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Introduction

Cancer is a group of diseases involving abnormal cell growth
with the potential to invade or spread to other parts of the
body. Over the past few decades, the identification of the
small-molecule inhibitors that shut down cell signaling

pathways perpetually activated by cancer-specific mutated
kinases is one of the greatest success stories in the “War on
Cancer.”1 Among them, the most representative is the
discovery of anaplastic lymphoma kinase (ALK) inhibitors
including crizotinib and ceritinib that have benefited tens of
thousands of patients with nonsmall cell lung cancer
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Abstract Anaplastic lymphoma kinase (ALK) is one of the most popular targets for anticancer
therapies. In the past decade, the use of anaplastic lymphoma tyrosine kinase inhibitors
(ALK-TKIs), including crizotinib and ceritinib, has been a reliable and standard options
for patients with lung cancer, particularly for patients with nonsmall cell lung
carcinoma. ALK-targeted therapies initially benefit the patients, yet, resistance even-
tually occurs. Therefore, resistance mechanisms of ALK-TKIs and the solutions have
become a formidable challenge in the development of ALK inhibitors. In this review,
based on the knowledge of reported ALK inhibitors, we illustrated the crystal structures
of ALK, summarized the resistance mechanisms of ALK-targeted drugs, and proposed
potential therapeutic strategies to prevent or overcome the resistance.

received
March 18, 2022
accepted
September 30, 2022

DOI https://doi.org/
10.1055/s-0042-1758542.
ISSN 2628-5088.

© 2022. The Author(s).
This is an open access article published by Thieme under the terms of the

Creative Commons Attribution License, permitting unrestricted use,

distribution, and reproduction so long as the original work is properly cited.

(https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart,
Germany

THIEME

Review Article e223

Article published online: 2022-12-09

mailto:crown1357@sina.com.cn
https://doi.org/10.1055/s-0042-1758542
https://doi.org/10.1055/s-0042-1758542


(NSCLC) (►Fig. 1). The clinical use of crizotinib (Xalkori) as a
prescription medicine against ALKþ or ROS1þ metastatic
NSCLC has generated a great success. However, the emer-
gence of drug resistance appears lately, and appropriately
one-third of crizotinib-resistant patients develop point
mutations within the ALK kinase domain after 1 to 2 years
of treatment with the drug.2 Initially, the most frequent
gatekeeper mutation L1196M and mutation C1156Y were
found in the kinase domain of EML4-ALK,3 followed by
various other resistance mutations, such as F1174L,
K1062M, G1269A, G1202R, S1206Y, L1152R, and insertion
mutation 1151Tins.4 The second generation of ALK
inhibitor ceritinib (LDK-378) can effectively inhibit several
crizotinib-resistant mutations (e.g., L1196M and G1269A),
but fails to overcome some other resistant ALK mutants,
including G1202R and F1174C.5 Inspired, lorlatinib,
approved by the Food and Drug Administration (FDA)
in 2018, is a third-generation macrocyclic ALK inhibitor
for ALK/ROS1 cancer therapy. It is a second-line treatment
for patients with advanced ALK-positive NSCLC,6 and
becomes a first-line treatment for the disease in
March 2021.7

Originally, ALKwas discovered in 1994 in anaplastic large-
cell lymphomas (ALCLs) as a part of nucleophosmin (NPM)–

ALK fusion protein.8 It is a transmembrane receptor tyrosine
kinase, which belongs to the member of the insulin receptor
superfamily. It consists of an extracellular ligand-binding
domain, a transmembrane domain, a juxtamembrane do-
main, an intracellular kinase domain, and a C-terminal tail. A
complete picture of ALK signaling can be pieced together
through the study of multiple forms of activated ALK (fusion
proteins, cancer-associated mutants, and amplifications),
albeit with certain challenges.1 Interestingly, the identifica-
tion of ALK fused to NPM in ALCL enabled the first roles of
ALK as the fusion protein in the field of oncology.8 ALK plays
an important role inmany tumor types, such as NSCLC, ALCL,
inflammatory myofibroblastic tumor (IMT), and more. This
makes ALK an attractive target for cancer treatment.9 How-
ever, the efficacy of targeting ALK using ALK inhibitors, such
as crizotinibmentioned above, is always limited by the quick
emergence of drug resistance.10,11 The emergence of drug
resistancehas prompted the discovery of a newgeneration of
ALK inhibitors.

