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ABSTRACT

Background MRIis attractive for the guiding and monitoring
of interventional procedures due to its high intrinsic soft tis-
sue contrast and the possibility to measure physiologic
parameters like flow and cardiac function.

Method The current status of interventional MRI for the clin-
ical routine was analyzed.

Results The effort needed for the development of MR-safe
monitoring systems and instruments initially resulted in the
application of interventional MRI only for procedures that
could not be performed by other means. Accordingly, biopsy
of lesions in the breast, which are not detectable by other
modalities, has been performed under MRI guidance for dec-
ades. Currently, biopsies of the prostate under MRI guidance
are established in a similar fashion. At many sites blind biopsy
has already been replaced by MR-guided biopsy or at least by
the fusion of MR images with ultrasound. Cardiovascular
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interventions are performed at several centers for ablation as
a treatment for atrial fibrillation.

Conclusion Interventional MRI has been established in the
clinical routine for a variety of indications. Broader application
can be expected in the clinical routine in the future owing to
the multiple advantages compared to other techniques.

Key points

= Due to the significant technical effort, MR-guided inter-
ventions are only recommended in the long term for re-
gions in which MRI either facilitates or greatly improves
the intervention.

= Breast biopsy of otherwise undetectable target lesions has
long been established in the clinical routine. Prostate
biopsy is currently being introduced in the clinical routine
for similar reasons. Other methods such as MR-guided
focused ultrasound for the treatment of uterine fibroids or
tumor ablation of metastases represent alternative meth-
ods and are offered in many places.

= Endovascular MR-guided interventions offer advantages
for a number of indications and have already been clinically
established for the treatment of children with congenital
heart defects and for atrial ablation at individual centers.
Greater application can be expected in the future.
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ZUSAMMENFASSUNG

Hintergrund Die MRT ist aufgrund des hohen intrinsischen
Weichteilkontrasts, der Moglichkeit der multiplanaren Auf-
nahme und der Messung physiologischer Parameter (Fluss,
Perfusion, Bewegung etc.) fiir Steuerung und Uberwachung
von Interventionen attraktiv.

Methoden Diese Arbeit beschreibt den derzeitigen Stellen-
wert der interventionellen MRT in der klinischen Routine und
die Entwicklungsperspektiven.

Ergebnisse Der hohe Aufwand, Uberwachungssysteme und
MR-sichere Instrumente zu entwickeln, hat trotz der Vorteile
dazu gefiihrt, dass diese Methode sich zundchst nur fir Indi-
kationen etablieren konnte, die ihrerseits mittels anderer
Modalitdten nicht durchgefiihrt werden kdnnen. So wird die
interventionelle MRT seit Dekaden fiir die Biopsie von MR-sus-
pekten Verdnderungen in der Brust eingesetzt. Derzeit wird
die MRT in dhnlicher Weise fiir die Prostata etabliert: die Blind-
biopsie ist meistenorts bereits durch die MR-gefiihrte gezielte
Probenentnahme oder zumindest durch die Fusion von MRT-
Aufnahmen mit dem Ultraschall ersetzt. Kardiovaskulare In-
terventionen werden an einigen Zentren bereits in der Rou-
tine zur Ablation bei Vorhofflimmern MR-gesteuert durch-
gefiihrt.

Schlussfolgerung Die interventionelle MRT ist fiir eine Viel-
zahl von Indikationen bereits in der klinischen Routine
etabliert. Aufgrund der Vorteile des Verfahrens im Vergleich
zu anderen Techniken ist eine weitere Ausweitung des Einsat-
zes der interventionellen MRT in Zukunft zu erwarten.

Introduction

MRI has an intrinsically high soft-tissue contrast and can be used
to measure physiological parameters, such as blood flow (flow
rate and flow volume), diffusion, temperature, and movement.
Since its introduction into the clinical routine in the 1980, it has
also been used for guiding and monitoring interventions. How-
ever, in contrast to CT and ultrasound, the use of MRI for guiding
interventions requires significant technical effort. Due to the dis-
ruptive effect of the strong main magnetic field and the alternat-
ing electromagnetic fields, the monitoring of patients during an
intervention by measuring ECG signals, oxygen saturation, or
blood pressure requires special equipment. These monitoring sys-
tems must not interfere with the MRI scan and must be MR-safe
(according to DINEN 62 570:2010 - 05). The list of requirements
regarding monitoring equipment provides an indication of the de-
velopment effort, with suitable monitoring equipment represent-
ing only one of the components necessary for MR-guided inter-
ventions.

