
X. DU, H. FAN^* , S. LIU, Z. C. ZHANG* (DALIAN INSTITUTE OF CHEMICAL PHYSICS AND CHANGZHOU UNIVERSITY, P. R. OF CHINA)

Selective Nucleophilic α -C Alkylation of Phenols with Alcohols via Ti=C α Intermediate on Anatase TiO $_2$ Surface *Nat. Commun.* **2023**, *14*, 4479 DOI: 10.1038/s41467-023-40101-7.

Nucleophilic C-Alkylation of Phenols with Alcohols Promoted by Anatase TiO₂

Significance: C-alkylation of phenols with alcohols was promoted by anatase TiO_2 at 300 °C. Phenol reacted with n-propyl alcohol to give 2-propylphenol with 87% selectivity. Rutile TiO_2 , a stable polymorphs titania, did not promote the C-alkylation (ca. 0% phenol conversion). Phenols bearing 3-chloro and 3-methyl substituents showed a similar trend of selectivity for the alkylation, although they have opposite electronic effects.

Comment: DFT calculations as well as experimental observations indicate that the main reaction pathway of C-alkylation is different from the conventional Friedel-Crafts alkylation. The authors have proposed that the reaction proceeds via a Ti=C intermediate which reacted with a Ti-activated phenol nucleophilically at the *ortho*-position.

SYNFACTS Contributors: Yasuhiro Uozumi, Shintaro Okumura

Category

Polymer-Supported Synthesis

Key words

anatase TiO₂
nucleophilic
aromatic
functionalization

aromatic alkylation

