • 45 Coughlin TR, Voisin M, Schaffler MB. et al. Primary cilia exist in a small fraction of cells in trabecular bone and marrow. Calcif Tissue Int 2015; 96 (01) 65-72.
  • 46 Thi MM, Suadicani SO, Schaffler MB. et al. Mech- anosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin. Proc Natl Acad Sci U S A 2013; 110 (52) 21012-21017.
  • 47 Young YN, Downs M, Jacobs CR. Dynamics of the primary cilium in shear flow. Biophys J 2012; 103 (04) 629-639.
  • 48 Vaughan TJ, Mullen CA, Verbruggen SW, McNamara LM. Bone cell mechanosensation of fluid flow stimulation: a fluidstructure interaction model characterising the role integrin attachments and primary cilia. Biomech Model Mechanobiol 2015; 14 (04) 703-718.
  • 49 Rydholm S, Zwartz G, Kowalewski JM. et al. Mechanical properties of primary cilia regulate the response to fluid flow. Am J Physiol Renal Physiol 2010; 298 (05) F1096-F1102.
  • 50 Price C, Zhou X, Li W, Wang L. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J Bone Miner Res 2011; 26 (02) 277-285.
  • 51 Spasic M, Duffy MP, Jacobs C. Primary cilia-mediated mechanotransduction regulates osteocyte paracrine signaling to osteoblasts. 62nd Annual Meeting of the Orthopaedic Research Society. 2016: 702.
  • 52 Lee KL, Guevarra MD, Nguyen AM. et al. The primary cilium functions as a mechanical and calcium signaling nexus. Cilia 2015; 04: 7.
  • 53 Chen JC, Hoey DA, Chua M. et al. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism. FASEB J. 2016: 30 [in press]..
  • 54 Goodman CA, Hornberger TA, Robling AG. Bone and skeletal muscle: Key players in mechanotrans- duction and potential overlapping mechanisms. Bone 2015; 80: 24-36.
  • 55 Federman M, Nichols Jr G. Bone cell cilia: vestigial or functional organelles?. Calcif Tissue Res 1974; 17 (01) 81-85.
  • 56 Freund JB, Goetz JG, Hill KL, Vermot J. Fluid flows and forces in development: functions, features and biophysical principles. Development 2012; 139 (07) 1229-1245.
  • 57 Mathieu PS, Bodle JC, Loboa EG. Primary cilium mechanotransduction of tensile strain in 3D culture: Finite element analyses of strain amplification caused by tensile strain applied to a primary cilium embedded in a collagen matrix. J Biomech 2014; 47 (09) 2211-2217.
  • 58 Bromage TG, Hogg RT, Lacruz RS, Hou C. Primate enamel evinces long period biological timing and regulation of life history. J Theor Biol 2012; 305: 131-144.
  • 59 Jubiz W, Canterbury JM, Reiss E, Tyler FH. Circadian rhythm in serum parathyroid hormone con- centration in human subjects: correlation with serum calcium, phosphate, albumin, and growth hormone levels. J Clin Invest 1972; 51 (08) 2040-2046.
  • 60 Turner CH. Site-specific skeletal effects of exercise: Importance of interstitial fluid pressure. Bone 1999; 24 (03) 161-162.
  • 61 Parfitt AM. The Physiologic and Clinical Signifi- cance of Bone Histomorphometric Data, Ch. 9. In: Recker RR. Bone Histomorphometry: Techniques and Interpretation. Boca Raton: CRC Press, Inc; 1983: 143-224.
  • 62 Mehraban LAlvandi, Basta-Pljakic J, Kennedy O, Schaffler M. Osteonal collagen fiber orientation differs from normal in bone formed during disuse osteoporosis. 59th Annual Meeting of the Orthopaedic Research Society. 2013: 0094.
  • 63 Li CY, Price C, Delisser K. et al. Long-term disuse osteoporosis seems less sensitive to bisphosphonate treatment than other osteoporosis. J Bone Miner Res 2005; 20 (01) 117-124.
  • 64 Skedros JG, Clark GC, Sorenson SM. et al. Analysis of the effect of osteon diameter on the potential relationship of osteocyte lacuna density and osteon wall thickness. Anat Rec 2011; 294: 1472-1485.
  • 65 Bidan CM, Kommareddy KP, Rumpler M. et al. How Linear Tension Converts to Curvature: Geometric Control of Bone Tissue Growth. PLoS One 2012; 07 (05) e36336.
  • 66 Weiner S, Arad T, Sabanay I, Traub W. Rotated plywood structure of primary lamellar bone in the rat: orientations of the collagen fibril arrays. Bone 1997; 20 (06) 509-514.
  • 67 Giraud-Guille MM. Plywood structures in nature. Current Opinion in Solid State & Material Science 1998; 03: 221-227.
  • 68 Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell … and more. Endocr Rev 2013; 34 (05) 658-690.
  • 69 Sasaki M, Hongo H, Hasegawa T. et al. Morphological aspects of the biological function of the osteocytic lacunar canalicular system and of osteocyte-derived factors. Oral Science International 2012; 09 (01) 1-8.
  • 70 Giraud-Guille MM, Besseau L, Martin R. Liquid crystalline assemblies of collagen in bone and in vitro systems. J Biomech 2003; 36 (10) 1571-1579.
  • 71 Kapacee Z, Richardson SH, Lu Y. et al. Tension is required for fibripositor formation. Matrix Biol 2008; 27 (04) 371-375.
  • 72 Wang JH, Grood ES. The strain magnitude and contact guidance determine orientation response of fibroblasts to cyclic substrate strains. Connect Tissue Res 2000; 41 (01) 29-36.
  • 73 Neidlinger-Wilke C, Grood ES, Wang J-C. et al. Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J Orthop Res 2001; 19 (02) 286-293.
  • 74 Richardson SH, Starborg T, Lu Y. et al. Tendon development requires regulation of cell condensation and cell shape via cadherin-11-mediated cell-cell junctions. Mol Cell Biol 2007; 27 (17) 6218-6228.
  • 75 Mullen CA, Haugh MG, Schaffler MB. et al. Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation. J Mech Behav Biomed Mater 2013; 28: 183-194.
  • 76 Devenport D. The cell biology of planar cell polarity. J Cell Biol 2014; 207 (02) 171-179.
  • 77 Tuncay H, Ebnet K. Cell adhesion molecule control of planar spindle orientation. Cell Mol Life Sci 2016; 73 (06) 1195-1207.
  • 78 Sugiyama Y, Shelley EJ, Yoder BK. et al. Non-essential role for cilia in coordinating precise alignment of lens fibres. Mech Dev 2016; 139: 10-17.
  • 79 Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 2008; 20 (05) 495-501.
  • 80 Skedros JG, Mears CS, Epperson RT, Bloebaum RD. Trabecular bone has the capacity for hemiosteonal collagen/lamellar “morphotype” adap- tation: implications for advancing understanding of the emergence of skeletal fragility in the elderly. 60th Annual Meeting of the Orthopaedic Research Society. 2014: 0622.
  • 81 Martin RB, Gibson VA, Stover SM. et al. Osteonal structure in the equine third metacarpus. Bone 1996; 19 (02) 165-171.