In addition to MRI safety, all catheters and instruments must
be adapted to this modality. To ensure MRI safety, metal must be
largely avoided since, depending on the length and orientation to
the main magnetic field, it can heat up and consequently even
result in burns. Achieving rigidity and torsion stability of catheters
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or guide wires without the use of metal for reinforcement repre-
sents a technical challenge. In the case of needles, breaking resist-
ance is one of the more difficult properties to achieve for MR-safe
designs. Moreover, instruments must be able to be effectively vis-
ualized without adjacent structures being superimposed by arti-
facts. The tip must be able to be identified and definitively differ-
entiated from the shaft since MRI as a cross-sectional imaging
method typically uses individual slices even for guiding interven-
tions and does not use projections as in fluoroscopy and angiogra-
phy. As a result, it is necessary to be able to clearly identify wheth-
er the instrument tip is located in the slice or the shaft is simply
passing through the slice. Flexible instruments must have labeling
on the shaft to show whether a distal or proximal shaft segment is
visualized in a particular slice. To obtain CE certification for inter-
ventional instruments, they must be MR-safe as well as visible
under fluoroscopy. This is required to ensure that it is possible to
switch to fluoroscopy in the event of a necessary termination of
MRI guidance so that catheters or instruments can at least be
removed from the patient. As a result of these requirements, the
development and production of catheters, guide wires and other
instruments are challenging. In addition to image guidance via
MRI, interventions can also be guided via other modalities such
as ultrasound, fluoroscopy, and CT. In the case of these other
modalities, interventionalists can select from a range of available

Barkhausen ] et al. White Paper: Interventional... Fortschr Rontgenstr 2017; 189: 611-623

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.



» Fig.1 MR-quidede radio frequence ablation (RFA) of a liver metastasis. a An open scanner configuration provides sufficient space for the patient
and the interventionalist. b Interactive program for planning and monitoring of the intervention. Exact positioning of the needle is possible by
picturing it in two planes.

instruments and the intervention environment is uncomplicated
with respect to patient monitoring.

For this reason, the transfer of interventional MRI from applica-
tions in animal experiments to the clinical routine was slow to
happen. Yet, MRI allows target visualization and intervention
guidance that cannot be achieved with any other method. Good
examples of this include biopsy of breast lesions that cannot be
visualized via ultrasound or mammography and laser ablation of
liver tumors with MRI monitoring of the region with a successful
increase in temperature. Interventional MRI has long been includ-
ed in the clinical routine for these indications. Similar advantages
for many other procedures that can only be carried out via inter-
ventional MRI justify the significant development effort. For the
inclusion of the method in the clinical routine, it must be deter-
mined whether cost coverage can be ensured. All aspects of DRG
reimbursement must be included in such an analysis. This over-
view describes interventional MRI methods and current fields of
indication. Finally, new development prospects are identified and
new fields of application are presented.

Interstitial free-hand interventions on open
scanners

An open MRI scanner design improves access to the patient, thus
allowing the use of real-time sequences for fluoroscopy tech-
niques. [2, 3]. As a result, dedicated stereotactic and robotic sys-
tems are not necessary and the intervention can be conducted
using the freehand technique (> Fig. 1).

Interactive programs for the quick setting and planning of dif-
ferent planes are available. A display screen on the scanner allows
monitoring of the intervention. The intervention sequence is set
up so that it visualizes the target lesion as a single slice with opti-
mum contrast and acquires a complete image every second. Per-
forming the intervention in two spatial directions allows safe and
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easy alignment of the needle since deviations from one plane to
the other can be detected and immediately corrected [4].

