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ABSTRACT

Bile acids are synthesized by the liver from cholesterol through a complex series of
reactions involving at least 14 enzymatic steps. A failure to perform any of these reactions
will block bile acid production with failure to produce ‘‘normal bile acids’’ and, instead,
result in the accumulation of unusual bile acids and intermediary metabolites. Failure to
synthesize bile acids leads to reduced bile flow and decreased intraluminal solubilization of
fat and fat-soluble vitamins. In some circumstances, the intermediates created because of
blockade in the bile acid biosynthetic pathway may be toxic to hepatocytes. Nine
recognized inborn errors of bile acid metabolism have been identified that lead to enzyme
deficiencies and impaired bile acid synthesis in infants, children, and adults. Patients may
present with neonatal cholestasis, neurologic disease, or fat and fat-soluble vitamin
malabsorption. If untreated, progressive liver disease may develop or reduced intestinal
bile acid concentrations may lead to serious morbidity or mortality. This review focuses on
a description of the disorders of bile acid synthesis that are directly related to single defects
in the metabolic pathway, their proposed pathogenesis, treatment, and prognosis.
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Bile acids have been implicated in the patho-
genesis of liver disease; however, their exact role in
initiating or perpetuating liver injury has proved difficult
to discern because nonspecific alterations in serum,
urinary, and biliary bile acid composition are found in
infants and children with cholestasis. Specific inherited
inborn errors in bile acid biosynthesis have been recently
recognized that are causal in the pathogenesis of the
idiopathic and familial forms of neonatal hepatitis.1–13

The deficiency in activity of specific enzymes involved in
bile acid synthesis results in diminished production of
the primary bile acids that are essential for promoting
bile flow and the concomitant production of atypical bile
acids with the potential for causing liver injury.14,15 This
review outlines the pathways for bile acid synthesis and
describes the clinical and biochemical characteristics of
inborn errors in bile acid synthesis.

CHEMISTRY AND PHYSIOLOGY
The bile acids are a group of compounds that belong to

the steroid class and are classified as acidic sterols.16 In

humans, the principal bile acids synthesized by the

liver3,17 have hydroxyl groups substituted in the nucleus

at the carbon positions C-3, C-7, and C-12. During

early development, alternative pathways for bile acid

synthesis and metabolism become quantitatively impor-

tant, as is evident from the findings of relatively high

proportions of bile acids hydroxylated at the C-1, C-2,

C-4, and C-6 positions of the nucleus.18,19 The two

principal bile acids synthesized by the liver and referred

to as the ‘‘primary’’ bile acids are cholic acid (3a,7a,12a-

trihydroxy-5b-cholanoic acid) and chenodeoxycholic

acid (3a,7a-dihydroxy-5b-cholanoic acid). These bile

acids are extensively conjugated to the amino acids
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glycine and taurine.20 The biosynthetic pathway for bile
acids is depicted in Fig. 1.

Bile acids perform several important functions.
Bile acids are the major catabolic pathways for the
elimination of cholesterol from the body.3,17 Bile acids
provide the primary driving force for the promotion and
secretion of bile and are essential to the development of
the biliary excretory route for the elimination of endog-
enous and exogenous toxic substances, including bilir-
ubin, xenobiotics, and drug metabolites.14 Within the
intestinal lumen, the detergent action of bile acids
facilitates the absorption of fats and fat-soluble vitamins.

Physiologically, the normal bile acid pool size in
the adult is 2 to 4 g, but the effectiveness of this pool is
increased by an efficient enterohepatic recycling (10 to 12
times/day) stimulated by postprandial gallbladder con-
traction.21 Conservation of the bile acid pool occurs by an
efficient reabsorption, principally from the small intes-
tine, and an effective hepatic extraction from the portal
venous circulation so that each day less than 5% of the
pool is lost in the stool.22 This bile acid loss is compen-
sated for by hepatic synthesis of newly formed bile acids.
A fraction of the pool is converted to secondary bile acids

(deoxycholic and lithocholic acid) and deconjugated with
most recycled within the enterohepatic circulation and
reconjugated in the liver. Although the term and preterm
neonate are born with a relatively reduced, size-corrected
bile acid pool, rapid expansion of the pool in the first
months of life ensures adequate intraluminal concentra-
tions for fat and fat-soluble vitamin absorption and
promotion of bile flow.23–26

INBORN ERRORS IN BILE ACID SYNTHESIS
Disorders in bile acid synthesis and metabolism can be
broadly classified as primary or secondary. Primary
enzyme defects involve congenital deficiencies in en-
zymes responsible for catalyzing key reactions in the
synthesis of cholic and chenodeoxycholic acids. The
primary defects include cholesterol 7a-hydroxylase
(CYP7A1) deficiency; 3b-hydroxy-C27-steroid oxidor-
eductase deficiency; D4-3-oxosteroid 5b-reductase
deficiency7; oxysterol 7a-hydroxylase deficiency9; 27-
hydroxylase deficiency, or cerebrotendinous xanthoma-
tosis (CTX); 2-methylacyl-CoA racemase deficiency;
trihydroxycholestanoic acid CoA oxidase deficiency;

