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Introduction

Acute myeloid leukemia (AML) is a clonal malignancy arising
from hematopoietic stem cells. AML is represented by recur-
rent gene mutations, microRNA deregulations, heteroge-
neous chromosomal abnormalities, and epigenetic
modifications affecting the structure of the chromatin.1,2

AML advances expeditiously and can be lethal or destructive
if not treated. Patients with AML present fatigue, easy
bruising, breath shortness, and bleeding. Also, patients

show a high possibility of infection, and myeloblasts may
be scattered into the skin, gums, and brain.3–6

In this review, literature or information on various gene
mutations for AML is discussed. English language articles were
exploredacrossnumerousdirectoriesordatabases likePubMed,
WebofSciences,GoogleScholar, ScienceDirect, andScopus. The
important keywords used for searching databases were “Acute
myeloid leukemia”, “Gene mutation in Acute myeloid leuke-
mia”, “Genetic alteration in Acute myeloid leukemia,” and
“Genetic abnormalities in Acute myeloid leukemia.”
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Abstract Acute myeloid leukemia (AML) is an immensely heterogeneous disease characterized
by the clonal growth of promyelocytes or myeloblasts in bone marrow as well as in
peripheral blood or tissue.
Enhancement in the knowledge of the molecular biology of cancer and recognition of
intermittent mutations in AML contribute to favorable circumstances to establish
targeted therapies and enhance the clinical outcome. There is high interest in the
development of therapies that target definitive abnormalities in AML while eradicating
leukemia-initiating cells. In recent years, there has been a better knowledge of the
molecular abnormalities that lead to the progression of AML, and the application of
new methods in molecular biology techniques has increased that facilitating the
advancement of investigational drugs.
In this review, literature or information on various genemutations for AML is discussed.
English language articles were scrutinized in plentiful directories or databases like
PubMed, Science Direct, Web of Sciences, Google Scholar, and Scopus. The important
keywords used for searching databases is “Acutemyeloid leukemia”, “Genemutation in
Acute myeloid leukemia”, “Genetic alteration in Acute myeloid leukemia,” and
“Genetic abnormalities in Acute myeloid leukemia.”
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WT1 Mutations
Mutations in the WT1 gene often result in Wilms tumors
because of the lessened DNA binding potential of WT1
protein resulting in the rampant growth and division of cells.
WT1 gene exhibits tumor suppressor function. Various types
of research stated that WT1 mutations occur in relatively 9%
of cases of AML. Patients of AML with FLT3-ITD mutations,
biallelic CEBPα mutations, and PMLRARA fusion show a
greater frequency of WT1 mutations.7–10

TP53 Mutations
Mutations in the TP53 gene results in the occurrence of
various category of tumors. In 8 to 14% of patients with AML,
TP53mutations have been recognized.11,12Mutations and/or
deletions of TP53 have been intently linked with complex
karyotype AML, resistance to chemotherapy, older age, and
overall survival.2,13

TET2 Mutations
In 8 to 27% of cases of de novo AML, TET2 mutations have
been recognized.14,15 TET2 catalyzes the modification of 5-
methylcytosine to 5-hydroxymethylcytosine in DNA which
results in DNA methylation.16,17 Patients with TET2 muta-
tions show worse prognosis in individuals having NPM1 and
FLT3. TET2 is considered to be a tumor suppressor gene in
AML.18,19

MLL Mutations
The MLL gene consists of histone methyltransferase activity
(H3K4), and it is positioned on chromosome 11q23. Ten
percent cases of adult AML patients show MLL gene
mutations.20–23

ASXL1/2 Mutations
It is observed that during usual hematopoiesis, ASXL1
behaves as a tumor suppressor gene. Mutations in ASXL1
were recognized in 5 to 11% of patients having AML. In many
patients having AML, ASXL1 mutations are either nonsense
or frameshift mutations.24–27 Mutations in ASXL1 are jointly
privileged to FLT3-ITD and NPM1 and participate with
IDH1/2, TET2, RUNX1, and EZH2.28 Currently, ASXL1 mutant
protein has been recognized to perform a necessary perfor-
mance in leukemogenesis and myeloid differentiation in
virtue of BAP1. Hence, aiming the BAP1 catalytic activity
may be considered a promising therapeutic approach for
myeloid malignancies with mutations in ASXL1.29,30