The diagnostic and therapeutic spectrum is broad and includes
a wide range of interstitial percutaneous interventions: The meth-
od is currently used for periradicular therapy (PRT), intraabdomi-
nal drain placement including nephrostomy, diagnostic biopsy of
unclear lesions primarily of the breast and liver and for local abla-
tion of malignant hepatic and renal masses [5 - 9]. For this type of
intervention via MRI, there is also a method analogous to CT in
which the movement of the instruments is not monitored interac-
tively but rather planned movements of the instruments are mon-
itored in a targeted manner via a few individual slices [10-12].
This method can be used for interstitial interventions involving
targets that are difficult to reach, but the effort to reach these is
higher than when using direct control of instrument movements.
The lack of radiation exposure is a decisive advantage compared
to CT-guided puncture, particularly for younger patients. MR-
guided intervention must be compared to ultrasound regarding
effort and benefits. Even the smallest lesions can be clearly identi-
fied due to the high soft-tissue contrast of MR imaging. For punc-
tures of the breast it has long been established to use MR-guided
biopsy in lesions that cannot be visualized with other modalities
[12]. This advantage resulted in the extensive clinical application
of this method. Multiplanar slice orientation also allows puncture
of target regions in a subdiaphragmatic location that are difficult
to access. This is a major advantage, but is also possible with CT or
ultrasound in skilled hands.

The limited number of open MRI units and the insufficient sup-
port from the industry are current disadvantages. MR-compatible
intervention instruments are not boradly available. The technical
principles of MR-guided intervention are not self-explanatory and
must be communicated accordingly. Therefore, the further devel-
opment and broader application of the method require close co-
operation with the industry and the further development of suita-
ble MRI equipment. To achieve this, clear indications are needed
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as the breast biopsy example shows. Most MR-guided interven-
tions are currently not performed on open scanners as described
in the section “Navigation”.

Prostate biopsy

The standard method for diagnosing prostate cancer is transrectal
ultrasound-guided (TRUS) multi-core biopsy of the prostate. In
this case the term “ultrasound-guided” relates to the goal of biop-
sying certain areas of the prostate as an organ. There is usually not
a concrete target that is visible on ultrasound. In the case of
repeatedly negative TRUS results, saturation biopsy, in which the
organ is systematically punctured in all regions to detect prostate
cancer, is being increasingly performed. The detection rate for
prostate cancer for TRUS is between 22 % and 56 % depending on
patient selection with up to 40 % of cancers diagnosed in this way
having a Gleason score of <6, i.e., being less biologically/prog-
nostically relevant according to current interpretation. Prostate
cancer in the anterior stroma, the anterior transition zone, and
the lateral peripheral zone, as well as apical and basal prostate
cancer cannot be diagnosed with TRUS [13 - 15]. In contrast, mul-
tiparametric MRI of the prostate provides a number of decisive ad-
vantages: It allows the detection of biologically significant pros-
tate cancer (Gleason >6) with significantly higher reliability than
TRUS with published sensitivity rates of up to 94 %. With increased
understanding of the overdiagnosis and overtreatment of pros-
tate cancers with minimal biological relevance, a further signifi-
cant advantage of prostate MRI is that it has significantly lower
sensitivity for biologically (prognostically) irrelevant cancers com-
pared to the conventional approach. Finally, it should at least be
mentioned that MRI is noninvasive [16 - 22].

The use of MRI to diagnose increasing PSA values after a nega-
tive TRUS result has since been included in the guidelines. Due to
the above described sensitivity for biologically relevant prostate
cancers, the inclusion of MRI in the guidelines for active surveil-
lance is currently being discussed. Following some recently pub-
lished larger studies, a fundamental shift in paradigm regarding
the diagnosis of prostate cancer can be expected and MRI will be
used instead of TRUS for primary diagnosis in patients with a rising
PSA to increase the diagnosis of biologically relevant prostate can-
cers as well as to reduce the number of biologically irrelevant
prostate cancers detected per blind biopsy [23].

If suspicious lesions are to be detected on mpMRI (multipara-
metric MRI), histological confirmation is necessary for further
treatment planning. This confirmation can and should be per-
formed via MR-guided prostate biopsy. Due to the low availability
and high costs, “MRI/US fusion biopsy” is promoted instead of di-
rect MR-guided prostate biopsy. In this method, the image infor-
mation provided by MRI is electronically superimposed on a
corresponding ultrasound image so that the biopsy can be per-
formed with ultrasound guidance. Corresponding systems are be-
coming increasingly available. Urology specialists have also devel-
oped a method called “cognitive fusion” in which MRI findings are
simply committed to memory for subsequent biopsy under
ultrasound guidance. According to the literature, this approach
does yield higher accuracy than conventional TRUS. The extent to
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which the accuracy of direct MR-guided biopsy is actually reached
currently cannot be determined because of the lack of compari-
son studies.