Figure 1 Metabolic pathway for the biosynthesis of the primary bile acids in the classic or ‘‘neutral’’ pathway and the alternative or
acidic pathway. Recognized inborn errors are shown in boxes in the pathways. (Reproduced from Bove et al,56 with kind permission
from Springer Science and Business Media.)
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amidation defects involving a deficiency in the bile
acid-CoA ligase; and side-chain oxidation defect in the
25-hydroxylation pathway for bile acid resulting in an
overproduction of bile alcohols.27 Secondary metabolic
defects that impact primary bile acid synthesis include
peroxisomal disorders such as cerebrohepatorenal
syndrome of Zellweger28 and related disorders29 and
Smith-Lemli-Opitz syndrome30 caused by a deficiency
of D7-desaturase. Secondary defects will not be discussed
in this review, and excellent reviews may be found
elsewhere.31

The biochemical presentation of these bile acid
synthetic defects includes a markedly reduced or com-
plete lack of cholic and chenodeoxycholic acids in the
serum, bile, and urine and greatly elevated concentra-
tions of atypical bile acids and sterols that retain the
characteristic structure of the substrates for the deficient
enzyme. These signature metabolites are generally not
detected by the routine or classic methods for bile acid
measurement, and mass spectrometric techniques cur-
rently provide the most appropriate means of character-
izing defects in bile acid synthesis. Screening procedures
using liquid secondary ionization mass spectrometry
(LSIMS) indicate that inborn errors in bile acid syn-
thesis probably account for 1% to 2% of the cases of liver
disease in infants, children, and adolescents, making this
an important and specific category of metabolic liver
disease. Typical LCIMS scans for normal and choles-
tatic infants are shown in Fig. 2. Over a period of
20 years, 128 bile acid synthetic defects have been
identified from 7000 samples analyzed in the Mass

Spectrometry Laboratory at Children’s Hospital Medi-
cal Center (Table 1). An excellent concise review for lay
people and professionals is available at http://raredisea-
sesnetwork.epi.usf.edu/clic.

CEREBROTENDINOUS XANTHOMATOSIS
CTX is a rare inherited lipid storage disease with an
estimated prevalence of 1 in 70,000.4,32 Characteristic
features of the disease in adults include progressive
neurologic dysfunction, dementia, ataxia, cataracts, and
xanthomata in the brain and tendons and in infants with
neonatal cholestasis (K.D.R. Setchell, unpublished data,
2003). Biochemically, the disease can be distinguished
from other conditions involving xanthomata by (1)

Figure 2 Negative-ion LSIMS mass spectrum analysis of typical urine from cholestatic and normal infants.

Table 1 Inborn Errors of Bile Acid Metabolism (n¼ 128)
Identified at Cincinnati Children’s Hospital Medical
Center

Diagnosis Number

3b-Hydroxy-C27-steroid

oxidoreductase deficiency

38

D4-3-Oxosteroid 5b-reductase deficiency 19

27-Hydroxylase deficiency 13

Amidation defects 11

2-Methylacyl CoA racemase deficiency 2

Oxysterol 7a-hydroxylase deficiency 1

Peroxisomal defects (Zellweger or

neonatal leukodystrophy)

10

Peroxisomal defects (single-enzyme defects) 34
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significantly reduced primary bile acid synthesis; (2)
elevations in biliary, urinary, and fecal excretion of bile
alcohol glucuronides; (3) low plasma cholesterol con-
centration, with deposition of cholesterol and cholesta-
nol in the tissues; and (4) marked elevations in
cholestanol. Point mutations in the gene located on
the long arm of chromosome 2 have been identified
that lead to inactivation of the sterol 27-hydroxylase.33

Impaired oxidation of the cholesterol side chain
results in accelerated cholesterol synthesis and metabo-
lism that leads to greatly increased production and
excretion of bile alcohol glucuronides detectably by
LCIMS.2,34 The elevation in 5a-cholestan-3b-ol (cho-
lestanol) in the nervous system of CTX patients and the
high plasma concentrations of this sterol are unique
features of the disease.35,36 Early diagnosis of this dis-
order, which is readily achieved by mass spectrometry
analysis of the urine, is crucial to prevent the progressive
accumulation of cholestanol and cholesterol in tissues in
the long term. Recently, we have found several infants
that had deficiencies in the sterol 27-hydroxylase owing
to mutations in the gene encoding this enzyme but only
because of a clinical presentation of elevated serum
alanine aminotransferase (ALT) and aspartate amino-
transferase (AST) and conjugated bilirubin with normal
serum g-glutamyl transpeptidase, which ultimately re-
solved by �6 months of age presumably because the size
of the cholic acid pool expanded with compensatory
synthesis via the alternative 25-hydroxylation pathway.
The histopathology findings on liver biopsy in these
young patients are similar to those observed in idiopathic
neonatal hepatitis. Neonatal cholestasis may be the
typical early clinical presentation of CTX even though
this has never been previously documented.

