
Gene-based therapies for neuromuscular disorders

Terapias gênicas nas doenças neuromusculares
Edmar Zanoteli1 Marcondes Cavalcante França Jr.2 Wilson Marques Jr.3

1Universidade de São Paulo, Faculdade de Medicina, Departamento
de Neurologia, São Paulo SP, Brazil.

2Universidade Estadual de Campinas, Faculdade de Ciências Médicas,
Departamento de Neurologia, Campinas SP, Brazil.

3Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Departamento de Neurociências e Ciências do Comportamento,
Ribeirão Preto SP, Brazil.

Arq. Neuropsiquiatr. 2024;82(6):s00431777755.

Address for correspondence Edmar Zanoteli
(email: edmar.zanoteli@usp.br)

Keywords

► Gene Therapy
► Muscular Atrophy,

Spinal
► Amyotrophic Lateral

Sclerosis
► Amyloid

Neuropathies
► Muscular Dystrophy,

Duchenne

Abstract Neuromuscular diseases (NMD) include a broad group of medical conditions with both
acquired and genetic causes. In recent years, important advances have been made in
the treatment of genetically caused NMD, and most of these advances are due to the
implementation of therapies aimed at gene regulation. Among these therapies, gene
replacement, small interfering RNA (siRNA), and antisense antinucleotides are the
most promising approaches. More importantly, some of these therapies have already
gained regulatory approval or are in the final stages of approval. The review focuses on
motor neuron diseases, neuropathies, and Duchenne muscular dystrophy, summariz-
ing the most recent developments in gene-based therapies for these conditions.
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Resumo Doenças neuromusculares (DNM) compõem um grupo amplo de doenças de causa
tanto adquiridas quanto genéticas. Nos últimos anos, importantes avanços ocorreram
quanto ao tratamento das DNM de causa genética e grande parte desses avanços se
deve à implementação de terapias voltadas para a modificação gênica. Dentre essas
terapias, destacam-se as terapias de reposição gênica, uso de RNA de interferência, uso
de antinucleotídeos antisense, entre outras. E, mais importante, algumas dessas
terapias já se tornaram realidade na prática médica e já foram aprovadas, ou estão a
poucos passos da aprovação, por órgãos governamentais regulatórios. Esta revisão
aborda aspectos mais recentes quanto ao uso das terapias genéticas avançadas para
algumas das formas mais comuns de DNM, em especial para doenças do neurônio
motor (esclerose lateral amiotrófica e atrofia muscular espinhal), neuropatias e
distrofia muscular de Duchenne.
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INTRODUCTION

We have witnessed a real revolution in the therapeutic
landscape of neuromuscular disorders (NMD) in the past
5–10 years.1 This is particularly evident for monogenic
conditions, where precise disease targets and mechanisms
are well known. Diseases such as spinal muscular atrophy
and hereditary transthyretin amyloidosis (ATTRv) are now
treated effectively with multiple approved disease-modify-
ing agents.2–6 These innovative drugs in NMD are called
gene-based therapies and rely upon themodulation of genes,
mRNA, and/or proteins.7 There are threemain classes of such
therapies: antisense oligonucleotides (ASOs), small interfer-
ing RNAs (RNAi), and gene replacement therapy (GT).

ASOs are synthetic single-stranded nucleic acid sequences
containing between 8 and 20 nucleotides, which can bind to
specific RNA sequences and thus regulate gene expression.
Such ASO-mediated gene regulation can be mediated by
activation of RNAse-H, by blocking mRNA transcription at
ribosomes, or by modifying gene splicing.8

RNAi-based drugs are small non-coding double-stranded
RNA molecules with 21 to 23 nucleotides. These agents are
designed to target specific mRNAs, and cause gene silencing
through a complex multienzymatic intracellular system
(RNA-induced silencing complex).9 So far, RNAi-therapies
have primarily been used intravenous (IV) or subcutaneously
to treat autosomal dominant gain-of-function NMD (ATTRv
and porphyrias).

GT consists of the insertion of genes into an individual’s
cells or tissues with the aim of treating or preventing a
hereditary disease. There are two key components in all GT:
the vector (which can be viral or non-viral) and the transgene
(which includes the coding sequence of the gene of interest
plus regulatory regions).10 The choice of the transgene and
the design of the transgene will depend on the condition
treated. For NMDs, this is typically a single shot injection
given in vivo either IV or intrathecal (IT).

