
Selective Nitro Reduction of Ester Substituted
Nitroarenes by NaBH4-FeCl2
Zi-Hong Zhou1,2 Yong-Bo Xu1 Shu-Ming Wu1,3 Wei-Jian Ling1 Lei Zhang2 Zhong-Qing Wang1,3,4

�

1Department of Process Research and Development, HEC Pharm
Group, Dongguan, People’s Republic of China

2School of Biology and Biological Engineering, South China University
of Technology, Guangzhou, People’s Republic of China

3State Key Laboratory of Anti-Infective Drug Development, Sunshine
Lake Pharma Co., Ltd., Dongguan, People’s Republic of China

4School of Pharmacy, Xiangnan University, Chenzhou, People’s
Republic of China

Pharmaceut Fronts 2022;4:e151–e156.

Address for correspondence Zhong-Qing Wang, PhD, Department of
Process Research and Development, HEC Pharm Group, 368 Zhenan
Road, Dongguan 523871, People’s Republic of China
(e-mail: WangZhongqing@hec.cn).

Introduction

Amino is a ubiquitous functional group that has been widely
used in the synthesis of many natural products, pharma-
ceuticals, agrochemicals, and biologically active com-
pounds.1–3 Currently, nitro reduction is the predominant
strategies applied for the synthesis of amino compounds.3

Traditional methodologies for nitroarene reduction mainly
include direct metal reduction such as Béchamp
reduction,4–11 hydrogenation,4,12–19 and silyl hydride reduc-
tion.4,20 Under these conditions, most ester groups would

not be affected. However, these protocols suffer from draw-
backs such as high economic cost, functional group incom-
patibility, reagent or environmental hazardousness, and
high-pressure equipment dependence. Hence, a benign,
green, and efficient method for nitro reduction is still
required.

Compared with traditional reducing agents, sodium bo-
rohydride (NaBH4) is mild, homogenous, inexpensive and
environmental-friendly for applications in a wide range of
reduction processes.21 However, for the reduction of some
less-electronphilic functional groups, the reducibility of
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Abstract This work aimed to explore a novel protocol for selective reduction of the nitro group
on the aromatic ring while remaining the ester group unaffected. In this study, NaBH4-
FeCl2 was disclosed as a key reductant in the process. NaBH4-FeCl2-mediated reduction
showed high chemoselectivity, gave the desired products in magnificent yield (up to
96%), and was applied to synthesize a key intermediate of vilazodone (an antidepres-
sant drug) on a hectogram scale in a total yield of 81% (two steps). The protocol is
practical, and capable of synthesis of a range of aromatic amines, especially those with
ester substituted in the ring.
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NaBH4 needed to be enhanced by combining with transition
metal catalysts.22–30 Indeed, NaBH4 combined transition
metal such as Fe,31–33 Co,34,35 Ni36,37 and Cu38,39 are avail-
able for reducing nitroaromatics to the corresponding aro-
matic amines, nevertheless, these metal catalysts are
associated with one or more problems such as necessity of
using metal nanoparticles and was not commercially avail-
able, no assess the substrate scope, and poor selectivity, as it
did in the case of the process development of vilazodone, of
which the key intermediate ethyl 5-nitrobenzofuran-2-car-
boxylate (1a) is envisioned to be reduced by NaBH4 during
our project development.

Although in some transition-metal catalyzed protocols,
ester groups were reported compatible,40–45 the selectivity
of nitro group over ester group can still be improved. To
verify method applicability in our project, ester substi-
tuted nitroarene 1a was subjected to the aforementioned
NaBH4-involved approaches (►Scheme 1).45,46 Disappoint-
ingly, 1awas reduced to quite a small amount of the desired
aniline compound 1b, yet, (5-nitrobenzofuran-2-yl)metha-
nol (1c), the corresponding primary alcohol with intact nitro
group, was the major product. Furthermore, the control
experiment (with only NaBH4) confirmed that only 1c was
generated when no other additives were present. Thus, it is
still desirable to develop a new methodology for the highly-
selective reduction of ester substituted nitroarenes not only
in this situation.

As mentioned before, we hypothesize that the selectivity
could be improved by adding transition metal salts, because
NaBH4 can reduce transition metal salts to zero valence, and
the zero valencemetals can selectively reduce nitro to amino
under special conditions. In addition, the previously
reported47 procedure utilizing CuSO4 in solvent with
NaBH4 afforded conversion of 1a to the desired product 1b
with very low impurity levels, and a large number of 1c was
obtained. However, these results also suggest that ester
reduction could be inhibited by some salts. Inspired by the
previous results, wewonder whether other metal salts could

realize the selective reduction of ester substituted aromatic
nitro compounds with high conversion.