DNMT3A Mutations
DNA methyltransferase is encoded by the DNMT3A gene.
Mutations of DNMT3Awere noticed in 15 to 22% of patients
having AML.31,32 But, a large frequency of mutations in
DNMT3A has been recognized in CN-AML. It is observed
that mutations in DNMT3A are found to be relevant with
antagonistic effects in patients that are associated with
either FLT3 mutations or the intermediate risk group.33,34

Mutations in DNMT3A comply with mutations in IDH1/2,
FLT3, andNPM1 in AML.35When the patient is given extreme
doses of daunorubicin, those patients having AML with

mutations in DNMT3A or NPM1 demonstrate better overall
and relapse-free survival.36 The treatment of patients having
AML with DNMT3A mutation, hypomethylating agents (like
decitabine and azacytidine) demonstrates valuable effects.37

Decitabine accompanying valproic acid demonstrates an
advantage in elder patients of an AML patient who were
unsuitable for chemotherapy with the least possible toxicity
and improved efficacy in the phase-II study.38Guadecitabine
(SGI-110), an advanced DNMT inhibitor, improved the ac-
tiveness of decitabine in cancer models of murine. Guadeci-
tabine usage demonstrates the definite clinical response in
refractory or relapsed AML cases with acceptable toxicity.39

IDH1/2 Mutations
IDH1/2 mutations are considered oncogenic in nature.
IDH1/2 mutations demonstrate comprehensive hyperme-
thylation in AML cases.18,40,41

EZH2 Mutations
EZH2 is appropriate for the differentiation and maintenance
of stem cells. Homozygous mutations of EZH2 were recog-
nized in myeloid malignancies.42 EZH2 mutations result in
worse prognosis and lower relapse-free survival in AML
patients.43,44 OR-S1 and UNC1999 demonstrate a meaning-
ful decrease in clonogenic potentiality and increase in dif-
ferentiation of MLL-AF9 as well as MLL-AF10 leukemic
cells.45,46

NPM1 Mutations
NPM1 is a nuclear phosphoprotein that protects the usual
cellular function. NPM1 mutations are considered as most
persistent mutations that take place in 25 to 35% of AML
patients.47,48 These mutations are answerable for confined
NPM1 protein in the cytoplasmic section of the cell. NPM1
mutations are seen high in CN-AML patients.49 CN-AML
patients having wild-type FLT3 and NPM1 mutation show
advantageous prognosis and better survival. Likewise,
patients having AML with NPM1 mutation in addition to
wild-type FLT3 and IDH1/2 mutations show favorable
prognosis.50,51

RUNX1 Mutations
RUNX1 is a transcription factor that regulates the differenti-
ation and growth of hematopoietic stem and progenitor
cells.52,53 It is intermittently translocated to RUNX1T1 and
shows an advantageous prognosis.54,55 RUNX1 point muta-
tion has been observed in 5 to 13% of cases of AML. RUNX1
mutations can comparewith drug resistance and lower long-
term survival.56–59 According to Laura and their colleagues,
they observed that a deficit of wild-type RUNX1 allele has a
considerable consequence on the arrangement of gene ex-
pression in AML. This research demonstrates that glucocor-
ticoids restrain the OCI-AML3 cell’s growth by means of
communication with the glucocorticoid receptor.60

CEBPα Mutations
CEBPα is a fundamental lineage-specific transcription
factor that encourages the gene expression necessary
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for the differentiation and growth of myeloid progeni-
tors.61,62 CEBPα mutations are recognized in about 10 to
15% of all cases of AML including CN-AML. CEBPα biallelic
mutations are primarily linked with advantageous
prognosis.63–65

FLT3 Mutations
FLT3 is eminently expressed in hematopoietic stem cells and
is important for the growth of cells and hematopoietic stem
cell differentiation.66 FLT3 is a transmembrane ligand-acti-
vated RTK (receptor tyrosine kinase) that performs a valu-
able role in the early stages of lymphoid lineage andmyeloid
growth. FLT3 mutations are observed in nearly 30 to 35% of
cases of recently diagnosed AML.67–69 FLT3-TKD-type muta-
tions develop in approximately 7 to 10% of cases of AML,
whereas FLT3-ITD-type mutations develop in around 25% of
patients of AML.70,71 Numerous FLT3 inhibitors consist of
gilteritinib, crenolanib, sorafenib, sunitinib, quizartinib, and
ponatinib.