GENE-BASED THERAPIES FOR AMYOTROPHIC
LATERAL SCLEROSIS (ALS)

Amyotrophic lateral sclerosis (ALS) is the prototypical motor
neuron disease in adults. The disease is characterized by
degeneration of both upper and lower motor neurons, lead-
ing to progressive muscle weakness and atrophy.11,12

Patients typically die 3 to 5 years after the onset of symptoms
due to respiratory failure. Most patients with ALS (90%) have
sporadic disease (sALS) with no known family history,
whereas the remaining 5-10% are called familial ALS (fALS)
because the disease segregates in other affected relatives.
The genetic basis of ALS is now well characterized. fALS is
considered amonogenic disorder withmore than 20 distinct
genes already associated. In contrast,monogenic sALS is rare;
most patients indeed behave as oligo or polygenic condi-
tions.13 Most monogenic ALS subtypes segregate as autoso-
mal dominant traits and are caused by gain-of-function
missense variants (leading to abnormal protein folding and
aggregation).12,13

Advanced gene-based therapies are coming to the clinical
arena of ALS.14,15 Essentially all drugs in development target
one of the genes known to be associatedwith fALS. SOD1was
the first gene identified in fALS back in 1993.16 For this
reason, it is the leading gene when it comes to clinical drug
development. Other genes such as C9orf72, FUS, and ATXN2,
have been also explored lately. Further detail will be given
below.

SOD1-ALS
Tofersen is an antisense oligonucleotide (ASO) administered
intrathecally every month that targets both wild-type and
mutant SOD1 alleles.14 It was tested in a phase 3 clinical
trial that recruited 72 patients in a 2:1 ratio treatment
versus placebo. They were followed over 24 weeks using the
decline in the Amyotrophic Lateral Sclerosis Functional
Rating Scale (ALSFRS) score which was the primary efficacy
measure. In this time frame, the drug resulted in a signifi-
cant decline in the cerebrospinal fluid concentrations of
SOD1 and in the plasma concentration of neurofilament
light chains, a marker of axonal degeneration. Furthermore,
severe drug-related side effects were rather infrequent (7%).
Despite that, the study did not meet its primary efficacy
endpoint in the placebo-controlled phase. Long follow-up
data from the open-label extension phase, however, found a
clear positive trend towards the treatment. These results in
combination enabled regulatory approval for tofersen to
treat patients with SOD1-ALS in the US in 2023.17 There is
an ongoing study focusing on presymptomatic carriers of
SOD1 mutations treated with tofersen and followed in the
long term.18

GT has been also explored in SOD1-ALS. In 2020, Mueller
et reported two patientswith SOD1-ALS and fast progression
who underwent GT.15 The investigational product was ad-
ministered IT. AAVrh10 was the vector, and the transgene
encoded a microRNA targeting SOD1mRNA. The first treated
patient did not receive prior immunosuppression, so he
developed severemeningoradiculitis, and no obvious change
in the progression was noticed. Post-mortem spinal cord
samples from this patient indeed confirmed SOD1 silencing.
In contrast, the second patient received IV steroids pre-GT,
and the coursewas strikingly different remaining stable over
70 weeks (ALSFRS scores). These are encouraging results and
other groups are now pursuing a similar approach to treat
this monogenic subtype of ALS.19

Other genes (C9orf72, FUS, and ATXN2)
C9orf72 is the most frequent genetic cause of fALS in Cau-
casians.11 A phase 1 clinical trial using an IT ASO (BIIB078)
targeting this gene was conducted.20 The authors recruited
and followed 106 patients who were randomized in a 3:1
ratio to treatment versus placebo. Unfortunately, no signifi-
cant changewas noticed between the treatment and placebo
groups, which led to the discontinuation of drug
development.20

FUS causes a very aggressive and early-onset, sometimes
juvenile, subtype of ALS.11 Jacifusen is a FUS-targeting ASO-
administered IT that is currently under investigation at
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Columbia University. Some patients received the drug from
2019 to 2020 after FDA approval. Clinical benefit was not
clear at this point, but post-mortem samples of these indi-
viduals confirmed the reduction of FUS expression in the
spinal cord. A phase 3 clinical trial named FUSION is current-
ly ongoing to assess the safety and efficacy profile of jacifu-
sen in 64 patients with FUS-ALS over 29 weeks.21

Intermediate CAG expansions at ATXN2 have been associ-
ated with ALS in multiple populations.22 In contrast to other
previously mentioned genes, this is not a causative gene, but
rather a risk gene. On the other hand, its frequency is much
higher in the overall ALS public compared to the other
monogenic ALS subtypes. In the transgenic TDP43 ALS
murine model, anti-ATXN2 ASOs rescued the phenotype
and prolonged survival, particularly when given early.23 A
phase 1 clinical trial is ongoing to assess the safety and
efficacy of IT anti-ATXN2 ASOs in patients with sporadic and
ATXN2-related ALS.21

