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Abstract: Genetic epidemiology is the study of genetic factors and their influence on health and 

disease. Traditionally, these studies have been based on familial aggregation, segregation, or linkage 

analysis, mainly allowing the study of monogenic disorders. Advances in biotechnology have made 

techniques such as genome-wide association studies and next-generation sequencing possible, 

allowing more complex studies. In addition to the completion of large consortia projects, such as the 

Human Genome Project, ENCODE, and the 1000 Genome Project, these techniques make it possible 

to explain a higher proportion of the heritability in polygenic disorders compared to previous 

techniques. Here, we provide an overview of approaches to genetic epidemiology and how 

technological improvements have influenced experimentation in this area. These improvements have 

led genetic epidemiology to unprecedented advances, being excellent tools for understanding the 

genetic variability underlying complex phenotypes. 
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1. Introduction  

Genetic epidemiology studies how genetic factors determine health and disease in families and 

populations and their interactions with the environment. Classical epidemiology usually studies 

disease patterns and factors associated with disease etiology, with a focus on prevention, whereas 
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molecular epidemiology measures the biological response to environmental factors by evaluating the 

response in the host (e.g., somatic mutations and gene expression) [1]. 

Interest in how the environment triggers a biological response started in the mid-nineteenth century, 

but approximately 100 years passed until epidemiologists and genetic epidemiologists had adequate 

analytical methods at their disposal to understand how genes and the environment interact [2]. The 

beginning of genetic epidemiology as a stand-alone discipline started with Morton in the 1980s with 

one of the most accepted definitions: “a science which deals with the etiology, distribution, and control 

of disease in groups of relatives and with inherited causes of disease in a population” [3]. However, 

epidemiology is clearly a multidisciplinary area that examines the role of genetic factors and 

environmental contributors to disease. Equal attention has to be given to the differential impact of 

environmental agents (familial and non-familial) on different genetic backgrounds [4] to detect how 

the disease is inherited, and to determine related genetic factors. 

With advances in molecular biology techniques in the last 15 years, our ability to survey the 

genome, give a functional meaning to the variants found, and compare it among individuals has 

increased dramatically [5]. Although there is still a long way to go to fully understanding rare diseases 

and how genetic variability influences phenotype, these technological advances allow more in depth 

biological knowledge of epidemiology [6] (Figure 1). 

 

Figure 1. Relative importance of each methodology over time. 

Here, we present an overview of approaches in genetic epidemiology studies, ranging from 

classical family studies/segregation analysis and population studies to the more recent genome-wide 

association studies (GWAS) and next-generation sequencing (NGS), which have fueled research on 

this area by allowing more precise data to be obtained in less time. 

2. Classical epidemiology 

Genetic epidemiology was born in the 1960s as a combination of population genetics, statistics 

and classical epidemiology, and applied the methods of biological study available at that time. 

Generally, the studies included the following steps: establish genetic factor involvement in the disorder, 

measure the relative size of the contribution of the genetic factors in relation to other sources of 

variability (e.g., environmental, physical, chemical, or social factors), and identify the responsible 

genes/genomic areas. For that, family studies (e.g., segregation or linkage analysis) or population 

(association) studies are usually performed. Approaches include genetic risk studies to determine the 

relative contribution of the genetic basis and ambience by utilizing monozygotic and dizygotic twins [7]; 

segregation analyses to determine the inheritance model by studying family trees [8]; linkage studies 
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to determine the coordinates of the implicated gene(s) by studying its cosegregation; and association 

studies to determine the precise allele associated with the phenotype by using linkage disequilibrium 

analysis [9].  

2.1. Genetic risk studies 

Genetic risk studies require a family-based approach in order to evaluate the distribution of traits 

in families and identify the risk factors that cause a specific phenotype. Traditionally, twin studies have 

been used to estimate the influence of genetic factors underlying the phenotype by comparing 

monozygotic (sharing all of their genes) and dizygotic (sharing half of their genes) twins. In order to 

standardize the measurement of similarity, a concordance rate is used. Monozygotic twins generally 

being more similar than dizygotic twins is usually considered evidence of the importance of genetic 

factors in the final phenotype, but several studies have questioned this view [10]. Importantly, twin 

studies make some preliminary assumptions, such as random mating, in which all individuals in the 

population are potential partners, and that genetic or behavioral restrictions are absent, meaning that 

all recombinations are possible [11]. Twin studies also assume that the two types of twins share similar 

environmental experiences relevant to the phenotype being studied [12]. Concordance rates of less 

than 100% in monozygotic twins indicate the importance of environmental factors [13,14]. 