In MR-guided biopsy of the prostate, a previously defined indi-
vidual target lesion is biopsied in a targeted manner. Therefore,
the procedure is significantly less traumatic compared to conven-
tional blind biopsy. Transrectal or transperineal MR-guided biopsy
can be performed. In MR-quided prostate biopsy, detection rates
(PPV: positive predictive value) of 70 % were published [22]. This
corresponds with our own unpublished study with a detection
rate of 71 % in 134 transrectal MR-guided biopsies.

With appropriate preparation and interventional experience,
MR-guided core biopsies of the prostate can be performed in
30-40 minutes. Depending on the access, patients lie in a prone
or lithotomy position in the magnets. Prophylactic antibiotic ther-
apy and intestinal voiding on the day of the intervention are re-
commended as in multi-core biopsy. Planning is usually based on
T2-weighted sequences on at least two planes or in 3D. Biopsy
coordinates can be determined interactively or using planning
software. In the case of a transrectal approach, 2 -4 samples are
extracted via an 18G core biopsy needle following insertion of a
guide along the path of puncture. Multiple suspicious areas can
be biopsied in one session. In contrast to ultrasound-guided
“fusion biopsy”, it is possible to visualize the needle position in re-
lation to the location of the prostate cancer and to verify correct
positioning in the lesion (> Fig. 2). The targeted approach in MR-
guided biopsy considerably reduces the number of biopsies need-
ed to diagnose prostate cancer. Side effects (particularly prostati-
tis) are significantly rarer. In addition, all locations in the prostate
are accessible. Oncologically speaking, the approach is significant-
ly more productive since it ensures the diagnosis of biologically
relevant prostate cancer requiring treatment and avoids the diag-
nosis of biologically irrelevant prostate cancer not requiring treat-
ment [23, 24].

The combination of multiparametric MRl and MR-guided biop-
sy of the prostate currently represents the gold standard in the
detection and confirmation of prostate cancer. In comparison to
the diagnostic standard, i. e., multi-core biopsy, mpMRI has a
number of advantages. Only findings that are visible on MRI
should be biopsied under MR guidance. This should be viewed as
the standard. Other methods should only be used if the accuracy
of the biopsy will not be negatively affected. Given the acceptable
intervention times in MR-guided prostate biopsy, the extent to
which such "indirect MR-guided" biopsies are actually more cost-
effective is unclear.

MR-guided breast interventions

Since their introduction in the clinical routine at the end of the
1990s, MR-guided breast interventions have been increasingly
performed in Western industrialized nations as part of treatment
[25, 26]. This was facilitated by equipment development and is
also the result of the broad use of MR mammography as a sensi-
tive imaging method in the detection of breast cancer. When
using modern high-end equipment, the sensitivity of MR mam-
mography for detecting malignancy is 71 - 100 % and the specifi-
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» Fig.2 MR-guided Biopsie in a 66-years old patient with increasing PSA (last 6.5 ng/ml) following multiple negative TRUS. A-C Diagnostic multi
parametric MRI; Axial T2-TSE A, DWI (b = 1400 mm2/sec) B and ADC-MAP C demonstrate a highly suspicious region in the anterior stroma. MR-
guided biopsy of this area D, E. Histology: prostate cancer, Gleason 4 +4 =8.

city is 81-99% [26]. The fact that an increasing number of
BI-RADS 4/5 findings in MR mammography do not have a radio-
morphological or sonographic correlate requires a histological
workup via percutaneous biopsy or excisional biopsy [27, 28]. In
principle, two different types of MR-guided breast intervention
are used: preoperative marking of a lesion and percutaneous,
usually vacuum-assisted biopsy.

The indication for performing MR-guided breast intervention
should be determined on an interdisciplinary basis in a senology
conference. MR-guided breast biopsy is indicated in BI-RADS 4/5
findings suspicious for malignancy without a sonographic or
radio-mammographic correlate [27, 28, 39]. Common indications
are the preoperative workup of ipsilateral or contralateral
MR-mammographic findings in cases of cancer already confirmed
by histology, diagnostic confirmation of lesions suspicious for ma-
lignancy as part of the early detection program for hereditary
breast cancer, expanded preventive care and follow-up of inciden-
tal breast cancer and the differentiation between post-therapeu-
tic scars and tumor recurrence.

