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ABSTRACT

Objective: The present study aims to investigate the influence of presence and shape of cervical lesions on biomechanical 
behavior of mandibular first premolar, subjected to two types of occlusal loading using three‑dimensional (3D) finite element 
method (FEM). Materials and Methods: 3D models of the mandibular premolar are created from a micro computed 
tomography X‑ray image: model of sound mandibular premolar, model with the wedge‑shaped cervical lesion (V lesion), 
and model with saucer‑shaped cervical lesion (U lesion). By FEM, straining of the tooth tissues under functional and 
nonfunctional occlusal loading of 200 (N) is analyzed. For the analysis, the following software was used: CTAn program 
1.10 and ANSYS Workbench (version 14.0). The results are presented in von Mises stress. Results: Values of calculated 
stress in all tooth structures are higher under nonfunctional occlusal loading, while the functional loading is resulted in 
homogeneous stress distribution. Nonfunctional load in the cervical area of sound tooth model as well as in the sub‑superficial 
layer of the enamel resulted with a significant stress (over 50 [MPa]). The highest stress concentration on models with lesions 
is noticed on the apex of the V‑shaped lesion, while stress in saucer U lesion is significantly lower and distributed over wider 
area. Conclusion: The type of the occlusal teeth loading has the biggest influence on cervical stress intensity. Geometric 
shape of the existing lesion is very important in the distribution of internal stress. Compared to the U-shaped lesions, 
V-shaped lesions show significantly higher stress concentrations under load. Exposure to stress would lead to its progression.
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INTRODUCTION

Occlusal biomechanical forces cause microstructural 
loss of tissue in the cervical tooth region. This type of 
tissue loss is marked as abfraction by Grippo.[1] Tensile 
and compressive forces of cervical tooth area lead to 
bonds interrupting among hydroxylapatite crystals 
of enamel and dentin, allowing penetration of small 
molecules, which are preventing re‑establishment 
of bonds.[2] Abfraction lesions are characterized by a 
wedge‑shaped defect of tissue, bordered with sharp 
internal and external edges [Figure 1].

Each tooth tissue has different mechanical properties 
and morphology, which makes analysis of distribution 
process and stress concentration alongside these 
structures very complex.[3]

Yettram et al. describe stress distribution alongside the 
enamel “as a cap around the tooth,” which is finally 
concentrated at the cement‑enamel junction.[4]

Incidence of noncarious cervical lesion increases with 
patient’s age.[5] The highest prevalence of noncarious 
cervical lesions is identified on mandibular first 
premolar.[5‑7]

The aim of this study was to explore stress distribution 
inside tooth structures and abfraction lesions with 
different morphologies under various loading conditions.

MATERIALS AND METHODS

Mandibular first premolar was scanned by micro 
computed tomography (µCT) scanner (SkyScan 
1076 Kontich, Belgium)[8] and the obtained images 
were reconstructed into transaxial sections using 
Nrecon  and  CTAn  program software (SkyScan). 
Approximately, 570 horizontal sections (resolution up 
to 758 × 758 [px]) were chosen for the reconstruction 
of three‑dimensional (3D) models [Figure 2].

A volumetric 3D CAD tooth model was created 
using program packages  MATLAB (MathWorks, 
Inc., Natick, USA) and Creo  Parametric  1.0 CAD 
software. The resulting model consisted of enamel, 
dentin, pulp, periodontal ligament, and reconstructed 
segment of alveolar bone [Figure 3]. In comparison 
to adjacent structures, Young’s modulus of pulp is 
negligibly small, therefore pulp was modeled as an 
empty space. Periodontal ligament was created as a 
membrane of 0.3 mm thin.[9]

To compare the stress distribution in lesions with 
different geometry, two types of cervical lesions were 
modeled; the wedge‑shaped lesion – V lesion [Figure 4] 
and saucer‑shaped lesion – U lesion [Figure 5].[10]

The models were exported to finite element analysis 
software ANSYS Workbench (14.0) and a finite element 
mesh of the models is made [Figure 6]. Properties of 
the tooth tissues used in the research are given in 
Table 1.[9,11,12]

Since the intensity of masticatory force and teeth 
contact surface is extremely variable, two occlusal 
contact types were chosen to show the effects of a 
favorable and unfavorable situation for the tooth and 
surrounding tissues.