SPINAL MUSCULAR ATROPHY LINKED TO 5q
(SMA-5q)

Spinal muscular atrophy (SMA) is a neurodegenerative dis-
ease characterized by progressive muscle weakness, hypoto-
nia, and weakness due to degeneration of motor neurons in
the spinal cord and brainstem. The most common form of
SMA is caused by recessive mutations in the survival motor
neuron 1 (SMN1) gene located at 5q13 (SMA-5q).24 The
global incidence of SMA is estimated at 1 in 10,000 live
births.25

SMA has been classified into at least four subtypes
depending on the patient’s age at the disease’s onset and
the achievement of motor milestones.26 In SMA type 1, or
infantile form, children do not acquire the ability to sit, and
the disease manifests at 0 to 6 months of age. In SMA type 2,
clinical manifestations start between 6 and 18 months, and
children are unable to walk unassisted. Children with SMA
type 3 manifest the disease in the second year of life or later
and canwalk unaided. Finally, SMA type 4 is the adult form of
the disease with themanifestations starting usually after the
age of 18.

Exon 7 of the SMN1 is not detectable in approximately 96%
of SMA-5q patients, and approximately 4% of patients have a
combination of the deletion and an intragenic mutation in
the second allele.24,27 SMN2 is a centromeric copy of SMN1
that does not provide the transcription of stable SMN protein
due to the lackof exon 7 inmost transcripts.24 Several studies
have demonstrated a strong inverse correlation between the
number of SMN2 copies and SMA severity.24,28

Various therapeutic approaches are currently being de-
veloped for SMA. SMN-dependent therapies focus on
addressing the SMN protein deficiency, such as gene therapy
with SNM1 gene replacement (onasemnogene abeparvovec-
AVXS101), and inclusion of exon 7 in SMN2 (nusinersen,
risdiplam).29 These therapies have already been approved by
the leading international regulatory agencies and the Brazil-
ian National Surveillance Agency (ANVISA).

Nusinersen (Spinraza®) is an antisense oligonucleotide
(ASO) that targets an intronic splicing silencer sitewithin the
SMN2 pre-messenger RNA downstream of exon 7.30,31 This
targeting of the splicing silencer allows for increased inclu-
sion of exon 7 during mRNA processing, producing more
functional SMN protein from the SMN2 gene. As ASOs do not
cross the blood-brain barrier, nusinersen must be adminis-
tered via the intrathecal route.

The ENDEAR, a placebo-randomized clinical trial, demon-
strated that nusinersen-treated SMA type 1 patients had
more prolonged survival and significant improvements in
motor function compared to those without treatment.3 The
CHERISH trial was a placebo-randomized study that enrolled
126 patients with late-onset SMA aged 2 to 12 years.32 The
study demonstrated that patients who received Nusinersen
experienced clinically significant improvements in motor
function compared to the control group.

The follow-up of approximately three years of patients
with SMA types 2 and 3 treated with nusinersen showed
improvements in motor function and stabilization of disease
activity.33 For SMA type 1, a follow-up of approximately 36.2
months showed a durable clinical response in a significant
proportion of patients; 75% of the participantswere still alive
at the time of study closure.34

Several subsequent real-life studies with SMA patients
further confirmed the favorable effects of nusinersen on
motor and respiratory function, as well as on the survival
of patients with long-term illness and varying respiratory
conditions.35–38

NURTURE is an ongoing phase 2, open-label study to
evaluate the efficacy and safety of nusinersen in pre-symp-
tomatic infants.39 With a median follow-up of 2.9 years, the
infants (median of 34.8 months of age) had surpassed the
expected age of symptom onset for SMA types 1 or 2, and all
of them were alive without the need for tracheostomy or
permanent ventilation. Almost all the participants achieved
the ability to sit without support (92%), and the majority
achieved walking with assistance or independently (88%).39

After five years of follow-up, all patientswere alive, and none
discontinued the treatment or utilized respiratory interven-
tion. Children with three SMN2 copies achieved all WHO
motor milestones, and all children with two SMN2 copies
achieved sitting without support, 4/15 walking with assis-
tance, and 13/15 walking alone.40

Risdiplam (Evrysdi®) is a small oral molecule designed to
selectively modify the splicing of SMN2 pre-mRNA and
promote the inclusion of exon 7 to increase levels of func-
tional SMN protein from a complete mRNA transcript.41