2.2. Segregation analysis 

The objective of segregation analysis is to determine the method of inheritance of a given disease 

or phenotype. This approach can distinguish between Mendelian (i.e., autosomal or sex-linked, 

recessive or dominant) and non-Mendelian (no clear pattern [15]) inheritance patterns. For the non-

Mendelian patterns, factors interfering with genotype-phenotype correlation, such as incomplete 

penetrance, variable expressivity and locus heterogeneity, and the variable effect of environmental 

factors can complicate the segregation analysis [16]. Thus, families with large pedigrees and many 

affected individuals can be particularly informative for these studies [17]. 

2.3. Linkage studies 

Linkage studies aim to obtain the chromosomal location of the gene or genes involved in the 

phenotype of interest. Genetic Linkage was first used by William Bateson, Edith Rebecca Saunders, 

and Reginald Punnett, and later expanded by Thomas Hunt Morgan [18]. One of the main concepts in 

linkage studies is the recombination fraction, which is the fraction of births in which recombination 

occurred between the studied genetic marker and the putative gene associated with the disease. If the 

loci are far apart, segregation will be independent; the closer the loci, the higher the probability of 

cosegregation [19,20]. Classically, the percent of recombinants has been used to measure genetic 

distance: one centimorgan (cM), named after the geneticist Thomas Hunt Morgan, is equal to a 1% 

chance of recombination between two loci. With this information, linkage maps can be constructed. A 

linkage map is a genetic map of a species in which the relative positions of its genes or genetic markers 

are shown based on the frequencies of recombination between markers during the crossover of 

homologous chromosomes [21]. The more frequent the recombination, the farther both loci are. 

Linkage maps are not physical maps, but relative maps. Translating the measure into a physical unit 
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of distance, 1 cM is approximately 1 million bases [22]. 

Linkage analysis is based on the likelihood ratio, also called the logarithm of odds (LOD) score, 

which is the statistical estimate of whether two genes are likely to be located near each other on a 

chromosome and, therefore, their likelihood of being inherited together. This analysis can be either 

parametric (if the relationship between genotype and phenotype is assumed to be known) or non-

parametric (if the relationship between phenotype and genotype is not established) [23]. 

2.4. Association studies 

Association studies, which are frequently mixed up with linkage studies, focus on populations. 

This approach tests whether a locus differs between two groups of individuals with phenotypic 

differences. The loci are usually susceptibility markers that increase the probability of having the 

phenotype or disease, but for which there is not necessarily linkage, as it can be neither necessary nor 

sufficient for phenotype/disease expression [24]. Due to the increased number of individuals in such a 

study, the statistical power of this approach is greater than that of linkage analysis and more prone to 

detect genes with a low effect on the phenotype [25].  

3. Molecular epidemiology 

Although the current approaches to epidemiology studies rely on those discussed above, advances 

in biotechnology have brought significant changes to genetic epidemiology and how these studies are 

performed. Technological improvements have accelerated data gathering and interpretation [5], 

broadening our understanding of disease etiology. 

3.1. GWAS analysis 

In the last 10 years, GWAS have transformed the world of genetic epidemiology, with a large 

number of research studies and publications on complex diseases, allowing the identification of a great 

number of phenotype-associated genomic loci [26]. Typically, linkage studies in combination with 

information from family pedigrees are used to broadly estimate the position of the disease-associated 

loci [27]. With the advent and popularization of array technology, GWAS have become a widespread 

tool for genetic epidemiology studies. This approach allows the simultaneous and highly accurate 

interrogation of millions of genomic markers at a reasonable cost and speed. The first GWAS was 

published by Klein et al [28], and to date more than 2000 articles have been published based on this 

methodology [29]. These studies allow the determination of thousands of disease-associated genomic 

loci, which could serve as risk predictors if a large enough discovery sample size is provided [30]. In 

addition, these dense, genome-wide markers allow a reasonable approximation to understand narrow-

sense heritability [31]. 