3b-HYDROXY-C27-STEROID
OXIDOREDUCTASE DEFICIENCY
This was the first metabolic defect to be described
involving an early step in the bile acid biosynthetic
pathway; the conversion of 7a-hydroxycholesterol is to
7a-hydroxy-4-cholesten-3-one, a reaction catalyzed by a
3b-hydroxy-C27-steroid oxidoreductase. This is the
most common of all of the bile acid synthetic defects
described to date. Although the clinical presentation of
this disorder is somewhat heterogeneous, most patients
present as neonates with elevated serum ALT and AST,
a conjugated hyperbilirubinemia, and normal serum
g-glutamyl transpeptidase.6,37–39 Clinical features in-
clude hepatomegaly with or without splenomegaly, fat-
soluble vitamin malabsorption, and mild steatorrhea,
and in most instances, pruritus is absent. The liver
histology shows a generalized hepatitis, the presence of
giant cells, and evidence of cholestasis6,37,40–42 (Fig. 3).
The heterogeneity in clinical course of those with early-
onset disease is illustrated by some patients who initially

resolve their jaundice and are identified later in life to
those with more fulminant disease, eventuating in death
or transplantation at an early age. Although the earliest
cases were identified in infants, increasingly, idiopathic
late-onset chronic cholestasis has been explained by this
disorder.37,38 In such patients, liver disease is not always
evident initially, and patients may have fat-soluble vita-
min malabsorption and rickets, which are corrected with
vitamin supplementation. Serum liver enzymes that are
often normal in the early stages of the disease later show
progressive increases with evidence of progressive hep-
atic fibrosis (Fig. 4). Definitive diagnosis of the 3b-
hydroxy-C27-steroid oxidoreductase deficiency currently
requires mass spectrometric analysis of biologic fluids
and is readily accomplished by LSIMS (formerly re-
ferred to as FAB-MS)2,4 or by electrospray and tandem
mass spectrometry.43–46 LSIMS analysis of the urine
permits the detection of the sulfate and glycosulfate
conjugates of the 3b-hydroxy-D5 bile acids that are the
signature metabolites of this bile acid defect (Fig. 4).

Figure 3 Liver in 3b-hydroxy-C27-steroid oxidoreductase defi-
ciency with persistent cholestasis in a young infant. Hematoxylin
and eosin–stained sections show prominent ballooned multi-
nucleate hepatocytes. Mild portal inflammation is related to bile
ductules along limiting plate (magnification, �250).

Figure 4 Liver in 3b-hydroxy-C27-steroid oxidoreductase defi-
ciency with mild hyperbilirubinemia presenting in later childhood.
Hematoxylin and eosin–stained slide shows slight disarray of
hepatocytes. Portal inflammation and periportal fibrosis is mini-
mal (magnification, �250).
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Molecular techniques that have led to the cloning
of the HSD3B7 gene encoding 3b-hydroxy-C27-steroid
oxidoreductase now permit the accurate genetic basis of
the defect.47 Using this approach to confirm the bio-
chemical diagnosis of this enzyme deficiency in 15
patients, from 13 kindreds, 12 different mutations
were found to account for the disease.48 The mechanism
of cholestasis and liver injury is believed to result from
failure to synthesize adequate amounts of primary bile
acids that are essential to the promotion and secretion of
bile and the increased production of unusual bile acids
with hepatotoxic potential15,49,50. Treatment with cholic
acid leads to gradual resolution of biochemical and
histologic abnormalities with an excellent long-term
prognosis. In selected older children/adolescents pre-
senting with extensive fibrosis or cirrhosis, cholic acid
therapy has prevented progression of disease.

D4-3-OXOSTEROID 5b-REDUCTASE
DEFICIENCY
Application of LSIMS for urine analysis led to the
discovery of a defect in the D4-3-oxosteroid 5b-reduc-
tase, which catalyzes the conversion of the intermedi-
ates 7a-hydroxy-4-cholesten-3-one and 7a,12a-
dihydroxy-4-cholesten-3-one to the corresponding
3-oxo-5b(H) intermediates.7 The clinical presentation
of this defect is similar to that of patients with the
3b-hydroxy-C27-steroid oxidoreductase deficiency;
however, in contrast, the g-glutamyl transpeptidase is

usually elevated, and the average age at diagnosis is
lower in patients with D4-3-oxosteroid 5b-reductase
deficiency. In contrast with 3b-hydroxy-27-steroid
oxidoreductase deficiency, infants with D4-3-oxos-
teorid 5b-reductase deficiency tend to have more severe
liver disease with rapid progression to cirrhosis and
death without intervention. The D4-3-oxosteroid 5b-
reductase deficiency has since been found in several
patients presenting with neonatal hemochromatosis.8

Liver function tests in infants with D4-3-oxosteroid
5b-reductase deficiency present with elevations in
serum ALT and AST, markedly elevated serum con-
jugated bilirubin, and coagulopathy. Liver biopsies42,51

have revealed marked lobular disarray as a result of
giant cell and pseudoacinar transformation of hepato-
cytes, hepatocellular and canalicular bile stasis, and
extramedullary hematopoiesis (Fig. 5). On electron
microscopy, bile canaliculi were small and sometimes
slit-like in appearance and showed few or absent micro-
villi containing electron-dense material.7