Registration approval in Brazil occurred in October 2020.
The FIREFISH study is investigating the safety and efficacy

of risdiplam in type 1 SMA versus historical controls.4,42

After 24 months of treatment, 44% of the patients were
sitting without support for at least 30 seconds.43 The
event-free survival at month 12 was 85% and at month 24
was 83%.42,44 The most frequently reported adverse event
was upper respiratory tract infection in 54%.44 SUNFISH
(NCT02908685), a phase 3, randomized, placebo-controlled
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study, investigates the effects of risdiplam in type 2 and non-
ambulant type 3 SMA.45 Part 1 of the study showed that a
median two-fold increase of serum SMN protein was
obtained within four weeks of treatment, and it was sus-
tained over 24 months of treatment.45 In part 2 of the study,
an exploratory efficacy showed improved or stabilizedmotor
function. A significantly greater change from baseline in the
32-item Motor Function Measure (MFM32) total score was
observed with risdiplam compared with placebo at month
12.46 At month 24, 32% of patients demonstrated improve-
ment from baseline in MFM32 total score, and 58% showed
stabilization.47

The JEWELFISH is an ongoing, open-label study designed
to assess the effects of risdiplam in the broadest population,
including patients with SMA types 1–3 (n¼174) with awide
range of ages (1–60 years), disease severities, and who have
previously received other therapies (RG7800, 7 nusinersen,
olesoxime or onasemnogene abeparvovec).48 The study
showed a favorable safety profile and an increase in SMN
protein levels after 12 months of treatment.48 An increase in
the total distance walked in the 6MWT was observed in
ambulant patients over 24 months of treatment with risdi-
plam.48 Real-world experience with risdiplam has also been
published and further supported its beneficial effects on
motor function in patients with SMA.49

RAINBOWFISH is an ongoing, multicenter, open-label, sin-
gle-arm study to assess the efficacy and safety of risdiplam in
pre-symptomatic SMA. Preliminary data showed that most
infants treated with risdiplam could sit independently, and
manywere standing andwalking as assessed by the HINE-2 at
month 12.43 After 12 months of treatment, most infants
achieved near-maximum CHOP-INTEND total scores. All
infants maintained bulbar function, and none required per-
manent ventilation after 12 months of treatment.43

Onasemnogene abeparvovec (Zolgensma®) is a gene re-
placement therapy based on a self-complementary adeno-
associated virus serotype 9 (AAV9) vector that carries a
functional copy of the human SMN1.2 The administration
of onasemnogene abeparvovec is performed intravenously,
allowing the AAV9 vector to cross the blood-brain barrier. In
the US, the FDA has approved it for the treatment of children
with SMA who are under two years of age. In Brazil, the
ANVISA has approved onasemnogene abeparvovec for babies
younger than two years old.

The START study was a pivotal clinical trial that evaluated
the safety and efficacy of onasemnogene abeparvovec in
patients with type 1 SMA who had two copies of the
SMN2. At 20 months following the treatment, 11 of the 12
children receiving the high dose of gene therapy could sit
unassisted and feed unassisted.2 Data from the extension
study showed maintenance of the effectiveness for at least
five years.50

The phase 3 studies STR1VE-EU conducted in Europe and
STR1VE-US conducted in the US further confirmed the
effectiveness of onasemnogene abeparvovec in treating
patients with type 1 SMA when administered before six
months of age.51,52 Between 44% to 59% of treated patients
could sit unsupported at 18 months. Furthermore, between

91% to 97% of the infantswere alive and free frommechanical
ventilation at 14 months of age.51,52

Real-world studies have confirmed the efficacy of the
gene replacement therapy in an expanded age range of
patients eligible for treatment, including those up to two
years old, and also patients with three copies of SMN2,
regardless of the type of SMA.53–55 Additionally, some stud-
ies have evaluated the use of onasemnogene abeparvovec in
patients who had previously been treatedwith other specific
therapies, such as nusinersen or Risdiplam.53,54

The SPR1NTphase3 studyhasprovided crucial evidence on
the efficacy of gene replacement therapy in pre-symptomatic
childrenwith SMA.56,57 In childrenwith three SMN2 copies, all
15 participants stood independently before 24months, within
the expected developmental window.57 Additionally, 14 of
themwalked independentlywithin theexpecteddevelopmen-
tal window, and 67%maintained body weight without requir-
ing feeding support through 24 months. For the 14 enrolled
infants with two SMN2 copies, all of them achieved the ability
to sit independently for �30 seconds at any visit before
18months of age.56 Importantly, all patientswith two or three
SMN2 copies in the study survived without permanent venti-
lation at 14 months, and none of the children required
nutritional or respiratory support. At 18 months (children
with two copies of SMN2) and 24months (childrenwith three
copiesof SMN2), all children swallowednormallyandachieved
full oral nutrition.58

