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Abstract A radical-mediated hetaryl functionalization of nonactivat-
ed alkenes through distal ipso-migration of O- or S-containing hetaryls
was developed. Furyl, benzofuryl, thienyl, and benzothienyl groups
showed satisfactory migratory abilities. A variety of heteroatom-cen-
tered radicals, including azido, trifluoromethylsulfanyl, and silyl radicals
readily trigger the migration cascade, and a new C–heteroatom and C–
C bond are concomitantly constructed in the reaction. This method
provides an efficient approach to the synthesis of high-valued complex
O- or S-hetaryl compounds.

Key words hetaryl compounds, alkene difunctionalization, function-
al-group migration, radical reaction, radicals, rearrangement

Alkenes are important products of the petrochemical

industry, and are also bulk chemicals extensively used in

synthetic chemistry. Consequently, the utilization of

alkenes represents a long-term research interest of chem-

ists. Radical-mediated difunctionalization of alkenes pro-

vides an efficient approach for alkene utilization through

concomitant incorporation of two extra functional groups,

leading to a diversity of polyfunctionalized products.1 How-

ever, the state-of-the-art methods largely depend on the

properties of alkenes. Activated alkenes such as styrenes or

acrylates are generally suitable substrates by virtue of a p–

conjugate effect that can stabilize nascent radical species. In

contrast, functionalization of aliphatic alkenes, which are

not activated, remains challenging.

Remote functional-group migration is an ingenious tac-

tic for achieving the elusive radical-mediated difunctional-

ization of nonactivated alkenes.2 We and others have sys-

tematically showcased the migratory aptitudes of various

groups, including cyano,3 hetaryl,4 oximino,4g,5 carbonyl,5a,6

alkynyl,7 and alkenyl groups.8 In particular, a range of N-

containing five- and six-membered hetaryls readily mi-

grate, triggered by extrinsic radicals, to give the corre-

sponding hetaryl functionalized products. These findings

prompted us to investigate further the feasibility of migra-

tion of O- or S-hetaryls, and we recently developed a fluo-

roalkyl-radical-triggered remote O- or S-hetaryl migra-

tion.9 To explore the generality of this protocol, we exam-

ined the hetaryl functionalization of nonactivated alkenes

by a heteroatom-radical-promoted remote O- or S-hetaryl

migration (Scheme 1). Intramolecular migrations of furyl,

benzofuryl, thienyl, and benzothienyl groups readily pro-

ceeded in the presence of various heteroatom-centered rad-

icals, including azido, trifluoromethylsulfanyl, and silyl rad-

icals. New C–heteroatom and C–C bonds were simultane-

ously constructed in the reaction. This approach offers a

significant complement to the well-studied N-hetaryl mi-

gration.

Scheme 1  Radical difunctionalization of nonactivated alkenes through 
distal functional-group migration
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Azides often serve as privileged precursors for the syn-

thesis of amines and other nitrogen-containing com-

pounds. Moreover, azides are widely used as versatile build-

ing blocks and synthetic intermediates in medicinal chem-

istry and in chemical biology.10,11 Radical azidohetarylation

of nonactivated alkenes offers an efficient approach for the

rapid assembly of complex aliphatic azides, which are oth-

erwise hard to synthesize. By using O- or S-hetaryl-substi-

tuted tertiary alcohols 1 as substrates, the migration of the

hetaryl moiety was triggered by the addition of an azido

radical, generated by the interaction of (diacetoxyiodo)ben-

zene (PIDA) and TMSN3, affording the corresponding het-

aryl and ketone-functionalized alkyl azides 2 in syntheti-

cally useful yields (Scheme 2).12 Both electron-rich and

electron-deficient tertiary alcohols were suitable sub-

strates. The reaction outcomes were not obviously affected

by substitution at the para-, meta-, or ortho-position of the

aryl group. Notably, the examples 2f and 2g showed that

the benzofuryl group has superior migratory ability to that

of a benzothiazolyl or thiazolyl group; the resultant benzo-

furyl-migrated products were obtained in ten times the

yields of the (benzo)thiazolyl-migrated products. Moreover,

benzothienyl and thienyl groups also displayed good migra-

tory aptitudes under the reaction conditions, leading to

useful yields of the corresponding products 2i–m.

Owing to the high lipophilicity of trifluoromethylsulfa-

nyl group, bioactive molecules containing this group usual-

ly exhibit improved metabolic stability and transmembrane

permeation.13 To test the generality of our protocol, it was

applied to the trifluoromethylthiolative hetarylation of

nonactivated alkenes triggered by the addition of an F3CS

radical. A set of representative examples are shown in

Scheme 3. The transformation readily took place to afford

the desired SCF3-functionalized ketones 3.14 The electronic

effects and positions of the substituents on the aryl and

benzofuryl groups had little impact on the reaction out-

come (3a–e). Remarkably, the competitive migration be-

tween two different hetaryls [benzofuryl vs. pyridyl; ben-

zofuryl vs. (benzo)thiazolyl] showed exclusive chemoselec-

tivities, in that only the benzofuryl-migrated products 3f–h

were obtained in the reaction. Furthermore, benzothienyl

and thienyl also showed satisfactory migratory abilities,

readily furnishing the hetaryl-migrated products 3i–l. Note

that furyl-substituted tertiary alcohols were unsuitable

Scheme 2  Azidohetarylation of nonactivated alkenes. Reagents and 
conditions: 1 (0.2 mmol, 1.0 equiv), TMSN3 (0.8 mmol, 4.0 equiv), PIDA 
(0.4 mmol, 2.0 equiv), CH3CN (2.0 mL), rt. Yields of the isolated prod-
ucts are reported. a A second batch of TMSN3 (1 equiv) and PIDA (0.5 
equiv) was added after 6 h.
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substrates, probably due to their decomposition under the

oxidative conditions.