ALK Structure

Virtually, ALK fusion proteins share many standard features
(►Fig. 2): (1) the transcription of the chimeric protein is

Fig. 1 Some recent development of ALK inhibitors. ALK, anaplastic lymphoma kinase.
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driven by an ectopic/partner promoter; (2) the localization of
these proteins is largely determined by the N-terminus
partner region; and (3) the presence of an oligomerization
domain by the ALK partner protein, which induces auto-
phosphorylation and activation of the ALK kinase domain.12

The N-terminal region of human ALK (h-ALK) comprises two
MAM domains (amino acids 264–427 and 480–626), a low-
density lipoprotein class A (LDLa) domain (amino acids 453–
471), and a glycine-rich (G-rich) region (amino acids 816–
940). A transmembrane-spanning segment connects the
extracellular regionwith the protein tyrosine kinase domain
(amino acids 1116–1383)-containing intracellular region.
The signal peptide (amino acids 1–16), the glycine-rich
domain (amino acids 63–334), and the kinase domain (ami-
no acids 510–777) are located in the intracellular C-terminal
region of the protein. The 2;5 chromosomal translocation is
frequently associatedwith ALCLs. The translocation creates a
fusion gene consisting of ALK and NPM, and the 3′ half of ALK
derived from chromosome 2 is fused to the 5′ portion of NPM
from chromosome 5.13

The ALK extracellular region contains a unique combina-
tion of domains among the RTKs, exhibiting an N-terminal
signal peptide, followed by two MAM (meprin, A5 protein,
and receptor protein tyrosine phosphatase mu) domains,
and this is an LDLa motif and a sizable glycine-rich region
proximal to the membrane.14

ALK Signaling

ALK signaling is a part of an extended family of proteins that
control aspects of cell growth, differentiation, antiapoptotic
signal, and development.12 Similar to the great majority of
typical and oncogenic tyrosine kinases, ALK fusions activate
many different pathways that are strictly interconnected and
overlapping, including the Ras/Raf/MEK/ERK1/2 pathway,

the JAK/STAT pathway, the PI3K/Akt (PKB) pathway, and
the PLC-γ pathway (►Fig. 3).2,4,14

In addition, Akt, a protein serine/threonine kinase, binds
phosphatidylinositol bisphosphate or trisphosphate with
high affinity, which is also known as protein kinase B
(PKB) and has some contact with ALK. The Ras–ERK pathway,
JAK3–STAT3 pathway, and the PI3K–Akt pathway have many
points of interaction to mediate the effects of ALK activi-
ty.14–17 The Ras–ERK pathway is essential for ALCL prolifera-
tion, whereas the JAK3–STAT3 pathway and the PI3K–Akt
pathway are vital primarily for cell survival and phenotypic
changes.18

Downstream Regulation of ALK Signaling in
Cancers

ALK and its mutants, F1174L and K1062M, were found stably
expressed in NIH3T3 cells, and ►Fig. 4 shows that the
downstream molecules of ALK signaling, including AKT,
mammalian target of rapamycin (mTOR), sonic hedgehog,
JUNB, CRKL–C3G (also known as RAPGEF1)–RAP1 GTPase,
and mitogen activated protein kinase (MAPK) signaling
cascades, affected cell growth, transformation, and antia-
poptotic signaling.19

ALK Variants and Drug Resistance

Point mutations and insert mutations have become an epi-
demic of drug resistance problems. Crizotinib-resistant
acquired secondary mutations of ALK have been identified
in patients with ALK-positive NSCLC who developed disease
progression.4 EML4-ALK, for example, is an oncoprotein found
in 4 to 5% of NSCLC. This fusion genewith C1156Ymutant and
L1196Mmutant developed independently in subclones of the
tumor and conferred marked resistance to two different ALK

Fig. 2 Diagram of inferred interactions between human anaplastic lymphoma kinase (ALK) catalytic core residues, ATP, and a protein substrate.
(A) Ribbon diagram of human ALK. The small lobe is dominated by a five-stranded antiparallel β-sheet, which is represented by number 1–5 in N-
lobe. (B). Orange lines denote the residues (space-filling models) that constitute the catalytic and regulatory spines. (C) Two-dimensional
diagram of the inferred interactions. Catalytically important residues that are in contact with ATP and the protein substrate occur within the light
khaki background. Secondary structures and residues that are involved in regulation of catalytic activity occur within the gray background.
Hydrophobic interactions between the HRDmotif (the first D of K/D/D), the DFGmotif (the second D of K/D/D), and the αC-helix are shown by the
double arrows, while polar contacts are shown by dashed lines. Pho is the phosphate attached to Tyr1283. (Adapted from Roskoski 201314

copyright Pharmacological Research.)