In human clinical trials and real-world studies, treatment-
related severe adverse events of onasemnogene abeparvovec
have been reported in just over 10% of cases, with the most
common being liver function abnormalities and fever.59Other
important adverseevents includedecreasedplatelet count and
thrombocytopenia. Fatal cases of thromboticmicroangiopathy
and acute liver failure have been reported,60,61 as well as
potentially fatal conditions such as hemophagocytic syn-
drome,62 and necrotizing enterocolitis.63

The STRONG study (NCT03381729) is a clinical trial that
evaluated the safety and efficacy of an intrathecal single dose
of onasemnogene abeparvovec in non-ambulatory patients
with SMAwhohave three copies of the SMN2 and are aged 6 to
under 60 months.64 In the younger group (6 to under 24
months) treated with the medium dose, one out of thirteen
patients (7.7%) achieved independent standing. For the older
group (24 to under 60 months) receiving the medium dose,
there was a significant improvement in the change from
baseline in theHFMSEcomparedwith theSMAhistoric control
population at month 12.64 Further research is ongoing to
explore the use of lower intrathecal doses of onasemnogene
abeparvovec in patients aged 2 to under 18 years in a random-
ized multicenter controlled clinical trial (NCT05089656).

GENE-BASED THERAPIES FOR NEUROPATHIES

Among the inherited peripheral neuropathies, outstanding
treatment developments occurred in the last decade. The
natural history of patients with transthyretin-associated
amyloidosis and acute hepatic porphyria with repetitive
crisis has definitely changed due to genetic therapies.
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Hereditary transthyretin amyloidosis
Mutations in the transthyretin gene (TTR) result in an amy-
loidogenicmultisystemic disease (ATTRv) that affectsmainly
the peripheral nervous system (ATTRv-pn) and the heart
(ATTRv-h).65,66 Most of the TTR protein has liver production
and circulates as a monotetramer, that transports thyroxin
and vitamin A.65,66

ATTRv is a fatal autosomal dominant disease of variable
penetrance caused by the deposition of misfolded TTR fibrils
whose prognosis changed enormously after liver transplan-
tation. The natural history of the disease was also modified
with the introduction of tafamidis, a small molecule that
stabilizes the TTR tetramer, avoiding fibril formation.65,66

The possibility of interrupting TTR production through
gene silencing became a clinical reality in the second half of
the last decade with the use of two different technologies:
antisense oligonucleotides (ASO) and small interfering RNAs
(siRNA), both effectively suppressing TTR production acting
at RNA level.66 ASO selectively binds to the complementary
RNA, preventing RNA translation andgene expression, which
can also be modulated by siRNA which targets and cleaves
complementary mRNAs.67

The NEURO-TTR trial showed that the antisense oligonu-
cleotide inotersen was effective in stages 1 and 2 of the
ATTRv-pn.5 Administered subcutaneouslyweekly it waswell
tolerated and effective in stabilizing the disease, but three
patients developed glomerulonephritis, and the other three
developed thrombocytopenia, with one death. After the
introduction of regular monitoring, no more serious com-
plications were reported. The open-label extension study
confirmed the efficacy of inotersen in slowing the course of
neuropathy and improving quality of life.68

More recently, in trying to improve the safety and dosing
profile of inotersen, the same sequence has been ligand-
conjugated to produce a new and potent ASO (eplontersen),
which is administered subcutaneously every 4weeks.69,70 The
phase 3 NEURO-TTRansform study showed that the eplon-
tersen treatmentgrouphadsignificantly loweredserumtrans-
thyretin concentration, less neuropathy impairment, and
better quality of life compared with a historical placebo.69

The phase 3 APOLLO study showed that the siRNA pati-
siran was effective and safe at the dose of 0.3mg/kg given
intravenously every 3 weeks.6 The open-label extension
study confirmed the efficacy and safety of the drug,71 and
it was shown that patisiranwas also efficient in transplanted
patients.72 In phase 3 (APOLLO-B, NCT03997383), a double-
blind, placebo-controlled, randomized trial, the administra-
tion of patisiran over a period of 12 months resulted in
preserved functional capacity in patients with ATTR cardiac
amyloidosis.73 Infusion-related reactions, arthralgia, and
muscle spasms occurred more often among patients in the
patisiran group than among those in the placebo group.73