Diagnosis of this defect is possible by LSIMS and
gas chromatography–mass spectrometry (GC-MS) anal-
ysis of the urine. LSIMS spectra reveal elevated amounts
of bile acids with molecular weights consistent with
3-oxo-7a-hydroxy-4-cholenoic and 3-oxo-7a,12a-di-
hydroxy-4-cholenoic acids, which can be confirmed
with GC-MS. Gallbladder bile contains only traces
(less than 2 mM) of bile acids, and urinary excretion
becomes the major route for bile acid loss with D4-3-
oxo bile acids comprising more than 75% of the total

Figure 5 Negative-ion LSIMS mass spectrum analysis of typical urine from a patient with a 3b-hydroxy-C27-steroid oxidoreductase
deficiency.
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urinary bile acids. In serum, relatively high concentra-
tions of allo-chenodeoxycholic and allo-cholic acids are
found, which lends support for an active hepatic D4-3-
oxosteroid 5b-reductase catalyzing the conversion of
the D4-3-oxo sterol intermediates to the corresponding
3a-hydroxy-5a(H) structures.

The D4-3-oxosteroid 5b-reductase is exclusively
of hepatic origin and, unlike 3a-hydroxy-C27-steroid
oxidoreductase, is not expressed in fibroblasts. Mono-
clonal antibodies raised against the rat cytosolic D4-3-
oxosteroid 5b-reductase have been used to demonstrate
an absence of the 38-kDa protein in several of these
patients and the formation of a truncated protein.3 In 1
patient from Japan who met our previous biochemical
criteria for a deficiency in this enzyme, sequence analysis
of the gene revealed a single silent mutation in the
coding region of the gene,52 but the protein was nor-
mally expressed when analyzed by immunoblot of the
liver homogenate using a monoclonal antibody.53

Increased production of D4-3-oxo bile acids oc-
curs in patients with severe liver disease54 and in infants
during the first few weeks of life.55 It is important to
perform a repeat analysis of urine in the case of a
suspected D4-3-oxosteroid 5b-reductase deficiency be-
cause on rare occasions, a resolution of the liver disease
occurs and the atypical bile acids disappear.56

The liver injury in this defect is presumed to be
the consequence of the diminished primary bile acid
synthesis and the hepatotoxicity of the accumulated D4-
3-oxo bile acids (Fig. 6). The lack of canalicular secretion
can be explained by the relative insolubility of oxo-bile
acids, and the cholestatic effects of the taurine conjugate
of 7a-dihydroxy-3-oxo-4-cholenoic acid have been
demonstrated in rat canalicular plasma membrane
vesicles.15 The unique morphologic findings in these
patients51 may indicate that maturation of the canal-
icular membrane and the transport system for bile acid
secretion may require a threshold concentration of

primary bile acids in early development. Treatment
with ursodeoxycholic acid or cholic acid leads to reso-
lution of histologic and biochemical abnormalities with
an excellent long-term prognosis.

OXYSTEROL 7a-HYDROXYLASE
DEFICIENCY
The recent discovery of a genetic defect in oxysterol 7a-
hydroxylase9 establishes the acidic pathway as a quanti-
tatively important pathway for bile acid synthesis in early
life. In the human, the oxysterol 7a-hydroxylase may be
more important than cholesterol 7a-hydroxylase for bile
acid synthesis in early life. This defect has been found in
only 1 infant, a 10-week-old boy of parents who were
first cousins, who presented with severe progressive
cholestasis, hepatosplenomegaly, cirrhosis, and liver syn-
thetic failure from early infancy. Serum ALT and AST
were markedly elevated, and serum g-glutamyl trans-
peptidase was normal. Liver biopsy findings included
cholestasis, bridging fibrosis, extensive giant cell trans-
formation, and proliferating bile ductules.9 Oral UDCA
therapy led to deterioration in liver function tests, and
oral cholic acid was therapeutically ineffective. The
patient subsequently underwent orthotopic liver trans-
plant at 4½ months of age but died from disseminated
Epstein-Barr virus–related lymphoproliferative disease.

Analysis of the urine by LSIMS revealed intense
ions in the spectrum at mass-to-charge ratio (m/z) 453
and m/z 510, corresponding with sulfate and glycosul-
fate conjugates of 3b-hydroxy-5-cholenoic and 3b-hy-
droxy-5-cholestenoic acids. These accounted for 97%
and 86% of the total serum and urinary bile acids,
respectively, and primary bile acids were virtually un-
detectable. Monohydroxy bile acids with the 3b-hy-
droxy-D5 structure have been previously shown to be
extremely cholestatic.49,57 Their hepatotoxicity in this
patient is presumed to have been exacerbated by the lack
of primary bile acids necessary for the maintenance of
bile flow.

