Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett
DOI: 10.1055/s-0043-1775056
DOI: 10.1055/s-0043-1775056
letter
Thieme Chemistry Journals Awardees 2024
Enantioselective Oxidative Homocoupling of 2-Oxindoles with a Chiral Bisguanidinium Hypoiodite Catalyst
This research was funded by a Grant-in-Aid for Scientific Research on Innovative Areas ‘Middle Molecular Strategy’ (18H04387 to K.N.), a Grant-in-Aid for Scientific Research (B) (17H03052 to K.N.), and the A3-foresight program from the Japan Society for the Promotion of Science (JSPS). M.O. is grateful for JSPS KAKENHI Grant Number 20K05488 and Scientific Research Grant (No. 2121) from JGC-S Scholarship Foundation. This work was inspired by the international and interdisciplinary environment of the JSPS Asian CORE Program of ACBI (Asian Chemical Biology Initiative).
Abstract
The bisoxindole motif is present in a variety of biologically active compounds. Here, we report an enantioselective oxidative homocoupling reaction of 2-oxindoles in the presence of a chiral bisguanidinium hypoiodite catalyst, providing access to the corresponding optically active bisoxindoles in excellent yields and with moderate to high diastereo- and enantioselectivities.
Key words
guanidinium compounds - hypoiodites - oxidative coupling - enolate coupling - bisoxindoles - asymmetric catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775056.
- Supporting Information
Publication History
Received: 18 June 2024
Accepted after revision: 31 July 2024
Article published online:
20 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a May JA, Stoltz B. Tetrahedron 2006; 62: 5262
- 1b Steven A, Overman LE. Angew. Chem. Int. Ed. 2007; 46: 5488
- 1c Lathrop SP, Kim J, Movassaghi M. Chimia 2012; 66: 389
- 1d Ma Z, Zhou A, Xia C. Nat. Prod. Rep. 2022; 39: 1015
- 2a Kukosha T, Trufilkina N, Katkevics M. Synlett 2011; 2525
- 2b Lee HJ, Lee S, Lim JW, Kim JN. Bull. Korean Chem. Soc. 2013; 34: 2446
- 2c Ghosh S, Chaudhuri S, Bisai A. Org. Lett. 2015; 17: 1373
- 2d Jia W.-L, He J, Yang J.-J, Gao X.-W, Liu Q, Wu L.-Z. J. Org. Chem. 2016; 81: 7172
- 2e Sohtome Y, Sodeoka M, Sugawara M, Hashizume D, Hojo D, Sawamura M, Muranaka A, Uchiyama M. Heterocycles 2017; 95: 1030
- 2f Uraguchi D, Torii M, Ooi T. ACS Catal. 2017; 7: 2765
- 2g Dobah F, Mazodze CM, Petersen WF. Org. Lett. 2021; 23: 5466
- 3a Hino T, Yamada S.-i. Tetrahedron Lett. 1963; 1757
- 3b Hendrickson JB, Göschke R, Rees R. Tetrahedron 1964; 565
- 4 Fang C.-L, Horne S, Taylor N, Rodrigo R. J. Am. Chem. Soc. 1994; 116: 9480
- 5a Trost BM, Osipov M. Angew. Chem. Int. Ed. 2013; 52: 9176
- 5b Ghosh S, Bhunia S, Kakde BN, De S, Bisai A. Chem. Commun. 2014; 50: 2434
- 5c Chen S.-K, Ma W.-Q, Yan Z.-B, Zhang F.-M, Wang S.-H, Tu Y.-Q, Zhang X.-M, Tian J.-M. J. Am. Chem. Soc. 2018; 140: 10099
- 5d Chan W.-L, Tang X, Zhang F, Quek G, Mei G.-J, Lu Y. Angew. Chem. Int. Ed. 2019; 58: 6260
- 5e Tang X, Tan CX. A, Chan W.-L, Zhang F, Zheng W, Lu Y. ACS Catal. 2021; 11: 1361
- 5f Xu Y, Lei P, Fei Y, Hou Y, Chen G, Zhou Z, Zou H, Wei H, Xie W. Tetrahedron Lett. 2023; 114 154261
- 6a Sharma S, Roy A, Shaw K, Bisai A, Paul A. J. Org. Chem. 2020; 85: 14926
- 6b Shaw K, Sharma S, Khatua A, Paul A, Bisai A. Org. Biomol. Chem. 2021; 19: 9390