The HELIOS-A study showed that vutrisiran, a siRNA-
GalNAc conjugate, administered subcutaneously (25mg ev-
ery 3 months), resulted in significant improvement of the
neuropathy impairment.74

Gene editing therapy with the use of clustered, regularly
interspaced short palindromic repeats and associated Cas9

endonuclease is also under evaluation to potentially solve
the problem permanently. In the initial proof-of-concept
study, single doses (0.3mg/kg) of the NTLA-2001 CRISPR-
Cas9 system resulted in a significant reduction of TTR blood
levels without significant adverse events.75 Ongoing and
larger studies will test the clinical efficacy and safety of
this system.75

Acute hepatic porphyria
Acute hepatic porphyria is a group of four diseases, three of
autosomal dominant inheritance (acute intermittent por-
phyria, hereditary coproporphyria, variegate porphyria) and
one autosomal recessive (ALA dehydratase) that result from
abnormalities in the heme biosynthesis pathway. The pene-
trance is reduced and most carriers will never manifest the
disease, but in those that manifest, the consequences may be
serious and even fatal.76 They usually occur in crises that
cause intense abdominal pain, nausea, vomiting, dysautono-
mia (tachycardia and blood pressure instability), psychiatric
problems, seizures, and acute axonal neuropathy.77 Most
patients have favorable prognoses with measures to avoid
the precipitating factors and use of glucose and hematin at
the onset of the attacks.

For those developing repetitive crises (> 4 a year) it has
recently been introduced givosiran, a siRNA that binds to a
target sequence on ALAS1 mRNA, decreasing the production
of ALA and PBG, the molecules thought to be responsible for
the porphyria attacks. The phase 3 ENVISION trial showed a
74% decrease in the attack rate, and the secondary endpoints
were also met.78 Givosiran was well tolerated, but some
patients developed renal and hepatic complications, de-
manding close surveillance.77 The recommended dose is
2.5mg/kg once a month. Extension studies are ongoing.

GENE-BASED THERAPIES FOR DUCHENNE
MUSCULAR DYSTROPHY

Duchenne muscular dystrophy (DMD) is an X-linked reces-
sive muscular dystrophy caused by mutations in the DMD
(dystrophin) gene.79 The disease affects around 1 in 3500 -
5000 boys and causes progressive weakness starting be-
tween 3 and 4 years old and loss of ambulation at the age
of around 10–12 years.80 In addition, DMD patients present
respiratory difficulties and progressive dilated cardiomyop-
athy leading to heart failure and early death.

The DMD is the largest gene identified with 79 exons.81

DMD mutations are intragenic deletions affecting one or
more exons (60-65%), duplications of one or more exons
(10%), and nucleotide variants (around 20-25%), including
missense and nonsense variants, small insertions/deletions,
or splicing alterations.82 Mutations in DMD that do not
disrupt the reading frame, leading to the expression of a
truncated yet functional dystrophin cause the milder phe-
notype of Becker muscular dystrophy.83

There is no curative treatment for DMD. Nonetheless, a
multidisciplinary approach targeting the symptoms of DMD
can change the natural course of the disease. Glucocorticos-
teroids, such as deflazacort or prednisone, are the current
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standard of care treatment for DMDpatients (Araujo 2023).84

Genetic therapies that act by regulating the expression of
DMD or administering a transcript capable of encoding a
smaller but still functional dystrophin have been the most
promising therapies.

Gene replacement therapy with microdystrophin
The large sizeof theDMDgenedoesnot allow its transfer via an
AAV vector. On the other hand, microdystrophin transcripts
can be easily transferred to DMD patients via viral vectors.85

Delandistrogene moxeparvovec is approved in the US for the
treatment of ambulatory patients (4-5 years) with DMD.
Delandistrogene moxeparvovec (SRP-9001), from Sarepta
Therapeutics, is an investigational gene therapy designed for
targeted expression of SRP-9001 dystrophin protein, a short-
ened dystrophin retaining key functional domains of thewild-
type protein. An open-label, phase 1/2a, nonrandomized
controlled clinical trial (NCT03375164) enrolled four DMD
ambulatory males with a mean age of 5.1 years.86 Patients
received a single IV infusion (2.0�1014 vg/kg) of delandis-
trogene moxeparvovec and steroids.86 At 12 weeks, immuno-
histochemistry of gastrocnemius muscle specimens revealed
robust transgene expression in all patients, with a mean of
81.2% of muscle fibers expressing micro-dystrophin with a
mean intensity of 96% at the sarcolemma. Western blot
showed a mean expression of 74.3% of the protein without
fat or fibrosis adjustment.86 After 4 years of treatment, there
were 18 treatment-related adverse events; all occurredwithin
70 days posttreatment and were resolved.87 The mean North
Star Ambulatory Assessment (NSAA) total score increased
from 20.5 to 27.5 (þ7.0, 2.9), from baseline to year 4.