Pharmaceutical Fronts Vol. 4 No. 4/2022 © 2022. The Author(s).

Hallmarks of ALK Inhibitors with Its Quick Emergence of Drug Resistance Qiu et al. e225



inhibitors.3 L1196MandC1156Yaremost frequent gatekeeper
mutationsofALK inNSCLCpatientsduring the relapsephaseof
treatment with crizotinib (Xalkori), and after that, various
resistance mutations were identified, including F1174L,
G1269A, G1202R, S1206Y, L1152R, R1275Q, and insertion
mutation 1151Tins.1,3,20,21 Among patients treated with
the second-generation anaplastic lymphoma tyrosine kinase
inhibitors (ALK-TKIs), the incidence of acquired mutations
increases to50to70%,withG1202Rbeingas themostcommon
mutation. Resistance mutations to other ALK-TKIs include
G1202R/I1171N (alectinib), D1203N/E1210K (brigatinib),22

and G1202R/F1174V/T1151K/T1151R (ceritinib).23

Mechanisms of acquired resistance of ALK-TKIs include
ALK gene alterations, such as ALK point mutations, fusion
gene copy number gain, and activation of bypass signaling
through activation of other oncogenes (►Fig. 5).3,11,21,24

Specific mutations (point mutations, amplification muta-
tions, and insertion mutations) will be discussed in the
following sections.

Point Mutations
Point mutations are also commonly regarded as a leading
cause of drug resistance, especially in NSCLC. As the name
suggests, point mutations are substitutions of one residue
with another. Some point variants and cancer-associated
mutations in human ALK are listed in ►Table 1. The most
important main five-point mutations (►Table 2) represent
that the residues Cys1156, Leu1152, Leu1196, Gly1202,
Gly1269, Ser1206, Fhe1174 in C1156Y, L1152Y, L1196M,
G1202R, G1269A, S1206Y, and F1174L point mutations
will be replaced by tyrosine, tyrosine, methionine, arginine,
alanine, tyrosine, and leucine, respectively.25

L1196M is the most frequent gatekeeper mutation of ALK,
which is analogous to T790M in epidermal growth factor
receptor (EGFR) and T315I in ABL.37,38 To overcome crizoti-
nib resistance to ALK L1196M, pharmacologists have
designed some new second-generation ALK inhibitors, but
they were unsuccessful until ceritinib was approved in
2014.39 In addition, inhibitors of 7b and 001–17, designed
by some researchers based on target-based drug design,
showed good anti-L1196M resistance mutations
(►Fig. 6).40,41 Their resistance to L1196M mutation may be
attributed to the improved hydrophobic interactions of the
inhibitors with key residues in ALK (Leu1122, Met1199, Leu
1122, Phe1271, and Lys1150), suggesting that the ensemble
docking, based on multiple protein structures and target-
based drug design, may be essential in the discovery of new
generation of ALK-TKIs.

In recent research of crizotinib-resistant mutants of
EML4-ALK, Ni et al found that F1174 is at the loop C-terminal
to the α-helix C and forms a hydrophobic patch with its
neighboring residues including F1271 of the DFG motif.42

F1174L may stabilize an active conformation that is more
oncogenic and less favored for crizotinib binding. F1174L
mutation has been identified as an acquired secondary
resistance mechanism to crizotinib and diminished crizoti-
nib-mediated inhibition of ALK signaling and blocked apo-
ptosis owing to the increase of adenosine triphosphate-
binding affinity.20,43 Similarly, 001–17 also induces dramatic
conformational transition and stabilizes unique DFG-shifted
loop conformation, enabling persistent sensitivity to differ-
ent genetic mutations in ALK.