In order to find a genetic association with a given phenotype, GWAS need the effect of the 

variant(s) to be notorious and/or to have strong linkage disequilibrium with previously genotyped 

markers [32]. GWAS are mostly useful under the common-disease common-variant hypothesis [33]. 

Therefore, this approach may not be adequate for some common diseases for which rare variants with 

additive effects are the underlying mechanism [34].  

GWAS have been useful for obtaining genomic information about the basis of several diseases, 
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but they have some limitations. First, as genetic markers are only being surveyed in this approach, it 

is difficult to interpret the results, partially due to our current lack of understanding of genomic 

function. The use of non-random associations of variants at different loci (i.e., linkage disequilibrium) 

as a correlation tool also impacts the interpretation of results [35]. GWAS identify blocks of variants, 

not necessarily the real functional variants [36]. Second, and related to the first point, we miss part of 

the heritability because of a gap between the variance explained by the significant single nucleotide 

polymorphisms (SNPs) identified and the estimated heritability [37]. This could be explained, at least 

partially, by the limited info obtained from the genome by GWAS. Small insertions and deletions, large 

structural variants, epigenetic factors, gene interactions, and gene by environment interactions could 

be playing a role in that [38-40]. 

3.2. Next-generation sequencing 

In the last 8 years, the advent of NGS has helped fill the gap in understanding the genome. As 

with sequencing each individual base is interrogated, it may help in screening rare variants. 

NGS promises great opportunities for finding the answers to questions raised by array technology, 

as it has the potential to provide additional biological insight into disease etiology. As we move into 

an era of personalized medicine and complex genomic databases, the demand for new and existing 

sequencing technologies is constant. Although it is not yet possible to routinely sequence an individual 

genome for $1000, novel approaches are reducing the cost per base and increasing throughput on a 

daily basis [41,42]. Moreover, advances in sequencing methodologies are changing the ways in which 

scientists analyze and understand genomes, whereas the results that they yield are being disseminated 

widely through science news magazines [43].  

Advances in knowledge on the genetic basis of pathologies have changed the way in which such 

entities are understood. Thus, diseases have gone from being individual-specific to a familial 

phenomenon in which genetic alterations (mutations) can be genealogically traced to the molecular 

level.  

NGS can be used to identify several types of alterations in the genome, the most common of which 

are SNPs, structural variants, and epigenetic variations on very large regions of the genome [44-48]. 

Because of the capacity of NGS to detect many types of genomic and epigenetic variations on a 

genome scale in a hypothesis-free manner with great coverage and accuracy, it is starting to explain 

the missing heritability gap left by GWAS [37,49]. With these tools, it is currently possible to obtain a 

more comprehensive view of how phenotypic variance works in genetic epidemiology. 

NGS allows researchers to study all of the SNPs in each individual directly [50]. This is a large 

amount of information, which requires large data analysis resources. In whole genome and whole 

exome analysis, the number of rare variants that is revealed can be overwhelmingly large. Most of 

these variants have no known functional relevance. Therefore, it is not yet easy or straightforward to 

filter and identify the causal variants, even after accurate variant calling has been performed. Targeted 

resequencing of candidate genes could be a feasible option for avoiding the high number of variants 

obtained by whole genome and whole exome sequencing in cases in which there is already a strong 

knowledge basis regarding phenotype etiology, but the number of genes is still large for traditional 

Sanger sequencing [51-53]. This type of study significantly reduces analysis costs, as samples could 

be multiplexed for the analysis, and simultaneously reduces the number of variants found in the regions 

of interest. Therefore, the analysis will be comparatively easier and the amount of information given 
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per individual less, though more focused on targeted genes. Another option would be to sequence 

family trios in order to allow filtering of shared variants and speed up the identification of de novo 

mutations on the affected individual [54-57]. 