For the purpose of presenting the action of functional 
occlusal load, occlusal contacts are simulated on 
regions that imitate teeth contacts in central occlusion 
[Figure 7a]. In addition to this, nonfunctional load 
is simulated on the external buccal cusp side, at 40° 
angle [Figure 7b].[12,13] Values of the mentioned load 
were 200 (N).[14‑16]Figure 1: Abfraction lesions [5]

Figure 2: Micro computed tomography images of the mandibular first premolar[5]
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Following steps were processing (finite elements 
method [FEM] calculation of tooth tissue straining) and 
postprocessing (result analysis by stress distribution 
criteria). To record the complex stress measured in 
(MPa), von Mises stress (VMS) ‑ the hypothesis of the 
highest distortion energy was used. VMS determines 
the total of resulting stress in every point of the 
observed object – tooth element.

RESULTS

Results are presented in the form of images with 
the stress distribution presented as a color scale and 
numeric values obtained in (MPa).

The highest stress values were seen in the crown and 
the cervical tooth region. Calculated stress values 
were higher with eccentric occlusal forces in all tooth 
tissues.

The calculated VMS on the sound tooth in the cervical 
region under functional load measured up to 12 (MPa) 
[Figure 8a], while the stresses in the same area under 
eccentric load are significantly higher and were over 
50 (MPa) [Figure 8b].

On the sagittal section of the cervical tooth area, the 
highest stress was observed along the dentino‑enamel 
junction (DEJ). The values of calculated VMS in the 
region of sub‑superficial enamel under nonfunctional 
load of 200 (N) range up to 60 (MPa), which is 5 times 
higher in comparison to the values measured in 
superficial enamel [Figure 9].

The sound model showed higher stress distribution 
pattern for both loading types compared with models 
with lesions. On the model with V‑shaped lesions, 
discontinuity of the enamel and dentin resulted 
in a strain increase, as well as stress concentration 
around the apex/bottom of the lesion. Values of the 
VMS on the apex/bottom of the wedge lesion are 
extremely high and measured up to 266.13 (MPa) 
under nonfunctional load [Figures 10b and 11a] and 
93.24 (MPa) under functional load [Figures 10a].

Values of VMS on the bottom of U‑shaped lesion 
were up to 16 (MPa) under functional load 
[Figure 12a] and 55 (MPa) under nonfunctional load 
[Figures 11b and 12b]. Higher values of strain up to 
55 MPa under functional load and 180 (MPa) under 
nonfunctional load were measured with the saucer 

Figure 3: Three‑dimensional volumetric tooth tissue models 
reconstructed from micro computed tomography images; enamel, 
dentin, pulp, periodontal ligament, and reconstructed segment of the 
alveolar bone[6]

Figure 4: V‑shaped lesion, appearance on the three‑dimensional tooth 
model, and lesion dimensions

Figure 5: U‑shaped lesion, appearance on the three‑dimensional tooth 
model, and lesion dimensions

Figure 6: Three‑dimensional meshed models

Table 1: Tooth tissue properties
Young’s 

modulus (Mpa)
Poisson’s 

ratio
Literature 

source
Enamel 84,000 0.30 9
Dentin 18,600 0.31 9
Periodontal ligament 50 0.49 11
Alveolar bone 13,800 0.26 12
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lesion only on the mesial and distal side of the lesion, 
where the enamel inserts with its sharp edges.

DISCUSSION

The biomechanics of complex systems, such as a 
tooth, requires application of complex research 
methods. Structure analyses of such systems must 
fulfill high criteria of accuracy and preciseness. The 
FEM used in this research is an adequate method for 
the biomechanical behavior prediction of the tooth 
under load.[17] The models in this research are complex 
and accurate, not only because of the 3D structure, 
but also due to the large number of elements and 
nodes of which they are composed, as well as the fact 
that they are gained from a µCT image that allowed 

a reproduction of the smallest morphological details 
[Figure 2].

The research tested the action of two types of 
occlusal loading on a model of sound tooth, model 
with wedge‑shaped cervical lesion, i.e., V lesion 
[Figure 4] and model with saucer‑shaped cervical 
lesion, i.e., U lesion [Figure 5].

This research showed that under eccentric forces, 
stress values on tested models were higher in all 
tooth tissues.