Oxysterol 7a-hydroxylase mRNA was also not
present in this patient’s liver tissue, and analysis of the
oxysterol 7a-hydroxylase gene revealed a cytosine-to-
thymidine transition mutation in exon 5 that converts an
arginine codon at position 388 to a stop codon. The
patient was homozygous for this nonsense mutation,
whereas both parents were heterozygous.9 When human
embryonic 293 or Chinese hamster ovary cells were
transfected with the complementary DNA (cDNA)
with the R388* mutation, there was no detectable 7a-
hydroxylase activity, and immunoblot analysis confirmed
that the mutated gene encoded a truncated and inactive
protein.

Unlike the other two nuclear defects in bile acid
synthesis, the oxysterol 7a-hydroxylase deficiency is
particularly severe and untreatable by primary bile acid

Figure 6 Liver in D4-3-oxosteroid 5b-reductase deficiency pre-
senting with neonatal liver failure. Hematoxylin and eosin–
stained sections show focally prominent cytoplasmic cholestasis
and giant cell transformation with minimal portal inflammation.
Bile ductules are normal (magnification, �250).
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therapy. The characteristic metabolites formed in the
genetic defect are some of the most cholestatic bile acids
known, and, clearly, oxysterol 7a-hydroxylase is crucial
for protecting the liver against the toxicity of monohy-
droxy bile acids produced in the acidic pathway.

2-METHYLACYL-CoA RACEMASE
DEFICIENCY
2-Methylacyl-CoA racemase is a crucial enzyme that
is uniquely responsible for the racemization of
(25R)THCA-CoA to its (25S) enantiomer and also
performs the same reaction on the branched-chain fatty
acid (2R)pristanoyl-CoA. Defects in this enzyme there-
fore have profound effects on both the bile acid and the
fatty acid pathways. Mutations in the gene encoding 2-
methylacyl-CoA racemase were first reported in 3 adults
who presented with a sensory motor neuropathy58 and
later in a 10-week-old infant who had severe fat-soluble
vitamin deficiencies, hematochezia, and mild cholestatic
liver disease.13 Liver histologic findings included choles-
tasis and giant cell transformation with modest inflam-
mation. The infant had the same missense mutation
(S52P) as that described in 2 of the adult patients yet was
seemingly phenotypically quite different.13 Two of the
adult patients had neurologic symptoms but were
asymptomatic until the fourth decade of life, whereas
the other adult was described as having the typical
features of Niemann-Pick type C disease at 18 months
of age and presumably had some liver dysfunction. The
clinical descriptions of these adult patients, in particular
the early history, were too scant to draw conclusions
about the phenotypic differences between the adult and
the early presentation of the 2-methylacyl-CoA race-
mase. It is therefore possible that these adults could have
had undocumented mild liver disease and fat-soluble
vitamin absorption early in life that, if undiagnosed in
infancy, would probably lead to a neuropathy owing to
the tissue accumulation of phytanic and pristanic acids.
In the first infant described with the 2-methylacyl-CoA
racemase deficiency, the liver from a 5½-month-old
sibling, who 2 years previously had died from an intra-
cranial bleed, had been transplanted into a child with
end-stage liver disease.13 Analysis of the urine from the
recipient confirmed the same biosynthetic defect in the
donor liver. Diagnosis of the defect in the infant was
based on urinary, serum, and biliary bile acid analysis by
FAB-MS, GC-MS, and electrospray ionization–tandem
mass spectrometry, which revealed subnormal levels of
primary bile acids and markedly increased concentrations
of cholestanoic (C27) acids, which are characteristically
found as major bile acids of the alligator, other reptiles,
and amphibians.59,60 The mass spectrum and GC pro-
files in this defect resemble closely those observed in
peroxisomal disorders affecting bile acid synthesis, such
as Zellweger syndrome. Fibroblast studies can be used to

further confirm a deficiency in peroxisomal 2-methyl-
acyl-CoA racemase.61 Primary bile acid therapy with
cholic acid has proved effective in normalizing liver
enzymes and preventing the onset of neurologic symp-
toms in the infant; additionally, dietary restriction of
phytanic acid and pristanic acids is likely to be necessary
in the long-term for such patients to prevent neuro-
toxicity from accumulation of these fatty acids in the
brain.

THCA-CoA OXIDASE DEFICIENCY
Several patients have been reported to have side-chain
oxidation defects involving the THCA-CoA oxi-
dase.12,62–65 The clinical presentation differs among
these cases, and although all impact on primary bile
acid synthesis, neurologic disease was the main clinical
feature.12 Whether these are primary bile acid defects or
secondary to single-enzyme defects in peroxisomal
b-oxidation is unclear. Two distinct acyl-CoA oxidases
have been identified in humans.64 The human acyl-CoA
oxidase active on bile acid C27 cholestanoic acid inter-
mediates has been found to be the same enzyme that
catalyzes the oxidation of 2-methyl branched-chain fatty
acids.64 The cDNA of the gene encoding this human
enzyme has been cloned.66 Of the case reports in the
literature of the proposed THCA-CoA oxidase defi-
ciency, interestingly, phytanic and pristanic acids, when
measured, were elevated.12,32,62–65 All had ataxia as a
primary feature of the disease, with its onset occurring at
�3½ years of age. None had evidence of liver disease. It
is possible, with the exception of the patient described by
Clayton and colleagues,12 that these patients had a
2-methylacyl-CoA racemase deficiency, but the analysis
of the cholestanoic acids was not sufficiently detailed to
permit the diastereoisomers of THCA and 3a,7a-dihy-
droxy-5b-cholestanoic acid (DHCA) or pristanic acid to
be measured, which would have helped in the differential
diagnosis. In the case of the patient reported by Clayton
and colleagues, we excluded 2-methylacyl-CoA race-
mase deficiency as an explanation for the clinical pre-
sentation.12 The phenotypic presentation of defects
involving the peroxisomal apparatus can present with a
wide diversity in symptoms that make it difficult to
pinpoint the exact defect involved. In all suspected cases,
analysis of peroxisomal enzymes, pristanic and phytanic
acids, VLCFAs, and plasmalogens should be performed
to complement detailed bile acid analysis.