ALK-G1202K mutation may be a novel mechanism of
alectinib resistance.44 G1202R is located in the kinase do-
main of the ALK protein, and contributes to resistance of the
first and second generation of kinase inhibitors. ALK-
G1202del confers moderate resistance to second-generation
ALK-TKIs. Although many cases have suggested an important
role of G1202, the effect of other unknown mutation(s) at
G1202 on the available ALK-TKIs remains inconclusive. No-
tably, lorlatinib has good clinical outcome against the highly
resistant G1202R mutation, and is sensitive to three novel
compound mutations found in tumor biopsies of patient
(F1174L/G1202R, L1196M/D1203N, C1156Y/G1269A,
G1202R/S1206Y).45,46 However, resistance to lorlatinib has
emerged in ALK-L1256F, a single mutant, which can be
confirmed by some computational simulations.47

Fig. 3 ALK fusion-protein signaling pathways. Selected phosphotyr-
osine (pY) residues, their interacting proteins, and the relative loca-
tion of the activation segment phosphorylation sites are indicated on
residues corresponding to the intracellular portion of physiological
ALK, which have their counterpart in the ALK fusion proteins. The
numbers correspond to native human ALK amino acid residues, even
though most experiments on ALK signal transduction have been
performed with the NPM-ALK fusion protein. The broken arrows
indicate that several steps are involved in the signaling process. DAG
activates PKC. ALK, anaplastic lymphoma kinase; C-TT, C-terminal tail;
DAG, diacylglycerol; ERK, extracellular-signal-regulated protein kin-
ases; JAK Janus-activated kinase, JM, juxtamembrane; IRS1, insulin
receptor substrate 1; mTOR, mammalian target of rapamycin; PI3K,
phosphatidylinositol 3-kinase; PK, protein kinase; PKC protein kinase
C; PLC-γ, phospholipase C-γ; ppERK, bisphospho ERK; pSTAT3, phos-
phorylated STAT3; STAT, signal transducer and activator of
transcription.
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Fig. 4 Signaling downstream of ALK. ALK mediates signaling via the JAK–STAT, JUN, Ras–MAPK, PI3K–mTOR, PLCγ, and RAP1 pathways.
ALK, anaplastic lymphoma kinase; CDC42, cell division control protein 42; C/EBPβ, CCAAT/enhancer-binding protein-β; FOXO, forkhead box O;
FRS2, fibroblast growth factor receptor substrate 2; GRB2, growth factor receptor-bound protein 2; GSK3β, glycogen synthase kinase 3β;
IRS1, insulin receptor substrate 1; JNK, JUN N-terminal kinase; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor-κB; NIPA, nuclear
interacting partner of ALK; PLCγ, phospholipase Cγ; SHH, sonic hedgehog.

Fig. 5 Intratumoral heterogeneity and paradigm of future treatment of patients with ALK mutant NSCLC. Each colored ball represents a distinct
clone with a newly acquired resistance mechanism. ALK, anaplastic lymphoma kinase; NSCLC, non-small cell lung cancer.
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Faced with the endless stream of new ALK mutations, the
key challenge lies in a rapid identification of which kinase
domain mutations can be classified as drug resistance driv-
ers. Thus, new technologies, such as molecular dynamics
simulations, structural bioinformatics methods based on
evolutionary analyses, network analysis, and machine learn-
ing, have been applied to address this issue.

With computational studies of ALKmutations, somenovel
point mutations have been revealed. R1192P mutation
emerged at the start of the β4 strand of the kinase domain,

and increases the kcat in the nonphosphorylated ALK tyrosine
kinase domain by 15-fold. R1192P mutation occurs not only
in neuroblastic tumors, but also in advanced NSCLC,48 and
might predict sensitivity to alectinib and brigatinib.49,50

Insert Mutation
ALK insert mutation 1151Tins is one of the crizotinib-resis-
tant mutations in ALK-positive NSCLC. T1151 position in the
protein is shown in►Fig. 7.21 T1151 insertion is predicted to
disrupt a critical hydrogen bond between T1151 and the

Table 1 ALK point variants and cancer-associated mutations in human ALK

Point mutation Cancer type Domain in ALK Effect on ALK Refs.