Results and Discussion

The screening of reduction conditions was conducted
in ►Table 1. We began our exploration with 1a as the model
substrate. Initially, the reaction was performed in the pres-
ence of 1.0 equiv. of MXn and 2.5 equiv. of NaBH4 under
nitrogen atmosphere in THF at 28°C. The process proceeded
slowly to furnish the desired product 1b only in 10.9%
conversion when CuSO4 was used, but 9.41% of 1c was
formed (►Table 1, entry 1). In addition, the large amount
of 1c was obtained when AlCl3 or LiCl was used, and the
conversions up to 36.1% and 20.2%, respectively (►Table 1,
entries 2, 3). Surprisedly, when 1.0 equiv. of FeCl3 was used,
only a small amount of 1c was observed (►Table 1, entry 4,
0.5%). Thisfinding indicated that the reduction of ester group
might be suppressed by some metal salts or the reaction
proceeded differently. Then, several kinds of ferrous salts
were evaluated. Fortunately, we found that FeCl2 was suit-
able for this reaction, achieving at high 1b conversion (up to
92.8%), and only 0.1% of 1c was detected, while the others
gave poor conversion of 1b (less than 30%, ►Table 1, entries
5–8). Subsequently, we attempted to lower the equiv. of
NaBH4 but found that the conversion decreased seriously
when the NaBH4 loading was cut down from 2.5 equiv. to 1.5
or 1.1 equiv. (►Table 1, entries 9–11). Furthermore, testing
various amounts of FeCl2 revealed that 1.0 equiv of FeCl2 was
the best, and the decrease in equiv. of FeCl2 caused an
obvious increase in the content of 1c (►Table 1, entries
12–14). The solvent had a great impact on this reaction.
It was found that aprotic solvents contribute to the high
conversion, however, in a polar protic solvent (EtOH), poor
conversion was provided (►Table 1, entries 6, 15–16). Thus,
THFwas selected as the optimized solvent for further studies.
Finally, we assess the effect of reaction temperature on the
conversion. When we lower the reaction temperature, the
conversion of 1b was decreases while the content of 1c was
increased (►Table 1, entry 17). As such, we tried to improve
the reaction rate by raising the temperature from 28 to 40°C.
Unexpectedly, the conversion was still low (►Table 1, entry
18). Above all, 2.5 equiv. of NaBH4, 1.0 equiv. of FeCl2, THF as
the solvent, and reaction temperature at 28°C were set as the
optimal reaction conditions.

To assess the substrate scope, a full set of ester group
substituted aromatic nitro compounds were reduced under
the optimized conditions. Examination of the results listed
in ►Table 2 shows that the reaction proceeded well in most
cases. For a better understanding, the substrates were divid-
ed into different groups depending on the relative position of
the nitro and ester groups on the phenyl ring. In group 1, the
ester groupwas located in ameta-position of the nitro group
in substrates 2a-2d (►Table 2, entries 1–4), giving 3a-3d in
excellent yields (91–96%). In group 2, a series of para-ester
nitroarene derivatives were investigated. At first, methyl 4-
nitrobenzoate (2e) showed good conversion and obtained
the desired product in 93% yield. And the substrates

Scheme 1 Comparison of NaBH4-involved approaches of selective
nitro reduction.
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containing an electron-donating group (2f) or an electron-
withdrawing group (2g, 2h) also gave desired products in
high yield (92–95%). Generally, unlike meta- or para-ester
substituted nitro compounds, the ortho-effect of ester and
nitro group in 2i-2k (group 3; ►Table 2, entries 9–11) made
the selective nitro-reduction more challenging. To our de-
light, satisfying results were also observed. In contrast,
ortho-disubstituted substrate 2j showed an obvious decrease
of yield (83%) even under optimized conditions, which was
probably due to the steric effect. Meanwhile, we also exam-
ined aliphatic ester substrate (►Table 2, entry 12) and
acquired the corresponding aniline (3i) in 85% yield.

Heterocycles are prevalent in many pharmacologically
important core structures. Selectivity of the nitro group
over the ester group in pyridine systems, which were com-
mon in pharmaceuticalmolecules, was also demonstrated by
the reduction of 2m and 2n, which proceeded smoothly to
provide 3m and 3n in 89% and 92% yield, respectively. To
further expand the substrate scope, the substrates bearing

nitro and acid groups such as 2-nitrobenzoic acid and 5-
fluoro-2-nitrobenzoic acid were also investigated, disap-
pointingly, no more than 10% conversions were detected.
This result maybe due to that NaBH4 was a high energy
material that easy decomposed by reacting with carboxy
group on the substrates.