MR-guided wire marking is typically indicated in the case of le-
sions on MR-mammography that are not accessible for MR-guided
biopsy due to their position near the nipple, skin or thoracic wall
so that excisional biopsy must be performed.
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The average intervention time is 30 to 40 minutes. The compli-
cation rate is up to 7% in vacuum-assisted biopsy and up to 5% in
MR-guided wire marking with hematomas not requiring treat-
ment, bleeding from the puncture channel, and pain at the punc-
ture site being the most common complications [29, 30].

Finally the correlation between the histological results and the
MR-mammographic findings must be determined in an interdisci-
plinary senology conference.

MR-guided interventions should be performed on high-field
MRI systems at 1.5 T or 3 T. The biopsy unit includes a dedicated
breast coil, a compression system, and a localization system.

Dedicated MR-compatible biopsy systems from different man-
ufacturers are available for MR-quided vacuum-assisted biopsy.
The materials needed for MR-guided wire marking and clip mark-
ing are also available from various manufacturers.

The success rates are 96 - 100 % for MR-guided vacuum-as-
sisted biopsy and 91-100 % for MR-quided wire marking [30 -
49]. The average rate of false-negative biopsies is 2% (between
0% and 13 %) [36 - 38].

In summary, MR-guided breast interventions have been firmly
established in the senological routine for approximately a decade
and will be applied more broadly in the future following an
increase in the use of MR mammography. MR-guided breast inter-
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ventions are medically indicated in all BI-RADS 4/5 findings on MR
mammography that are relevant for treatment decisions and have
no sonographic or radio-mammographic correlate. Due to the
significant requirements regarding equipment and experience,
MR-guided breast interventions should be performed at designa-
ted centers.

Instruments and new operating concepts
for vascular interventions

The possibility of performing vascular interventions under MR
guidance is one of the oldest promises in MR imaging. After the
initial introduction of promising approaches for interventions on
the kidney [50], liver [51], and heart [52, 53], it took almost 8
years for a new generation of materials and MRI techniques to
bring new possibilities. MR-guided vascular intervention is depen-
dent on the availability of suitable catheters and guide wires. A
further important component in the success of MR-guided vascu-
lar intervention is the MRI user interface for interventionalists.

At least two manufacturers are currently in the end phase of CE
certification for MR-compatible guide wires at 1.5 T and 3 T. Other
manufacturers are working on approval for diagnostic catheters
primarily for 1.5T environments. The issues regarding electrical
and mechanical safety in the case of MRI and possible solutions
are understood by the small companies presently in the market.
The current development phase of this new field is characterized
by fundamentally different approaches regarding materials selec-
tion. The selected materials result in different levels of guide wire
stiffness and are currently all still inferior to the materials typically
used in DSA (digital subtraction angiography). However, the ma-
terials selection indicates dynamic development promising rapid
progress. Larger arterial and venous vessels can be safely and
gently probed with the currently available wires [54].

There are a number of approaches to the visualization of cathe-
ters and guides. The spectrum ranges from active tracking with
individual active transmitter coils integrated in the catheter and
discrete iron markers for passive visualization to wires and cathe-
ters doped over the entire length with iron particles.

Active tracking requires a small coil to be actively supplied with
voltage over the length or at the tip of the catheter. The active coil
generates a signal that can be locally resolved by the MRI unit. The
information can be used to visualize the coil on an image or to
center the scan plane at the position of the active catheter coil.
The coil as well as the leads require space and change the mechan-
ical properties of the catheter. Active tracking requires special
software for the scanner. The coils make the catheter very expen-
sive. Moreover, safety aspects must be taken into consideration.
Continuous conductive connections cannot be used since they
can result in uncontrollable heating with the risk of burns depend-
ing on their alignment with respect to the magnetic fields. There
are various solutions to this problem such as the use of short seg-
ments connected by suitable elements (capacitors).