BILE ACID CoA LIGASE DEFICIENCY AND
DEFECTIVE AMIDATION
The final step in bile acid synthesis involves conjugation
with the amino acids glycine and taurine.20 Hepatic
conjugation is extremely efficient, and negligible
amounts of unconjugated bile acids typically appear in
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bile under normal and cholestatic conditions67 and also
when large doses of an unconjugated bile acid such as
UDCA are administered.68 Two enzymes catalyze the
reactions leading to amidation of bile acids. In the first, a
CoA thioester is formed by the rate-limiting bile acid–
CoA ligase, after which glycine or taurine is coupled in a
reaction catalyzed by a cytosolic bile acid–CoA:amino
acid N-acyltransferase.

A defect in bile acid amidation, presumed to
involve the bile acid–CoA ligase, was described in
patients presenting with fat and fat-soluble vitamin
malabsorption.11 The index case was a 14-year-old
boy of Laotian descent who, in the first 3 months of
life, presented with conjugated hyperbilirubinemia,
elevated serum transaminases, and normal g-glutamyl
transpeptidase. This child also had a form of b-thalas-
semia. Subsequently, additional patients have been
identified who have presented with a history of neo-
natal cholestasis, growth failure, or fat-soluble vitamin
deficiency.

The diagnosis is based on the LSIMS analysis of
the urine and serum and bile, which reveals unique
negative-ion spectra featuring a major peak of mass
(m/z 407) corresponding with unconjugated cholic
acid. In addition, ions characterizing sulfate and glucur-
onide conjugates of dihydroxy and trihydroxy bile acids
were present. There was a complete lack of the usual
glycine and taurine conjugated bile acids, and this was
confirmed after chromatographic separation and GC-
MS. Serum and urinary bile acids were markedly
elevated and comprised predominately cholic and deox-
ycholic acids. The initial patients identified have been
lost to follow-up, making it impossible to ascertain the
molecular genetics of the defect despite the fact that the
cDNAs for both conjugating enzymes have been
cloned.69,70 All recently identified patients with this
defect have all been identified with mutations in the
bile acid–CoA ligase gene.

Carlton et al have described kindred of Amish
descent with mutations in the bile acid–CoA:amino acid
N-acyltransferase (BAAT).71 Patients homozygous for
the 226G mutation had increased serum bile acids and
variable growth failure and coagulopathy without jaun-
dice and normal serum g-GT concentrations. Homo-
zygotes had only unconjugated bile acids in serum, and
heterozygotes had increased amounts of unconjugated
serum bile acids.

Administration of conjugates of the primary bile
acid, glycocholic acid, to 2 recently identified patients
has improved their growth and should correct the fat-
soluble vitamin malabsorption in this defect. The rec-
ognition that genetic defects in bile acid synthesis
are associated with fat-soluble vitamin malabsorption
warrants a more concerted effort to explore this type
of patient population, particularly as conjugated bile
acids in the form of glycocholic acid are available

under a treatment Investigational New Drug applica-
tion (IND).

SIDE-CHAIN OXIDATION DEFECT IN THE
ALTERNATE 25-HYDROXYLATION
PATHWAY
A speculative diagnosis of a defect in side-chain oxida-
tion in the 25-hydroxylation pathway72–74 was proposed
by Clayton and colleagues for a 9-week-old infant
presenting with familial giant cell hepatitis and severe
intrahepatic cholestasis.27 The rationale for the diagnosis
was based on the finding of reduced cholic and cheno-
deoxycholic acids in the serum, concomitant with high
concentrations of bile alcohol glucuronides. These bile
alcohols are not normally found in the plasma of infants
with liver disease. Bile alcohol glucuronides were also
identified as major metabolites in the urine.27 Although
the profile resembled that seen in CTX patients, it was
concluded on the basis of the liver disease (not previously
reported for CTX) that this represented a different side-
chain defect and that it was possibly an oxidation defect
downstream of the 25-hydroxylation step in this minor
pathway for bile acid synthesis. The implications of the
findings are that it could indicate that the 25-hydrox-
ylation pathway, considered of negligible importance in
adults,74 may be an important pathway for infants. This
is speculation, and further studies to prove the exact site
of the defect are required before this is convincing. The
patient was, however, treated with chenodeoxycholic
acid and cholic acid, and this led to normalization in
serum transaminases and suppression in the production
of bile alcohols.