Occlusal stress is commonly reflected in the cervical 
tooth region, which is especially noticeable with the 
action of nonfunctional occlusal forces. Calculated 
VMS in the cervical tooth area under axial load 
measured up to 12 (MPa), [Figure 8a], whereas the 
stresses in the same part of the tooth under paraxial 
load are significantly higher and measured up to 
60 (MPa) [Figure 8b]. Studies of Borcic et al.,[14] Yaman 

Figure 9: Distribution of von Mises stress on the sagittal section of the 
superficial and sub‑superficial enamel of sound tooth model under 
nonfunctional load of 200 (N)[5]

Figure 7: Type of simulated occlusal contacts in (a) central occlusion 
(b) laterotrusion[5]

ba

Figure 12: Distribution of von Mises stress on the sagittal section of 
(a) V‑shaped lesion and (b) U‑shaped lesion and surrounding tooth 
tissues under nonfunctional load of 200 (N)

ba

Figure 11: Distribution of von Mises stress in the U‑shaped lesions 
under (a) functional and (b) nonfunctional load of 200 (N)

a b

Figure 10: Distribution of von Mises stress in the V‑shaped lesions 
under (a) functional and (b) nonfunctional load of 200 (N)

a b

Figure 8: Distribution of von Mises stress at the cervical part of the 
tooth under (a) functional and (b) nonfunctional load of 200 (N)[5]

a b
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et al.,[18] and Rees and Hammadeh[19] reported that 
tensile stress values on the buccal aspect of the cervical 
region range from 60 to 90 (MPa).

Rees and Hammadeh analyzed the mechanisms of 
forming abfraction lesions and presented a theory of 
a possible undermining of the enamel due to stress 
concentration on the DEJ. [19]  Results of our research 
confirmed the aforementioned theory, since the values 
of calculated stress in the cervical part of the tooth were 
5 times higher in the sub‑superficial compared to the 
superficial region of the enamel [Figure 9]. This indicates 
that breaking of the bonds between enamel prisms 
might occur in these layers exactly. Afterward, cervical 
lesion can progress through erosion and abrasion.

The results of this study demonstrated that the 
geometric shape of the lesions is very important in 
the distribution of internal stress in the tooth. On the 
model with V‑shaped lesion, the enamel and dentin 
discontinuity resulted in strain increase, as well as 
in stress concentration around the apex of the lesion. 
Stress values on the apex/bottom of the V lesion are 
extremely high and measures up to 266.13 (MPa) under 
paraxial load [Figures 10b and 12a] and 93.24 [MPa] 
under axial load [Figures 10a and 12b]. The results of 
analyses showed that the bottom of cervical lesions 
concentrated stress under load, which clearly indicates 
that their further exposure to stress would lead to its 
deepening.

Stress values on the bottom of the U‑shaped lesion 
under nonfunctional load measures up to 55 (MPa) 
[Figures 11b and 12b], which is 5 times lower 
comparing with V‑shaped lesions. Higher values 
of strain, up to 180 (MPa), were calculated with the 
saucer lesion only in the areas where the enamel 
inserts with its sharp edges.

According to these results, it can be concluded 
that the geometric shape of the lesion plays an 
important role in the distribution of the internal 
stress of the tooth. Lesions with emphasized 
geometric discontinuity (V‑shaped lesions) result 
in high strain concentration, whereas lesions with 
rounded contours (U‑shaped lesions) concentrate 
less strain.

The results obtained in this study can be important 
in clinical practice because they open a possibility 
of considering lesions remodeling with extremely 
sharp geometry into rounded lesions during their 
restoration. A use of timely therapy could prevent 
further tooth tissue loss.

CONCLUSIONS

1.	 The type of the teeth loading has the biggest 
influence on stress intensity. Eccentric occlusal 
forces in all tooth tissues caused higher stress 
values on the tested models

2.	 Occurrence of significant stress in the cervical part 
of the sound tooth model is caused by eccentric 
occlusal load. Stress is almost 5 times higher in 
the sub‑superficial layer of the cervical enamel in 
comparison to the superficial enamel

3.	 Geometric shape of the lesion is very important 
in the distribution of internal stress in hard dental 
tissues. Compared to the U‑shaped lesions, 
V‑shaped lesions show significantly higher stress 
concentrations under load. Therefore, it could be 
concluded that their further exposure to stress 
would lead to its progression

4.	 This research provides a good insight into stress 
distribution in one moment of tooth loading. 
Limitation of this study is that the acting force is 
assumed as a static, not as a dynamic process, what 
it is in reality.
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