SRP-9001-102 (NCT03769116) is a phase 2, double-blind,
two-part crossover study to evaluate delandistrogene mox-
eparvovec in DMD patients aged �4 to <8 years.88 Patients
were randomized and stratified by age to placebo (n¼21) or
delandistrogene moxeparvovec (n¼20) and crossed over for
part 2. SRP-9001 dystrophin expression was achieved in all
patients: mean change from the baseline to week 12 was
23.82% and 39.64% in parts 1 and 2, respectively.88 In part 1,
the change from the baseline to week 48 in NSAA score was
þ1.7 for treatment versusþ0.9 for placebo.88 In 4- to 5-year-
olds with matched baseline motor function, the change from
the baseline to week 48 in NSAA scores was significantly
different (þ2.5 points), but not significantly different in 6- to
7-year-olds with imbalanced baseline motor function (-0.7
points). For patients treated with delandistrogene moxepar-
vovec in part 2, the change from the baseline to week 48 in
NSAA score was þ1.3, whereas, for those treated in part 1,
NSAA scores were maintained.88 The most common adverse
events were vomiting, decreased appetite, and nausea.88

ENDEAVOR (NCT04626674) is a single-arm, open-label
study to evaluate delandistrogene moxeparvovec in DMD
boys.89 In cohort 1 (n¼20), eligible ambulatory males, aged
�4 to <8 years, received a single IV infusion of delandistro-
gene moxeparvovec (1.33�1014 vg/kg). At week 12, micro-
dystrophin expression had a mean change from the baseline
of 54.2% with sarcolemmal localization.89 At one year,

patients stabilized or improved in NSAA total scores.89

Treatment versus a propensity score-weighted external nat-
ural history control demonstrated a statistically significant
difference in NSAA (þ3.2 points).89 These positive results
advanced SRP-9001 into a double-blind, placebo-controlled,
phase 3 clinical trial called EMBARK (NCT05096221).

Fordadistrogene movaparvovec (PF-06939926), from
Pfizer, is an AAV9 gene-replacement construct containing
a truncated dystrophin transgene. A phase 1b open-label
clinical trial (NCT03362502) has been testing the PF-
06939926 in males with DMD aged 4 and older.90 Nineteen
ambulatory boys received fordadistrogene movaparvovec
(n¼3 low-dose; n¼16 high-dose). Median age at gene
therapy was 8.8 years (6.2–13.0 years).90 Three treatment-
related serious adverse events occurred (dehydration, acute
kidney injury, thrombocytopenia); all resolved within
15 days. The median change from baseline to 1-year in
NSAA total score was þ1 point against -4 points for an
external control cohort.90 A randomized, placebo-controlled
phase 3 trial, called CIFFREO (NCT04281485), is planned to
enroll 99 DMD boys aged 4 to 7.

SGT-001 is a microdystrophin developed by Solid Bio-
sciences that contains a neuronal nitric oxide synthase
binding (nNOS) domain responsible for protection against
ischemia-induced muscle injury by maintaining nitric oxide
(NO) signaling at the muscle sarcolemma. SGT-001 is cur-
rently being evaluated in a phase 1/2 study called IGNITE
DMD (NCT03368742).91 Interim analysis of 2 years (n¼9
boys) demonstrated common drug-related laboratory abnor-
malities (thrombocytopenia, anemia), and serious adverse
events: systemic inflammatory response syndrome (n¼2),
thrombocytopenia (n¼1), and immune hepatitis (n¼1),
which were resolved.91 Results showed durable micrody-
strophin expression and localization on nNOS to the mem-
brane in biopsies collected at time points ranging from 12-24
months post-dosing. In addition, patients had stable Six
Minutes Walking Test (6MWT) distances and NSAA scores
compared to natural history, and improvements in Forced
Vital Capacity (FVC) and Peak Expiratory Flow (PEF) com-
pared to baseline and natural history.91 Up to three years
post-dosing, there was durability of treatment effect. Sub-
jects receiving 2E14 vg/kgmaintainedmotor and pulmonary
functions compared to expected natural history declines.92