Passive tracking uses susceptibility artifacts caused by iron and
other ferromagnetic and paramagnetic materials to mark the
position of guide wires or catheters. The size and shape of sus-
ceptibility artifacts depend on the distribution and size of the par-
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ticles used. The type and parameters of the imaging sequences
also affect the size and shape of the generated artifacts. Passive
tracking is simple from a technical standpoint. The major advan-
tage is, for example, the ability to visualize the entire course of a
guide wire due to materials introduced over a long stretch, thus
providing an overview of the catheter-wire combination in MRI as
in DSA.

The debate regarding the advantages of active vs. passive
tracking currently being conducted in publications will eventually
be settled. It will become increasingly clear that both tracking
methods are needed for the clinical routine [55]. Passive tech-
niques tend to be used for guide wires and very fine catheters
while a combination of active and passive techniques are used
for diagnostic and treatment catheters.

Active tracking requires cooperation between catheter manu-
facturers and MRI suppliers, which significantly limits the speed of
development in this area. With respect to MRI, European manu-
facturers have become the leaders in innovation.

The user interface for interactive work on the scanner is still in
need of significant development. The currently available solutions
are based on the conventional operating philosophies of MRI
and CT units. There is a lack of control via characteristic buttons,
levers, and dedicated navigation knobs. Therefore, the interven-
tionalist must rely on a second person to navigate the imaging
plane. This slows the process and critical maneuvers are avoided
for safety reasons since fast reactions are not possible. The limited
spatial and temporal resolution of available real-time imaging
contributes to this. However, there are positive developments:
The development teams of MRI manufacturers are working on
the concept of a control panel on the MRI examination table with
controls borrowed from DSA. The fact that MRI cannot be cost-
effectively used exclusively for interventions has also been recog-
nized. Therefore, there is increased willingness to design the addi-
tional controls for interventions so that they can be easily
removed from the MRI unit for diagnostic operation. New approa-
ches in the sequencing technique allow high spatial and temporal
resolutions [56] that can be combined with the total range of
tissue contrasts in some cases [57].

This is the closest we've ever been to being able to use MR-
guided vascular intervention in the clinical routine.

Endovascular and cardiac interventions

MR-guided endovascular and cardiac interventions were identi-
fied as a worthwhile goal soon after the introduction of MRI in
the clinical routine due to the good soft-tissue contrast, the lack
of radiation exposure, the ability to directly visualize target re-
gions, and the functional parameters measurable with MRI such
as blood flow and cardiac function. The development effort need-
ed to manufacture MR-safe wires and catheters for MR-guided en-
dovascular interventions and to adapt the operation of the unit
accordingly is quite significant. The introduction of the method
at a hospital is also associated with high costs. Moreover, angio-
graphy-guided endovascular interventions are well established
and are comparatively cost-efficient. These impediments can
only be overcome in the case of interventions that are not possible
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» Fig.3 Dilatation of the pulmonary valve. A Swan Ganz ballon catheter, filled with CO, (arrows A-D) is advanced through the IVC A into the right
atrium B and the right ventricle C into the main pulmonary trunc D. An MR safe guide-wire ist advanced through this catheter E and the catheter
replaced with the ballon catheter for dilatation. This catheter is placed in the valve and inflated (asterisk) using contrast medium F.

via angiography or for which MRI would have such significant ad-
vantages that the high expenditure would be justified. Interven-
tions in children with congenital heart defects were initially
included in this category [58 - 60] since these young patients
require repeated interventions while they are growing so that it
is important to use an imaging method without radiation expo-
sure. Functional parameters such as ventricular ejection fraction
and flow rates that can be measured by MRI can be taken into con-
sideration for treatment decisions. Today, children with congeni-
tal heart defects typically enjoy a long life due to an optimized
therapeutic strategy. While the child is growing, repeated, albeit
simple, interventions are necessary in most cases (> Fig. 3). This
increases the necessity to reduce the radiation exposure due to di-
agnosis and interventions to a minimum. However, after initial
studies first on animal models and later on patients that were
able to show feasibility and advantages [1, 61, 62], the use of
endovascular MRI for this indication has barely been pursued in
recent years due to a lack of availability of instruments and the ef-
fort and cost of adapting currently available units to endovascular
interventions. To still be able to profit from the advantages of MRI,
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MRI datasets are increasingly being superimposed on angiogra-
phy images used for interventions [63, 64].

