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Summary 
Objective: Rigorous human-computer interaction (HCI) design methodologies have not traditionally 
been applied to the development of clinical trial participant tracking (CTPT) tools. Given the frequent 
use of iconic HCI models in CTPTs, and prior evidence of usability problems associated with the use of 
ambiguous icons in complex interfaces, such approaches may be problematic. Presentation Discovery 
(PD), a knowledge-anchored HCI design method, has been previously demonstrated to improve the de-
sign of iconic HCI models. In this study, we compare the usability of a CTPT HCI model designed using 
PD and an intuitively designed CTPT HCI model. 
Methods: An iconic CPTP HCI model was created using PD. The PD-generated and an existing iconic 
CTPT HCI model were subjected to usability testing, with an emphasis on task accuracy and comple-
tion times. Study participants also completed a qualitative survey instrument to evaluate subjective sa-
tisfaction with the two models. 
Results: CTPT end-users reliably and reproducibly agreed on the visual manifestation and 
semantics of prototype graphics generated using PD. The performance of the PD-generated ico-
nic HCI model was equivalent to an existing HCI model for tasks at multiple levels of complexity, and 
in some cases superior. This difference was particularly notable when tasks required an understanding 
of the semantic meanings of multiple icons. 
Conclusion: The use of PD to design an iconic CTPT HCI model generated beneficial results and im-
proved end-user subjective satisfaction, while reducing task completion time. Such results are desir-
able in information and time intensive domains, such as clinical trials management. 
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1. Introduction and Background 

Clinical trials are an essential component of the translational research cycle, supporting the genera-
tion of knowledge and evidence necessary to enable improvements in patient care and public 
health. As a result of this important role, increasing attention has been focused on improving clini-
cal research and by extension clinical trial productivity [1-3]. Reports concerning issues that serve 
as impediments to the efficient conduct of clinical trials have focused on both the complexity of 
workflows and processes executed by clinical investigators and research staff, and socio-technical 
and usability factors associated with clinical research information management systems [4-6]. A 
particular aspect of the clinical trials workflow that is frequently cited as a problem is the ability to 
effectively track participant compliance with complex protocol schemas (e.g., schedules of interven-
tions, encounters, and data collection requirements). Participant attrition as a result of protocol 
noncompliance is a well-known source of increased costs, delayed completion times, and biased 
data, and is therefore extremely undesirable [7]. Numerous information technology (IT) applica-
tions and approaches intended to support study participant tracking have been developed to ad-
dress this common problem facing clinical trial conduct. 

We define a clinical trial participant tracking (CTPT) tool as a software application that provides 
passive and/or active decision support concerning the adherence of a given clinical trial participant 
to a schedule of tasks or events that is required during the course of a clinical trial [8, 9]. Such 
CTPT tools can take many forms, from alerting mechanisms incorporated into clinical trial man-
agement systems or electronic health records [2], to stand-alone applications that end-users access 
in order to generate and track participant- and study-specific calendars of events [10, 11]. Despite 
the existence of such tools, prior studies conducted by the authors of this manuscript as well as 
other research teams have identified significant usability issues that may limit their effective, timely, 
and accurate use [11]. Therefore, validated methods for developing improved CTPT tools are sorely 
needed. 

Given the preceding motivation, in the following sub-sections, we will briefly review both the in-
formation technology (IT) needs commonly associated with clinical trial participant tracking tools, 
and the design of iconic HCI models, as are commonly found in such tools.  We will then go on to 
introduce the research questions and hypotheses that serve to motivate our study. 

1.1 IT Needs Associated With Clinical Trials Participant Tracking 
The National Institute of Health (NIH) defines clinical research as studies and trials in human sub-
jects that fall into one of three sub-categories: 
1. research conducted with human subjects or on material derived from human subjects in order to 

understand the mechanisms of human disease or the safety and efficacy of novel therapies and 
technologies to target specific disease state; 

2. epidemiologic and behavioral studies; and 
3. outcomes research and health services research. 
 