Gene replacement therapy using microdystrophin is a
major advance in the treatment of DMD. However, there
are important safety concerns. Among the adverse events of
therapy, an immune response against protein epitopes
encoded by the microdystrophin construct can generate a
cytotoxic response mediated by T cells in patients missing
these epitopes, which may cause severe myositis and myo-
carditis.93 This has been particularly observed in patients
withmutations encompassing exons 8 to 21. Another impor-
tant limitation of gene therapy forDMD is that as AAVvectors
do not integrate into the muscle fiber genome and do not
tend to infect satellite cells, with the process of muscle
renewal and regeneration, the effectiveness of the therapy
tends to be lost with time.94
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Antisense oligonucleotides (ASOs) therapy for DMD
Antisense oligonucleotides (ASOs), or phosphorodiamidate
morpholino oligomers, can induce therapeutic exon skipping
during pre-mRNA processing to restore the reading frame of
the primary transcript of DMD.95 As a result, truncated but
partially functional dystrophin is produced, potentially
slowing down the disease progression and causing a milder
Becker muscular dystrophy phenotype.

Eteplirsen is an ASO from Sarepta Therapeutics that binds
to a complementary region in the DMD exon 51 pre-mRNA
and causes its skipping during the mRNA splicing process.96

Around 13–14% of DMD cases have mutations that can be
potentially treated by skipping exon 51.97 Eteplirsen re-
ceived accelerated approval from the FDA in September 2016.
In clinical trials, eteplirsenwas shown to be safe, and capable
of increasing dystrophin levels in muscle tissue and main-
taining the motor function of DMD patients.96–100

Golodirsen is anASO fromSareptaTherapeutics approvedby
the FDA under accelerated review for the treatment of DMD in
patientswith exon 53 amendable skippingmutations (approxi-
mately 8% of all DMD mutations).101 In clinical trials A signifi-
cant increase in exon 53 skipping and dystrophin protein
expression was demonstrated.102–104 In addition, mild im-
provement in 6MWT, and a slowing decline of FVC occurred.103

Viltolarsen is anASOdesigned to treatDMDinpatientswith
a confirmed mutation of the DMD gene amenable to exon 53
skipping.105,106 Viltolarsen is approved in the US by the FDA
and in Japan. An increase of dystrophin value of 5.9% was
observed,105 and viltolarsen-treated patients presented stabi-
lization of motor function over 4 years of extension study.106

Readthrough therapies for DMD
DMD is caused by a nonsensemutation in theDMD in 10–15%
of cases. Nonsense mutations result in the production of
truncated, non-functional dystrophin. Ataluren (Translarna®)
is an oral treatment designed to promote the synthesis of full-
length dystrophin through ribosomal readthrough of an in-
frameprematurestopcodoncausedbyanonsensemutation in
the dystrophin mRNA.107

A randomized, double-blind, placebo-controlled study,
including males � 5 years with DMD, assessed the safety
and efficacy of ataluren (n¼57) or placebo (n¼57). The
primary endpoint favored ataluren 10, 10, 20mg/kg versus
placebo.108 A phase 3, randomized, double-blind, placebo-
controlled trial, included 228 outpatient boys with DMD
aged 7 to 16 years.109 The study showed that change in
6MWD did not differ significantly between patients in the
ataluren group and those in the placebo group.109However, a
significant effect of ataluren in the prespecified subgroup of
patients with a baseline 6MWD of 300meters or more to less
than 400 meters was noted.109 However, to date, long-term
follow-up on study participants (treated and untreated with
atalurem) has not been reported.

The safety and effectiveness of ataluren in patients with
nonsense mutation DMD in the STRIDE registry (real-world
treatment with ataluren) were compared with the CINRG
Duchenne Natural History Study.110 Ataluren treatment
significantly delayed age at loss of ambulation by 4 years

and age at decline to predicted FVCof<60% and<50% by 1.8
years and 2.3 years, respectively.110 However, the major
limitation of this study is the fact that the comparator control
group included DMD patients with different types of muta-
tions, not just nonsensemutations,which can certainly affect
the interpretation of the results.110

Ataluren is not approvedby the FDA. TheHumanMedicines
Committee (CHMP) of the EuropeanMedicines Agency (EMA)
gave conditionalmarketing authorization in2014.However, in
October 2023, in a preliminary analysis, the committee con-
cluded that Ataluren’s benefit-risk balance is negative and
therefore recommended not renewing themarketing authori-
zation in Europe.111 In Brazil, ANVISA approved ataluren in
2019 and recently expanded the age range for its use from
2 years onwards.
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