Further interesting application areas for endovascular inter-
ventions via interventional MRI include the local application of
substances or cells such as chemoembolization or intramyocardial
injection with the goal of tissue regeneration [65]. This is condi-
tional upon the ability to directly visualize the target area. Feasibil-
ity studies in animal models have been performed for these indi-
cations (> Fig.4). However, a transfer to the clinical routine has
not occurred again due to the lack of availability of suitable inter-
ventional catheters and guide wires.

The use of hybrid systems in the form of MRI scanners that are
connected to angiography units so that the patient is examined
on the same examination table for both units allows the use of
MRI datasets acquired immediately prior to the intervention for
planning and performing angiography-guided interventions as
well as the continuation of MR-guided interventions under fluoro-
scopy guidance as a backup method if necessary [1, 58, 59]. Such
systems allow interventional MRI to be further included in the
clinical routine. In this context it is particularly advantageous that
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» Fig.4 Intramyocardial injection for application of substances or cells. A The catheter (arrow) has been introduced via a sheath in the groin and
advanced throught the abdominal aorta A into the thoracic aorta B. For further advancing the catheter throught the aortic arch, slice position is
adapted to the aortic arch C. The tip off the catheter must be guidable for reaching all positions within the left ventricle D, E. This can be achieved
by different cables, comparable to the mechanism employed in endoscopes. If the injectate is mixed with contrast medium, successful injection
into the myocardium is visible by increase of signal intensity in T1-weighted images (asterisk, F).

the dyna-CT function of angiography systems can be used to up-
date the co-registration with an MRI dataset. As a result, MR guid-
ance can be “exported” from the MRI unit in that the MRI dataset
is co-registered with a second imaging method and the MRI data-
set is used for interventions performed with the second imaging
modality. The use of a hybrid unit would make it possible to posi-
tion the patient table in the MRI gantry again in order to check the
intervention success and to continue or end the intervention
depending on the result of this check.

MR-guided cardiac ablation

The number of cardiac catheter ablation procedures and the
pathophysiological understanding of complex arrhythmias are
increasing steadily [66]. Visualization of the underlying substrate
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is decisive for the treatment of ventricular tachycardia and atrial
fibrillation. Due to the 2 D nature of X-ray fluoroscopy, various
3D mapping systems using previously acquired 3 D datasets
from CT or MRI have been developed. However, these systems still
have problems primarily with regard to the registration and fusion
of datasets and therefore continue to require additional fluoros-
copy [67].

In comparison, real-time MR imaging offers promising possibi-
lities with respect to electrophysiological examination and abla-
tion because
1. no ionizing radiation is used,

2. the intervention can be guided with a range of imaging infor-
mation e. g. regarding fibrosis/necrosis/scars with late en-
hancement, post-therapeutically with edema-sensitive se-
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» Fig.5 MR-guided Ablation of a focus for atrial fibrillation at the cavotricuspidal isthmus. A Intervention in a 1.5 T scanner with placed, MR con-
ditional catheters (IMRICOR) and head sets for communication. Sucessful ablation with delineation of the edema in a STIR image (B, arrow) and the

scar (C, arrow) on late enhancement IR_GRE and in RAO projection [67].

quences (> Fig. 5) and perspectively with thermosensitive se-
quences,

3. anatomical and functional information (in 3D or 4 D) can be
acquired,

4. both the catheter (active or passive) and the ablated substrate
can be visualized.

To date, MR-guided electrophysiological interventions have been
largely limited to examinations and treatments in animal experi-
ments. In recent years, however, initial simple electrophysiologi-
cal studies [68] as well as ablation procedures [69, 70] have been
performed, e. g. isthmus ablation of patients with atrial flutter
under passive catheter guide [71] (> Fig.5). Grothoff et al. [67]
successfully performed this procedure in patients on a 1.5T MRI
unit. A real-time SSFP sequence was used for imaging.

Especially in patients with ventricular tachycardia [72], MRl is
the gold standard for substrate imaging and is accordingly being
increasingly used. The presence of an implantable cardioverter
defibrillator (ICD) is still a contraindication to MRI. However, in
the future such patients could benefit from the development of
MR-conditional implants under certain conditions [73].