Other types of nitro compounds (2o-2q) were also tested
under optimized conditions (►Table 2, entries 15–17). Excel-
lent halide compatibilitywas observed from the above results,
and interestingly, cyano group was also observed relatively
stable under the same conditions (►Table 2, entry 15). Pleas-
ingly, 4,6-dichloro-5-nitro-2-(propylthio)pyrimidine (2p) and
2-bromo-6-nitrobenzo[d] thiazole (2q) could be reducedwith
goodresults (93%and94%yield, respectively). The correspond-
ing products are important skeletons present in bioactive
compounds, such as ticagrelor,48 and some potential anti-
hepatitis C or anti-Alzheimer’s disease drugs.49–52

The synthetic utility of this methodology was confirmed
in the synthesis of vilazodone. As shown in ►Scheme 2,

Table 1 Optimization of the reaction conditionsa

Entry MXn (equiv.) NaBH4 (equiv.) Solvent Conv. (%)b

1b 1c

1 CuSO4 (1.0) 2.5 THF 10.9 9.41

2 AlCl3 (1.0) 2.5 THF 31.1 36.1

3 LiCl (1.0) 2.5 THF 2.6 20.2

4 FeCl3 • 6H2O (1.0) 2.5 THF 3.6 0.5

5 FeSO4 • 7H2O (1.0) 2.5 THF 24.0 14.2

6 FeCl2 (1.0) 2.5 THF 92.8 (91.3c) 0.1

7 FeBr2 (1.0) 2.5 THF trace 1.5

8 FeC2O4 • 2H2O (1.0) 2.5 THF 12.6 36.7

9 FeCl2 (1.0) 2.0 THF 81.9 0.6

10 FeCl2 (1.0) 1.5 THF 60.0 0.3

11 FeCl2 (1.0) 1.1 THF 17.2 0.1

12 FeCl2 (0.8) 2.5 THF 85.5 0.4

13 FeCl2 (0.5) 2.5 THF 71.4 1.2

14 FeCl2 (0.2) 2.5 THF 36.3 10.3

15 FeCl2 (1.0) 2.5 MeCN 77.7 0.2

16 FeCl2 (1.0) 2.5 EtOH 16.5 2.0

17d FeCl2 (1.0) 2.5 THF 22.6 1.0

18e FeCl2 (1.0) 2.5 THF 33.6 0.5

aReaction conditions: 3.8mmol of 1a, respective mmol of MXn and NaBH4 were added into 10mL of solvent, and the mixture was stirred under
nitrogen atmosphere at 25–28 oC for 12 hours.

bConversion was determined by HPLC.
cYield of isolated product after flash column chromatography on silica gel.
dReaction temperature is 15°C.
eReaction temperature is 40°C.
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under the optimized conditions, a hectogram scale of 1awas
selectivly reduced to give 1b, whichwas extractedwith ethyl
acetate, concentrated, and used to produce 1d directly (81%

yield, two steps).53 1d is the key intermediate for the
construction of vilazodone, and proceed to synthsize the
target product according to a reported study.54

Table 2 Substrate scopea

aReaction conditions: 3.8mmol of 2, 3.8mmol of FeCl2, and 9.5mmol of NaBH4 were added into 10mL of THF, and the mixture was stirred under a
nitrogen atmosphere at 25–28°C for 12 hours.

bYield of isolated product after flash column chromatography on silica gel.

Scheme 2 Synthesis of vilazodone. The starting material 1a was used at 100 g-scale. 1d was obtained from 1b according to Jayaraman et al’s
method,53 and then participated the process for producing vilazodone according to a reported study.54
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Conclusion

In summary, it has been demonstrated that the introduction
of FeCl2 into the NaBH4 reduction system brings significant
benefits for selective nitro reduction. Through this protocol, a
range of multi-substituted aromatic amino compounds
could be synthesized with excellent yield. Especially, utiliza-
tion of thismethod enabled an efficient synthesis of the ester
substituted amino compounds. In addition, NaBH4-FeCl2-
promoted nitro reduction provided a useful synthetic strat-
egy for the synthesis of a key intermediate of the antide-
pressant drug vilazodone. Further applications of this
protocol are currently being explored and will be disclosed
in due course.

Experimental section

General Procedure for the Synthesis of 1b, 3a-3q
To a stirred solution of 1a (3.8mmol) in THF (10mL) was
added FeCl2 (3.8mmol) at r.t., then the NaBH4 (9.5mmol)
was added under nitrogen atmosphere, the resulting solu-
tion was stirred for 12 hours at 25–28°C. Water (20mL) was
added to the reaction mixture. The mixture was extracted
with CH2Cl2 (20mL × 3). The combined extractswerewashed
with water (20 mL) and concentrated under vacuum. The
residue was purified by flash column chromatography on
silica gel using ethyl acetate/n-hexane mixture to afford 1b.

Ethyl 5-aminobenzofuran-2-carboxylate (1b): Yellow
solid. 91% yield. mp 58–60°C. ESI-HRMS (m/z): calcd. for
[MþH]þ 206.0812, found 206.0810. 1H NMR (400MHz,
DMSO) d 7.51 (s, 1H), 7.38 (d, J¼9.4Hz, 1H), 6.82 (d, J¼6.9
Hz, 2H), 5.22 (s, 2H), 4.32 (dd, J¼14.1, 7.0Hz, 2H), 1.32 (t,
J¼7.1Hz, 3H). 13C NMR (101MHz, DMSO-d6) d 158.82,
148.66, 145.09, 144.77, 127.34, 117.25, 113.65, 111.98,
104.41, 60.86, 14.12.

Full experimental detail for the synthesis of 3a-3q, and
the 1H and 13C NMR spectra can be found in Supporting
Information of this article’s webpage.
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