Organosilicon compounds have extensive applications

in several interdisciplinary fields spanning materials sci-

ence, polymer development, energy chemistry, and drug

synthesis.15,16 Consequently, the construction of C–Si bonds

is one of the most important topics in synthetic chemistry.

The concomitant introduction of a silyl group and a hetaryl

group onto an olefin can provide valuable polyfunctional-

ized silicon compound with high product diversity. In the

presence of a copper-salt catalyst and a peroxy ester, the

radical silylhetarylation of tertiary alcohols 1 with triphe-

nylsilane (Ph3SiH) as source of silyl radicals proceeded read-

ily to afford the desired ketone products 4 (Scheme 4).17 The

exclusive formation of 4e indicated that the benzofuryl

group has a better migratory ability than that of a thienyl

group. In addition to benzofuryl, other O- or S-hetaryls, in-

cluding benzothienyl, furyl, and thienyl groups, also mi-

grated to the -position, leading to the corresponding prod-

ucts 4f–i in moderate yields

Furthermore, tris(trimethylsilyl)silane (TTMSS) and

methyl(diphenyl)silane (Ph2SiHMe) also proved to be suit-

able sources of silyl radicals, affording the alkyl silanes 4j

and 4k, whereas phenylsilane (PhSiH3) was not a suitable

substrate for the transformation.

On the basis of the experimental results and our knowl-

edge of radical-mediated functional-group migration,2f we

propose the mechanism shown in Scheme 5.18 The addition

of an external radical Y· to compound 1 generates alkyl rad-

ical a. Intramolecular capture of the alkyl radical a by the

hetaryl compound via a five-membered transition state,

followed by cleavage of a cyclic C–C bond of intermediate b

affords the ketyl radical c. Single-electron oxidation of c

gives d, and subsequent deprotonation furnishes the final

product.

To demonstrate the synthetic utility of our reaction, we

chose to transform the azidohetarylated product 2a into

other valuable molecules (Scheme 6). First, 2a was readily

converted into the tetrahydropyridine 5 in 91% yield under

Staudinger reaction conditions. Moreover, 2a was a suitable

substrate for a click reaction, reacting with ethynylbenzene

to give the corresponding triazole 6 in 97% yield.19 Benzotri-

azole 7 was obtained by the reaction of 2a with benzyne,

generated in situ.20

Scheme 4  Silylhetarylation of nonactivated alkenes. Reagents and con-
ditions: 1 (0.2 mmol, 1.0 equiv), silane (1.0 mmol, 5.0 equiv), tert-butyl 
peroxyacetate (0.8 mmol, 4.0 equiv), CuO (0.02 mmol, 10 mol%), 
DMAP (0.05 mmol, 0.25 equiv), benzene (2 mL), 130 °C, sealed tube. 
Yields of the isolated products are reported.
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Scheme 6  Synthetic applications

In summary, we have developed a heteroatom-centered

radical-mediated hetaryl functionalization of nonactivated

alkenes. The transformation proceeds through the remote

migration of O- or S-hetaryls, including benzofuryl, furyl,

benzothienyl, and thienyl. Many heteroatom-centered radi-

cals, such as azido, trifluoromethylsulfanyl, and silyl radi-

cals, promote the migration process and are readily incor-

porated into alkenes along with the construction of new

chemical bonds, e.g. C–N, C–S, and C–Si bonds. The product

can be further converted into other synthetically valuable

molecules. This protocol provides a complement to current

knowledge regarding N-hetaryl migration.
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subjected to three cycles of evacuation and flushing with N2.

Benzene (2 mL) was added to the mixture, the tube was sealed,

and the mixture was stirred at 130 °C until the starting material

was consumed (TLC). The organic solvent was removed under

vacuum, and the residue was purified by flash column chroma-

tography [silica gel, EtOAc–PE (30:1)] to give a colorless oil;

yield: 62.5 mg (59%).

FTIR: 3068, 3011, 2922, 1772, 1684, 1455, 1428, 1363, 1253,

1219 m–1. 1H NMR (400 MHz, CDCl3):  = 7.80–7.72 (m, 2 H),
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(m, 1 H), 2.84–2.70 (m, 2 H), 2.25–2.05 (m, 3 H), 1.91–1.83 (m, 1

H). 13C NMR (100 MHz, CDCl3):  = 199.7, 160.9, 154.4, 136.9,

135.6, 134.6, 132.9, 129.4, 128.5, 128.5, 128.0, 127.8, 123.1,

122.3, 120.3, 110.9, 103.0, 36.4, 34.9, 32.1, 19.4. HRMS (ESI):

m/z [M + Na]+ calcd for C37H32NaO2Si: 559.2064; found:

559.2068.
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in the Supporting Information (Figures S1–S3).
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