Despite current limitations, MRI techniques will continue to
develop both for risk stratification via preprocedural imaging and
for MR-guided catheter ablation due to the clinical demand and
the good results achieved to date. The next step in the treatment
of simple arrhythmias, such as atrial flutter, is a combination of
passive and active methods for catheter tracking. The position is
determined almost in real time, allowing the catheter to be
tracked within a previously acquired 3 D dataset showing the en-
tire heart in high resolution without having to perform imaging
again.
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» Fig.6 Navigation system for MR-guided biopsy of the prostate at
a 3-T scanner. After registration of the biopsy device (Invivo,
Schwerin, Germany) the navigation system (Localite, St. Augustin,
Germany) reconstructs from the optically detected orientation of
the biopsy device the corresponding MR slices and depicts them
continuously on the in-room monitor.

Navigation

Guides and navigation aids find broad application in image-guid-
ed interventions. They range from simple components for holding
and introducing needles and manipulators for setting a certain
trajectory to full navigation systems with visual feedback and typi-
cally include special application software [74] (> Fig.6). In con-
trast to ultrasound- and CT-guided methods, the strong basic
magnetic field and the alternating electromagnetic fields place
special requirements on components used in the MRI room.
Among other things, this requires the use of special materials or
does not allow the use of electromagnetic localization of the
instrument.
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In particular, systems for breast [75] and prostate interven-
tions [76] that allow precise puncture on the basis of MRI images
acquired during the intervention are widely used. After suitable
registration of the target unit, the needle trajectory is calculated
directly from a graphically marked MRI position in some systems
[77]. In addition, there are special solutions for other organ re-
gions, such as the brain [78], the spine, or the musculoskeletal
system [79]. In contrast, the navigation of instruments in moving
organs, such as the liver, is significantly more challenging. This
challenge is currently met by concepts for open MRI units allowing
advance of the needle under real-time image guidance as
described above [4].

In addition to a number of internal developments, there is cur-
rently increased commercial involvement including the produc-
tion of specialized components and tools as well as the develop-
ment of corresponding software applications. In addition, some
equipment manufacturers offer special interfaces that allow the
user to interactively control imaging for visualizing and adjusting
the needle [80].

Although assistance systems are often not an indispensable
part of MR-quided interventions, they are a useful addition. The
main benefit is the improved workflow due to more targeted in-
tervention planning, expanded visualization and additional con-
trol options. Beginners should profit from this in particular, and
lower variability can be expected among experienced users.

The results regarding the accuracy and time expenditure of the
method are fundamentally positive. However, irrefutable state-
ments regarding improved clinical results are generally difficult
to make. The relatively high development costs in connection
with the relatively low number of installed systems and MR-quid-
ed interventions at specialized centers hinder large multi-center
studies, required for such statements. Moreover, additional use is
currently not compensated. However, due to the price trend of
high-performance computers and display systems and the grow-
ing clinical experience with such systems, broader application can
be anticipated in the medium term.

Intraoperative use of interventional MRI

Neuronavigation on the basis of MRI datasets has long been a
standard technique for complete neurosurgical resection of intra-
cerebral tumors [81]. “Brain shift”, i. e., the change in the position
of the brain after trepanation, the subsequent loss of CSF and the
deformation of the tissue due to the resection of tumor seg-
ments, decreases the accuracy of neuronavigation. Intraoperative
MRI can be used to generate current data for navigation [82] so
that the tumor tissue can be removed as completely as possible
and eloquent areas of the brain can be protected to the greatest
extent possible [83]. In connection with neurosurgical instru-
ments or with the fixed endoscope that is used in neurosurgery
in some cases, the benefit can be further increased [84]. In neuro-
surgical interventions, interventional MRI facilitates the locating
of target regions and the removal of tumors that is as complete
as possible with the fewest possible side effects.
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Conclusion and outlook

Interventional MRl is already established in the clinical routine for
interstitial applications. Technical solutions have been created for
almost every requirement but are often not commercially avail-
able despite their development maturity. A commercially avail-
able range of instruments, software and interfaces is the next nec-
essary step in the introduction of these methods into the clinical
routine. Hybrid systems in the form of a combination of MRI units
and angiography units (with the option for rotational CT) can facil-
itate the incremental shift to MR-guided interventions.
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