Gilteritinib is an orally convenient small molecular
receptor TKI used in the treatment of AML suppressing
FLT3 mutations. Gilteritinib prohibits FLT3 signaling in
cells compelling TKD mutation FLT3-D835Y, FLT3-ITD,
and double mutant FLT3-ITD-D835Y, by that activating
apoptosis.72

Sunitinib is a small molecule FLT3 inhibitor. Sunitinib has
antiangiogenic and antitumor properties.73–75 Sunitinib
encourages G1 phase arrest, decreases antiapoptotic, and
increases proapoptotic molecule expression in cells of AML.
Sunitinib demonstrates synergistic effects with daunorubi-
cin and cytarabine in preventing proliferation and durability
of primary AMLmyeloblasts expressingmutant FLT3-D835V,
FLT3-ITD, or FLT3-WT.76,77

Crenolanib is an influential type I pan-FLT3 inhibitor.
Crenolanib is useful in contrary to resistance-conferring
TKD and ITD mutations. Crenolanib monotherapy response
is temporary and relapse ultimately occurs. Crenolanib does
not activate FLT3 secondary mutations.78

Quizartinib is an influential and selective type 2 FLT3
inhibitor. patients with FLT3-ITD AML are successfully
treated with quizartinib. They prohibit FLT3 so that they
depress oncogenic drive, which results in tumor cell
apoptosis.79,80

Sorafenib is a multikinase inhibitor. Sorafenib illustrates
potential in FLT3þ AML monotherapy. In association with
definitive chemotherapy, sorafenib lengthens the survival of
a patient with increased toxicity under 60 years of age.74,81 In
phase 2 clinical trial, sorafenib and omacetaxine mepesuc-
cinate proved as a successful therapy for AML patients with a
mutation in FLT3-ITD. In another research, sorafenib with
exhaustive chemotherapy enhances survival in patients with
recently confirmed cases of FLT3-ITD mutated AML.82,83

c-KIT Mutations
c-KIT is a receptor tyrosine kinase transmembrane protein.
Mutations in c-KIT have been observed in approximately 12
to 46% of cases of AML.84–87

Mutations in Cohesin Complex Members
Cohesin is a protein aggregate that canmanage chromosomal
segregation. Cohesin complex mutations (RAD21, STAG1,
STAG2, SMC1A, and SMC3) have been observed in approxi-
mately 13% of patients with AML.88 Cohesin complex muta-
tions demonstrate the arrangement of collective exclusivity
but are accompanied by NPM1, TET2, DNMT3A, and RUNX1
mutations. As SMC1A and STAG2 mutations are found in
male patients because these genes are X-linked. Mutations in
cohesion complex are vigorously demonstrates unsatisfac-
tory clinical outcome.89

Conclusion

The application of oral small-molecule and targeted thera-
pies for AML has rapidly increased in recent years. Regardless
of modern clinical progress, AML remains a highly heteroge-
neous disease with a poor prognosis. Endeavor has aimed on
recognizing importantmetabolic, signaling, and homeostatic
pathway that demonstrates potentiality for the advance-
ment of antileukemic drugs. Progress in the development
of molecular characterization of AML has furnished note-
worthy knowledge for disease observation, diagnosis, and
development of therapeutic strategies. Unique therapies for
AML like immunotherapies, chemotherapies, and epigenetic
andgenetic targeted drugs have essentially enhanced patient
outcomes. Molecularly targeted therapies have transformed
the prospects of treatment of AML and contributed to
patients by enhancing survival and condition of life.
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