L1152R NSCLC (EAF) Between β3 strand and αC helix GOF 24

K1062M Neuroblastoma Juxtamembrane domain GOF 19

T1087I Neuroblastoma Juxtamembrane domain Ligand-dependent 3,26

D1091N Neuroblastoma β1 strand Ligand-dependent 26,27

A1099T Neuroblastoma β2 strand Ligand-dependent 26,27

G1128A Neuroblastoma P loop GOF 27,28

T1151M Neuroblastoma β3 strand Ligand-dependent 26,29

F1174L NSCLC (EAF) End of αC helix GOF 20

M1166R Neuroblastoma αC helix Ligand-dependent
or GOF

26,27

L1196M NSCLC (EAF) Gateway mutation GOF 3,11,21

I1171N Neuroblastoma αC helix GOF 27,28

F1174L/S Neuroblastoma End of αC helix GOF 19,27,29–32

F1174I Neuroblastoma End of αC helix GOF 26,27

G1202R NSCLC (EAF) Between β5 strand and αD helix GOF 21

R1192Q Neuroblastoma Between β4 and β5 strands GOF 27,29

S1206Y NSCLC (EAF) In αD helix GOF 21

A1234T Neuroblastoma αE helix Ligand-dependent 26,29

L1240V Neuroblastoma αE helix Unknown 33

F1174Lþ L1198P Experimentally generated
(EAF)

αC helixþ between β5
strand and αD helix

GOF 34

F1174L/ G1123S/D Experimentally generated
(EAF)

αC helixþ between β1 and β2 strands GOF 34

L1198P Experimentally generated
(EAF)

Between β5 strand and αD helix GOF 34

G1269S Experimentally generated
(EAF)

–1 to DFG GOF 34

D1203N Experimentally generated
(EAF)

Between β5 strand and αD helix GOF 34

Y1278H/G1123S
or D

Experimentally generated
(EAF)

1278-YRASYY-1283 Not determined 34

L1198F ATC Between β5 strand and αD helix GOF 35

G1201E ATC Between β5 strand and αD helix GOF 35

A1252V Carcinoma of
the endometrium

þ3 to HRD Not a driver 36

C1156Y IMT (RANBP2–ALK fusion) Between β3 strand and αC helix GOF 3

Abbreviations: ALK, anaplastic lymphoma kinase; ATC, anaplastic thyroid cancer; EAF, EML4–ALK fusion; GOF, gain of function; IMT, inflammatory
myofibroblastic tumor; NSCLC, non-small-cell lung cancer.
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carbonyl backbone of E1129. The location of E1129 on the P
loop, adjacent to catalytic Lys1150, suggested that 1151Tins
may lead to changes in the affinity of ALK for ATP. To date, ALK
insert mutation 1151Tins has been rarely found, and only
confers resistance to crizotinib and ceritinib.5 However, in
2021, Kobayashi et al described a rare case of uterine

metastasis in a patient with ALK-rearranged NSCLC.51

1151Tinswas observed from the tissue of uterinemetastasis,
andwas considered to be a crizotinib- and alectinib-resistant
mutation. Besides, some new insert mutations have been
discovered. L1196Q insertion is resistant to lorlatinib and can
be detected after alectinib and ceritinib therapy.52 P1094H
insertion was acquired following crizotinib and alectinib
therapy and was found to induce resistance to ceritinib.52

ALK Amplification Mutation
Genetic dissection revealed a hybrid gene (NPM-ALK) at the t
(2;5)(p23;q35) chromosomal translocation breakpoint,
comprising a fusion of a nucleolar protein gene NPM and a
part of a gene coding ALK, a novel tyrosine kinase.53 In 2007,
Soda et al reported a fusion gene containing part of the EML4
gene and ALK gene in NSCLC cells.54 These hybrid proteins
undergo spontaneous dimerization, ultimately leading to a
constitutive enzymatic activation of the ALK tyrosine kinase
domain and autophosphorylation. Katayama et al revealed
that a growing number of fusion copy of ALK gene was

Table 2 The location of five-point mutations and one insertion
mutation

Kinase Location

ALK L1196M Gatekeeper mutation

ALK C1156Y N-terminal to the αC-helix

ALK F1174L C-terminal to the αC-helix

ALK G1269A ATP-binding pocket

ALK R1275Q Vicinity of the DFG motif

ALK T1151ins N-terminal to the αC-helix

Abbreviation: ALK, anaplastic lymphoma kinase.