CHOLESTEROL 7a-HYDROXYLASE
DEFICIENCY
Several patients have recently been identified with a
homozygous mutation deletion in the CYP7A1 gene,
and when the cDNA of this mutant was expressed in
vitro in cultured HEK 293 cells, cholesterol 7a-hydrox-
ylase was found to be inactive.75 Bile acid synthesis was
reduced, and upregulation of the alternative sterol
27-hydroxylase pathway presumably compensated for
the reduced synthesis of bile acids via absent cholesterol
7a-hydroxylase activity. Three patients carrying this
mutation were found to have abnormal serum lipids,
but, in contrast with an infant identified with a mutation
in oxysterol 7a-hydroxylase,9 there was no liver dysfunc-
tion in these patients. Instead, the clinical phenotype was
one of markedly elevated total and low-density lipopro-
tein (LDL) cholesterol and premature gallstones in
2 patients and premature coronary and peripheral vas-
cular disease in 1 patient. The elevated serum cholesterol
concentration was unresponsive to HMG-CoA
reductase inhibitor therapy. Interestingly, individuals

INBORN ERRORS OF BILE ACID METABOLISM/HEUBI ET AL 289

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



who were shown to be heterozygous for this mutation
were found to have an above-normal level of serum
cholesterol. The phenotype of this deficiency in choles-
terol 7a-hydroxylase differed significantly from that
expressed in the CYP7A1 knockout mouse model.76

DIAGNOSIS AND TREATMENT OF INBORN
ERRORS IN BILE ACID SYNTHESIS
Accurate identification of inborn errors in metabolism
requires techniques that afford detailed metabolic pro-
files, and for the moment, GC-MS continues to be the
principal confirmatory analytical tool.77–79 Because of
the high cost, technical difficulty, and time-consuming
nature of bile acid analysis by GC-MS, the technique is
outside the scope of most routine clinical laboratories.
Perhaps the most significant advances in mass spectrom-
etry in recent years have been the introduction of FAB-
MS and electrospray mass spectrometry, both of which
are referred to by the generic term LSIMS. These
techniques greatly simplified and extended the scope of
mass spectrometry so that many nonvolatile compounds
can be analyzed rapidly and directly in biologic samples
or simple crude extracts, thereby circumventing the need
for extensive and time-consuming sample pretreatments.
Intact bile acid conjugates are ideally suited to LSIMS,
and negative ionization mass spectra of steroid and bile
acid conjugates can be generated from microliter vol-
umes of urine and blood.2,77,80–86

In healthy individuals, urinary bile acid excretion
is of negligible quantitative importance; consequently,
the mass spectrum obtained is unremarkable, showing
only background ions from the matrix and the presence
of some steroid hormone metabolites. During choles-
tasis, urinary bile acid excretion increases and bile acid
conjugates can be readily detected by the presence of
single intense ions corresponding with the pseudomo-
lecular ([M-H]–) ions (Fig. 2).

With cholestasis, and in the absence of an inborn
error in bile acid synthesis, the ions corresponding with
the glyco- and tauroconjugates of the primary bile acids
appear in the mass spectrum, and the intensity of the
ions is proportional to the degree of cholestasis.2 When
bile acid synthesis is impaired, a unique mass spectrum is
obtained, revealing ions corresponding in mass to the
accumulated intermediates and/or metabolites with
structural characteristics of the substrates proximal to
the enzyme block. Positive identification of these bile
acids generally requires GC-MS analysis after prior
hydrolysis of the conjugates and preparation of volatile
derivatives, and this is a time-consuming technique. The
potential for rapid screening of bile acid defects has been
realized with the electrospray ionization–mass spectrom-
etry, and bile acid metabolites can be detected in dried
blood spots obtained from newborns for the Guthrie
test.45 This approach allows fast throughput of samples

for screening, but definitive diagnosis of suspected in-
born errors in bile acid synthesis is still likely to be
complemented with GC-MS and, for the moment, will
be restricted to specialist laboratories. Now that many of
the genes encoding the enzymes involved in bile acid
synthesis have been cloned, the application of molecular
techniques to sequence DNA from patients identified by
mass spectrometry as having bile acid synthetic defects is
an important complementary tool and should prove of
value in prenatal diagnosis in these familial diseases.

Although it is clear that FAB-MS screening may
be the best means to identify inborn errors of bile acid
metabolism, the turnaround time for the assay is some-
times slow. As a screening test, in assessing infants with
conjugated hyperbilirubinemia, it may be practical to
measure serum bile acids by a standard laboratory tech-
nique that will identify primary and secondary bile acids
but not the metabolites typically seen in the inborn errors
of bile acid metabolism. If the serum bile acids by this
technique are elevated, one can safely assume one has
ruled out the more life-threatening defects such as 3b-
hydroxy-C27 steroid oxidoreductase deficiency, D4-oxo-
5b reductase deficiency, and oxysterol 7a-hydroxylase
deficiency. This simple screen would not necessarily rule
out defects of amidation, which typically present with fat
and fat-soluble vitamin malabsorption, or 27-hydroxy-
lase deficiency, and FAB-MS would be essential for
screening. It is also essential to note that if ursodeox-
ycholic acid is being administered during the screening
with either the urine FAB-MS or conventional serum
bile acid methods, the results may be difficult to interpret
so all specimens should be collected after a period of �7
to 10 days off UDCA.