Thus, NGS can be applied to the study of both rare and common diseases. For rare monogenic 

diseases, genes can be directly sequenced and variants identified with a small sample size [58-60]. 

Depending on the genetic heterogeneity, finding the involved allele could still be challenging. Rare 

diseases are usually identified by symptoms, which could be shared by completely different diseases, 

as the mechanisms underlying the phenotype could be different. This is one of the most difficult points 

when analyzing rare diseases with genetic heterogeneity. For these cases, larger sample sizes are 

usually required in order to find the genomic loci implicated in the phenotype etiology [6,55,61-64]. 

Time of appearance and disease severity are often ruled by the residual enzymatic activity of mutated 

proteins and the influence of the individual genomic background. Therefore, the type of causal variants 

could be diverse (e.g., coding, splicing, non-coding, missense, epigenetic alterations), as well as the 

influence on final protein activity. To make it even more complex, those alterations could be shared 

between individuals with different phenotypes depending on the penetrance of the variant, background, 

or environment [65]. 

3.3. Functional annotation 

As advances in technology imply generating a larger amount of data, genomic annotation is 

crucial for variant prioritization and the interpretation of results. With the use of adequate tools, random 

and systematic noise, false positives, and false negatives can be reduced, easing the final analysis. 

Study design can also influence the analysis, as it is a compromise between the amount of data to be 

generated and the scope of the study; whole genome sequencing is expected to provide hundreds of 

thousands of variants, most with yet unknown significance, in intronic or non-coding regions. Whole 

exome sequencing will still result in a large number of variants, but the annotation of exonic regions 

is much more curated than that of intronic regions. In the case of a gene-panel targeted study, the list 

of variants could be reduced to several hundred, depending on the number of genes included, making 

the analysis and filtering easier, but the data will be limited to the previously selected genes. 

The Human Reference Genome established in 2001 [66,67] and the achievements of large 

sequencing projects such as the 1000 Genome Project [68] are catalyzing advances in human genetics. 

Large samples obtained with these projects allow adequate statistical power to shed light into rare 

variant effects [6,64,69] and empower the usage of analysis tools for automatic variant annotation. 

Methods for variant analysis and effect prediction have been developed in order to speed up this 

process. A complete list of software and tools is available online [70]. These methods focus mostly on 

coding regions in the human genome. Although 98% of the human genome is non-coding [71], these 

regions are less well known [72]. Thus, there are annotation tools extending the scope to the non-

coding and regulatory areas, such as HaploReg [73], RegulomeDB [74], CADD [75], VariantDB [76], 

GWAVA [77], and ANNOVAR [78], among others [79]. However, the final judgment regarding 

potential variants is in the hands of the user.  

Large consortia, such as the ENCODE project, have generated a large amount of information on 

the human genome [80], including information on transcriptional binding sites, histone modifications, 

and DNA methylation, in order to explain the influence on overall phenotype. 
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4. Conclusion 

Technological advances are playing a crucial role in the evolution of genetic epidemiology as a 

discipline, as they allow us to address more complex biological questions. The spread and 

popularization of NGS due to its reduction on the cost per sequenced base is democratizing access to 

these technologies, allowing researchers to continue on the path opened by previous tools, such as 

GWAS. This has been observed by the increasing number of research groups and publications using 

these technologies.  

Currently, NGS has the potential to move genetic epidemiology forward, as it allows the 

assessment of common and rare SNPs, as well as other diverse types of genomic and epigenetic 

variations using a hypothesis-free whole genome analysis. The elucidation of genome variability for 

increasing our understanding of living systems is crucial.  

Nonetheless, advances would not be possible without the appropriate mathematical algorithms to 

transform the sequences into meaningful information or without databases to annotate the identified 

variants. To fill this gap in information, large programs have been established (1000 Genomes Project 

consortium [81] and the NHGRI Genome Sequencing Program (GSP) [82]) to provide annotation data 

on the variations in the human genome. 

Overall, new technologies such as GWAS and NGS constitute an opportunity for researchers to 

understand the genetic variability underlying complex phenotypes and provide unprecedented tools in 

their investigation.  
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