Fig. 6 Docking model of (A) compound 7b (light blue) and (B) 001–17 (light blue) in X-ray structure of crizotinib-bound ALK (PDB ID: 2XP2).
Critical hinge hydrogen bond interactions are shown in dotted lines (gray). Pymol software was used to generate the picture. (C) Two-
dimensional schematic diagram of the binding patterns of 001–17. (D) Chemical structures of 001–17 and 7b. ALK, anaplastic lymphoma kinase.
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associated with mechanisms of resistance to crizotinib in a
cell model of NSCLC.55 With the increasing adoption of next-
generation sequencing, distinct fusion partners identified in
ALK-positive NSCLC have expanded to approximately 90
(►Table 3). EML4-ALK still accounts for approximately 85%
of the fusion variants in ALK-positive NSCLC. Chromosomal
rearrangements in ALK gene have been also detected in ALCL,
IMT, NSCLC, lung adenocarcinoma, and esophageal squa-
mous cell cancer.

EML4-ALK v1 (E13, A20) and EML4-ALK v3a/b (E6, A20)
variants account for 70 to 80% of all EML4-ALK variants, and
the third most common variant is EML4-ALK v2, followed by
EML4-ALK v5′.56 Horn et al proposed that most of EML4-ALK
variants confer similar level of resistance to individual ALK-
TKIs.57 Against G1202R mutation, lorlatinib and brigatinib
show similar potency within the context of EML4-ALK v1.57

Lorlatinib’s potency decreased on the premise of EML4-ALK
v3, and this may be caused by differences in stability of
intrinsic protein among the variants. EML4-ALK v1 and v3
could form membraneless cytoplasmic granules, which act
as a center for organization and activation of downstream
signaling pathway components associated with resistance,
like RAS.58 Consequently, ALK-TKI’s resistance is multifacto-
rial and the background of fusion variant should be taken
into consideration when interpreting ALK resistance
mutations.

TP53 (tumor protein p53) is a tumor suppressor gene.
TP53 mutations reduced the sensitivity of ALK-TKIs,59 and60

patients harboring with both TP53mutations and EML4-ALK
v3were associatedwith aworse poor prognosis.66 Preclinical
data indicated that the combination of ALK-TKIs with pro-
teasome inhibitor may be useful in generating TP53-inde-
pendent apoptosis.

ALK Signaling through Activation of Other Oncogenes
ALK-TKIs are emerging as effective clinical therapies for
cancers containing genetic rearrangements in ALK, including
NSCLC, IMT, and ALCL. However, the clinical success of this
therapeutic approach is uniformly limited by the develop-

ment of drug resistance. All the different ALK fusion proteins
regulate through a multitude of downstream pathways,
including activation of MET, EGFR, SRC, and IGF-1R.108

EGFR activation is the most common downstream path-
way, accounting for approximately 30% of patients with
crizotinib resistance. It is mainly achieved by up-regulating
the expression of EGFR and its ligands. HER2/3 belongs to the
family of HER and EGFR. Some studies have found that HER3
ligand neuroregulatory protein 1 (neuroregulin1, NRG1) is
overexpressed in drug-resistant crizotinib cells, which can
promote the interaction between HER2 and HER3 and affect
the downstream pathway, leading to the drug resistance.21

MET activation has been regarded as a bypass pathway in
EGFR-mutant NSCLC and has been detected in 5 to 20% of
resistance cases.109 Compared with EGFR-mutant NSCLC,
relatively fewer papers have made contribution of aberrant
MET activation to resistance in ALK-positive NSCLC. Recently,
Molina-Vila and colleagues found MET alterations in 4 out of
12 (33%) fusion-positive patients after progression on
TKIs.110 In addition, Hata and coworkers analyzed more
than 200 resistance tissue and plasma specimens and dis-
covered that approximately 15% of tumor biopsies from
patients were identified MET amplification and a novel
ST7-MET rearrangement has been detected in two cases.
Thus, MET amplification can mediate resistance to ALK-TKIs
to some extent and suggests that the ALK/ROS1/MET TKI
crizotinib may be able to overcome MET-driven
resistance.111,112