- 6c Sharma S, Shaheeda S, Shaw K, Bisai A, Paul A. ACS Catal. 2023; 13: 2118
- 7a Uyanik M, Ishihara K. ChemCatChem 2012; 4: 177
- 7b Finkbeiner P, Nachtsheim BJ. Synthesis 2013; 45: 979
- 7c Wu X.-F, Gong J.-L, Qi X. Org. Biomol. Chem. 2014; 12: 5807
- 7d Liu D, Lei A. Chem. Asian J. 2015; 10: 806
- 7e Chen R, Chen J, Zhang J, Wan X. Chem. Rec. 2018; 18: 1292
- 7f Ghosh P, Ganguly B, Das S. Org. Biomol. Chem. 2021; 19: 2146
- 7g Iodine Catalysis in Organic Synthesis . Ishihara K, Muñiz K. Wiley-VCH; Weinheim: 2022
- 8 Odagi M, Nagasawa K. ChemCatChem 2023; 15: e202300820
- 9a Uyanik M, Okamoto H, Yasui T, Ishihara K. Science 2010; 328: 1376
- 9b Uyanik M, Hayashi H, Ishihara K. Science 2014; 345: 291
- 9c Uyanik M, Sasakura N, Kaneko E, Ohori K, Ishihara K. Chem. Lett. 2015; 44: 179
- 9d Uyanik M, Kato T, Sahara N, Katade O, Ishihara K. ACS Catal. 2019; 9: 11619
- 9e Mairhofer C, Novacek J, Waser M. Org. Lett. 2020; 22: 6138
- 9f Uyanik M, Sahara N, Tsukahara M, Hattori Y, Ishihara K. Angew. Chem. Int. Ed. 2020; 59: 17110
- 9g Tanaka H, Ukegawa N, Uyanik M, Ishihara K. J. Am. Chem. Soc. 2022; 144: 5756
- 9h Wang D, Zhang W, Lu X, Zhou H, Zhong F. Org. Lett. 2022; 24: 842
- 10a Coles MP. Chem. Commun. 2009; 3659
- 10b Leow D, Tan C.-H. Chem. Asian J. 2009; 4: 488
- 10c Selig P. Synthesis 2013; 45: 703
- 10d Hosoya K, Odagi M, Nagasawa K. Tetrahedron Lett. 2018; 59: 687
- 11 Odagi M, Nagasawa K. Chem. Rec. 2023; 23: e202300030
- 12a Yasui K, Kato T, Kojima K, Nagasawa K. Chem. Commun. 2015; 51: 2290
- 12b Yasui K, Kojima K, Kato T, Odagi M, Kato M, Nagasawa K. Tetrahedron 2016; 72: 5350
- 12c Kato T, Yasui K, Odagi M, Nagasawa K. Adv. Synth. Catal. 2017; 359: 2881
- 12d Odagi M, Mori I, Sugimoto K, Nagasawa K. ACS Catal. 2023; 13: 2295
- 12e Sugimoto K, Mori I, Kato T, Yasui K, Xu B, Tan CH, Odagi M, Nagasawa K. J. Org. Chem. 2023; 88: 7660
- 14 Homocoupling Reactions of Oxindoles 7; General Procedure TBHP (0.00136 mL, 0.075 mmol) was added to a stirred mixture of the appropriate indolinecarboxylate 7 (0.100 mmol) and chiral catalyst la (0.0040 g, 0.0025 mmol) in toluene (1.0 mL) at 0 °C. When the reaction was complete (TLC, hexane–EtOAc, 1:1), the solvent was removed in vacuo and the residue was analyzed by 1H NMR to determine the ratio of the dl and meso isomers. The residue was then purified by flash column chromatography [silica gel, hexane–EtOAc (1:1 to 1:2)]. Dimethyl 1,1′-Diallyl-5,5′-dimethyl-2,2′-dioxo-1,1′,2,2′-tetrahydro-3H,3′H-3,3'-biindole-3,3′-dicarboxylate (8e) Yield: 88%; [α]D 30 –19.0 (c 1.17, CHCl3, 70% ee). HPLC [Daicel Chiralpak OD-H, hexane/i-PrOH (8:20), 1 mL/min]: τmin = 7.45 min, τmaj = 13.1 min. 1H NMR (400 MHz, CDCl3, dl/meso = 17:1): δ = 7.20–7.17 (m, 2.0 H), 7.00–6.96 (m, 2.0 H), 6.62 (d, J = 7.8 Hz, 0.1 H), 6.51 (q, J = 3.8 Hz, 2.0 H), 5.77–5.67 (m, 1.9 H), 5.18–5.13 (m, 3.9 H), 4.40–4.15 (m, 4.0 H), 3.79 (s, 0.3 H), 3.75 (t, J = 2.1 Hz, 5.8 H), 2.21 (d, J = 16.5 Hz, 6.2 H).13C NMR (125 MHz, CDCl3): δ = 169.9, 167.1, 140.9, 131.6, 130.9, 129.9, 127.1, 123.6, 117.8, 108.5, 77.3, 77.2, 77.0, 76.7, 61.5, 53.3, 42.7, 21.1. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C28H28N2NaO6: 511.18451; found 511.18860.