Early diagnosis of inborn errors in bile acid syn-
thesis is important because if untreated, these conditions
may be fatal. The possibility of bile acid synthetic defects
in older children, and even in some adults with idio-
pathic forms of liver disease, should also be considered
given that many cases of 3b-hydroxy-C27-steroid oxi-
doreductase have been found in older children and
teenagers presenting with late-onset chronic cholestasis.

The earliest experience with feeding a primary bile
acid was for the treatment of CTX,87,88 even though this
is not a condition that is manifested as liver disease. Long-
term treatment with chenodeoxycholic acid (750 mg/day)
normalized plasma cholestanol concentrations,88,89 mark-
edly reduced the urinary excretion of bile alcohols,2,88,90

and improved the clinical condition.90–92 Treatment of
these patients may be more effective if bile acid is
combined with an HMG-CoA reductase inhibitor be-
cause this combination has a greater effect in lowering
plasma cholestanol.93,94

Oral bile acid therapy was found to be an effective
means of treating patients with the 3b-hydroxy-C27-
steroid oxidoreductase deficiency, D4-3-oxosteroid 5b-
reductase deficiency, and 2-methylacyl-CoA racemase
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deficiency.37,95,96 Cholic acid, available under a treat-
ment IND, is the therapy of choice and has been shown
to be effective in a dose range of 10 to 15 mg/kg body
weight/day. UDCA has proved helpful for some patients
with the 3b-hydroxy-C27-steroid oxido reductase defi-
ciency, lowering serum transaminases and improving
liver histology.38 However, it does not suppress the
synthesis of atypical 3b-hydroxy-D5 bile acids, which
over the long-term is important given that these bile
acids are cholestatic and interfere with canalicular bile
acid transport.15,51 When UDCA was used in combina-
tion with cholic acid, it was our experience that the
effectiveness of cholic acid in downregulating endoge-
nous bile acid synthesis was reduced, and this we believe
is because UDCA during its enterohepatic recycling
competitively inhibits the ileal uptake of cholic acid.

The success of this therapeutic approach for
patients with these 3 defects,37,38,95,96 is evident from
the few treatment failures, and several patients have
avoided the need for orthotopic liver transplant even
though they were wait-listed for a donor liver. One
notable failure was the treatment of the only patient
found to have a mutation in the oxysterol 7a-hydrox-
ylase gene.9 Cholic acid therapy was unable to down-
regulate the synthesis of the oxysterols and hepatotoxic
3b-hydroxy-D5-monohydroxy bile acids, and this pa-
tient eventually underwent transplant.9

Finally, what can be offered to patients with a bile
acid conjugation (amidation) defect11? In these cases,
they are able to make unconjugated bile acids, mostly
cholic acid, yet they fail to absorb fat-soluble vitamins.
Restoring the conjugated bile acid pool seems logical,
and this is possible by administration of a conjugated bile
acid such as taurocholate or glycocholate. Alternatively,
cholylsarcosine may also be helpful because this has been
shown to improve fat absorption in a patient with short-
bowel syndrome.97 Recent experience with glycocholic
acid suggests that it is an effective therapy for this
condition; however it is only available under a treatment
IND.98

CONCLUSION
Inborn errors in bile acid synthesis represent a specific
category of metabolic liver disease. These disorders have
a significant effect on gastrointestinal physiology and
function because of the key role that bile acids play in
maintaining the enterohepatic circulation and in facili-
tating the absorption of fat and fat-soluble vitamins. At
the Cincinnati Children’s Hospital Medical Center,
more than 130 patients have been identified with defects,
accounting for 1% to 2% of the cases of unexplained liver
disease in infants and children. Early diagnosis is im-
portant because the liver disease and fat-soluble vitamin
malabsorption associated with these inborn errors can be
successfully treated medically, thereby avoiding ortho-

topic liver transplant in what may otherwise be progres-
sive and fatal conditions when undiagnosed or untreated.
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ABBREVIATIONS
BAAT bile acid–CoA:amino acid N-acyltrans-

ferase
cDNA complementary DNA
CoA coenzyme A
CTX cerebrotendinous xanthomatosis
CYP7A1 cholesterol 7a-hydroxylase
DHCA 3a,7a-dihydroxy-5b-cholestanoic acid
FAB-MS fast atom bombardment–mass spectro-

metry
g-GT gamma-glutamyl transpeptidase
GC-MS gas chromatography–mass spectrometry
HMG-CoA hydroxymethylglutaryl–coenzyme A
IND Investigational New Drug application
LSIMS liquid secondary ionization mass spec-

trometry
LDL low-density lipoprotein
THCA trihydroxycholestanoic acid
UDCA ursodeoxycholic acid
VLCFAs very long chain fatty acids
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