Karaca Atabay et al identified that the loss of PTPN1 and
PTPN2, two kinds of protein tyrosine phosphatases, culmi-
nate in crizotinib resistance. Downstream signaling analysis
showed that the deletion of PTPN1 or PTPN2 would hyper-
activate SHP2, the MAPK, and JAK/STAT pathways, and lead
to crizotinib resistance. Hence, a combined blockade of SHP2
potentiates the efficacy of ALK inhibitor in antiresistance.113

NF2 is a known tumor-suppressing gene that acts as a
guardian in the Hippo signaling pathway and approximately
2% of breast cancer patients harbor NF2 mutation.114 Fri-
boulet and his coworkers knock out NF2 gene in the H3122

Fig. 7 Position of T1151 in the protein (in red circle). (Adapted from Katayama et al 201221 copyright Science Translational Medicine.)
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cell line and identified that NF2 loss of function, as a novel
bypass mechanism of resistance to lorlatinib, was sensitized
by mTOR inhibition both in vitro and in vivo, which offers a
novel potential treatment approach for lorlatinib
resistance.115

Current Solutions to Overcome Drug
Resistance

The problem of resistance to ALK inhibitors has become an
important obstacle limiting the development of ALK inhib-
itors. First and foremost, the urgent and essential thing is to
develop approaches for rapidly identifying which kinase
domain mutations can be classified as cancer drivers and
the resistance mechanisms. Due to the continuous research
into the mechanism of ALK-TKI resistance, many solutions
have been found. The acquired resistance mechanisms of
ALK-TKIs havebeen fully illustrated, and somenewstrategies
to overcome drug resistance are reviewed below. The potent
ALK-TKIs that overcome drug resistance are also listed
in ►Fig. 8.

Develop Smaller and More Compact Macrocyclic ALK-
TKIs
The current ALK inhibitors on the market share some com-
mon characteristics, including large and loose molecular
structures, and some motifs near or across the hydrophobic
posterior capsule. These characters make them more sus-
ceptible to drug-resistant mutations. Thus, new inhibitors
with increasingly compact structures have been designed. In
2020, TPX-0131, a macrocyclic molecule, was reported as a
next-generation ALK inhibitor (►Fig. 8). TPX-0131 is
designed to fit within the ATP-binding boundary to inhibit
ALK fusion proteins and is more potent than all FDA-ap-
proved ALK-TKIs against WT ALK and many types of ALK
resistance mutations.116,117

Table 3 Recurrent chromosomal translocations and fusion
proteins involving ALK gene in human cancers

Fusion protein Disease Refs.

NPM-ALK ALCL 8

ALO17-ALK; two variants ALCL 60

TFG-ALK; three variants ALCL 61,62

MSN-ALK ALCL 63,64

TPM3-ALK ALCL 65,66

TPM4-ALK ALCL 67

ATIC-ALK ALCL 68–70

MYH9-ALK ALCL 71

CLTC1-ALK ALCL 72

EML4-ALK; 13 variants NSCLC 54,73

TFG-ALK NSCLC 73

TFG-ALK NSMM 74

KIF5B-ALK NSCLC 75,76

KLC1-ALK NSCLC 77

PTPN3-ALK NSCLC 78

TPM3-ALK IMT 79

TPM4-ALK IMT 79

CTLC-ALK IMT 80,81

ATIC-ALK IMT 82

CARS-ALK IMT 60,83

RANBP2-ALK IMT 84

SEC31L1-ALK IMT 85

NPM-ALK DLBCL 86,87

CLTC1-ALK DLBCL 88

SQSTM1-ALK DLBCL 89

SEC31A-ALK DLBCL 90

EML4-ALK BRCA 91

EML4-ALK CRC 91

C2orf44-ALK CRC 92

TPM4-ALK ESCC 93,94

VCL-ALK RCC 95

HIP1–ALK NSCLC 96

SEC31A-ALK NSCLC 97

CUX1-ALK NSCLC 98

VKORC1L1-ALK NSCLC 99

DYSF-ALK NSCLC 100

ITGAV-ALK NSCLC 100

TNIP2-ALK NSCLC/ LUAD 101

ERC1-ALK NSCLC/ LUAD 102

FBN1-ALK NSCLC/ LUAD 102

TRIM66-ALK NSCLC/ LUAD 102

SWAP70 NSCLC/ LUAD 102

WNK3 NSCLC/ LUAD 102

(Continued)

Table 3 (Continued)

Fusion protein Disease Refs.

CHRNA7-ALK NSCLC 103

LIMD1 -ALK NSCLC 103

TTC271-ALK NSCLC 103

LINC00327 -ALK NSCLC 103

SORCS1-ALK NSCLC 103

LINC00211-ALK CSF 104

KIF5B-ALK ALKPH 105

LRRFIP1-ALK IMT 106

PPP1CB-ALK CGM 107

Abbreviations: ALCL, anaplastic large cell lymphoma; ALKPH, ALK-
positive histiocytosis; BRCA, breast cancer; CGM, congenital glioblas-
toma; CRC, colorectal cancer; CSF, cerebrospinal fluid; DLBCL, diffuse
large B cell lymphoma; ESCC, esophageal squamous cell cancer; IMT,
inflammatory myofibroblastic tumor; LUAD, lung adenocarcinoma;
NSCLC, non-small cell lung cancer; NSMM, non-secretory multiple
myeloma; RCC, renal cell cancer.
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Selective Degradation of Mutant Kinase Variants by
PROTACs
Proteolysis targeting chimeras (PROTACs), a technology of
modulating a protein of interest through degradation, has
become one of the most promising cancer therapeutic
strategies.118 PROTACs consist of three parts, a ligand for
binding targets, an E3-ubiquitin ligase ligand for hijacking an
endogenous E3 ligase, and an optimal linker that connects
these two moieties, resulting in the ubiquitination and
degradation of the targeted protein via the ubiquitin–pro-
teasome system.15 PROTACs have been used successfully to
selectively degrade ALK protein since 2018. In Jin’s laborato-
ry, two ALK degraders, MS4077 and MS4078 (►Fig. 8), have
been designed to decrease the active oncogenic ALK fusion
proteins in SU-DHL-1 lymphoma andNCI-H2228 lung cancer
cells, and tomediate ubiquitination and degradation of NPM-
ALK and EML4-ALK in vitro.13However,MS4077 andMS4078
do not significantly improve the antiproliferative effects
against ALK mutant lung cancer cells in comparison to
ceritinib.

The Jiang group synthesized a series of ALK PROTACs by
combining brigatinib and VHL-1 and discovered SIAIS117 as
a potential treatment for drug resistance of ALK-TKIs
(►Fig. 8). This compound shows strong in vitro anti-
G1202R resistance mutations.119 In 2021, the Jiang’s group
also reported SIAIS001, an alectinib-based ALK PROTAC,
which can promoteG1/S phase arrest and showsmuch better
growth inhibition effects than alectinib (►Fig. 8).120 In light
of the rapid development of the PROTACs technology, more
andmore ALK degraders are being designed and synthesized

to anticipate in clinical trials and will be used in clinical
practice shortly.

Conclusions and Perspectives

There is no doubt that ALK, a potent carcinogenic driver
gene, plays an important role in various types of human
cancers. Unfortunately, rapid emergence of the drug resis-
tance could significantly affect the survival of patients
treated with ALK-TKIs. Based on the structures of ALK and
their variants, as well as the net of ALK-mediating signal
transduction, mechanisms of drug resistance, such as point
mutations, amplification mutations, activation of bypass
signaling, and NF2 loss-of-function mutations, etc., have
been discovered.

Based on the crystal structure of the ALK, smaller and
more compact macrocyclic ALK-TKIs, including Repotrecti-
nib and TPX-0131, have been designed to positively over-
come drug resistance. The PROTAC strategy offers another
promising means to overcome the issue of drug resistance. It
can be used to degrade ALK driver proteins, and thus evade
drug resistance. Although PROTAC-designed ALK inhibitors
only have good potency in vitro, ALK PROTACs has been
considered to have great potential in clinical therapy. Fur-
thermore, computational modeling and machine learning
can also be utilized for the discovery and development of
novel ALK drugs. To sum up, there is still a long way to go
before we can successfully tackle cancer, and there is much
more research needed to understand and overcome resis-
tance to ALK-TKIs.

Fig. 8 Some ALK-TKIs designed to overcome drug resistance. ALK-TKI, anaplastic lymphoma tyrosine kinase inhibitor.
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