Within this clinical research paradigm, a clinical trial can be defined as a “scientific study in which 
physician-researchers study the effects of potential medicines on people; usually conducted in three 
phases (I, II, and III) that determine safety, whether the treatment works, and if it's better than 
current therapies, respectively” [12]. 

The design and rationale for a clinical trial is commonly formalized in a document known as a 
protocol. Protocols contain a summary of pertinent background information, as well as a formal 
statement of the scientific goals, aims, hypotheses and research questions to be addressed by the 
trial. The protocol also describes study-specific policies, procedures, and data collection or analysis 
requirements. A summary of tasks and events that must occur during a trial, known as the study 
schema or calendar, is often included in the protocol document. Such study schemas are commonly 
visualized using a temporal grid format, an example of which is provided in Figure 1. 

Numerous reports have described improved clinical trial data quality and validity as a result of 
decreased protocol schema deviations associated with the use of targeted decision support mecha-
nisms, such as CTPT tools [1, 2, 7]. A critical issue in the development of CTPT tools is the incor-
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poration of adequate HCI models that can be rapidly, accurately, and reproducibly interpreted by 
end users [11, 13]. Only a small number of reports have been published focusing on the design of 
such CTPT HCI models [11]. Currently available clinical trials management systems incorporating 
CTPT functionality as well as stand-alone CTPT tools commonly use an iconic HCI model organ-
ized as either a temporal grid or in a conventional calendar layout. In either of the preceding cases, 
iconic HCI components are used to convey semantic information concerning the types of events 
that have either occurred or are scheduled to occur for a given participant or protocol, as well as the 
event or task status (e.g., already occurred, scheduled to occur in the future, or currently overdue). 
In a previously published study by the authors of this manuscript [11], significant usability issues 
surrounding the speed and accuracy of icon interpretation, as well as a lack of reproducibility asso-
ciated with the interpretation of the semantic meaning of such icons was determined to be a signifi-
cant impediment to the adoption and efficient use of CTPT tools [14-16]. 

1.2 Iconic HCI Model Design 
The design of optimal HCI models is critical to the overall success and adoption of IT platforms 
and tools [13]. Numerous methodologies have been proposed to support the design of such HCI 
models, with the majority of such approaches focusing on what is known as user-centered design 
(UCD). At a high level, UCD can be defined as a software engineering process by which end-users 
provide input at all major design, implementation and refinement stages [13, 17]. One frequent 
strategy during the development of a system using UCD is to engage end-users to aid in the design 
and subsequent refinement of HCI models. The goal of such end-user participation is to ensure that 
the resultant HCI model is consistent with user workflows and conceptual models, and that inter-
face components are easily, rapidly and reproducibly understood [13]. 

A large body of literature concerned with the design of HCI models has illustrated that in com-
plex or information-dense scenarios, the use of icons is advantageous. Several theoretical constructs 
serve to explain the benefits afforded by iconic HCI models. Broadly, these constructs hypothesize 
that the ability of end-users to interpret icons is based upon inherent perceptual and cognitive 
strengths in the areas of categorization [18-20], pattern recognition [20-22], metaphor recognition 
[23, 24], and mental modeling [20, 22]. Combined, these strengths allow end-users to rapidly and 
reproducibly understand icons at both the surface and more in-depth conceptual levels with little, if 
any, training [18, 19, 21, 25]. Several studies have demonstrated the specific benefits of using icons 
in biomedical application domains, spanning a spectrum from clinical research data monitoring 
[26] to visual charts for ambulatory care [27] and the summarization of textual radiography reports 
[28]. In all of these instances, the performance of end users in terms of task completion times and 
accuracy was found to be superior with icons in comparison to traditional graphics (e.g., bar charts, 
pie charts, etc.) or tabular data displays. 

Despite the many reported benefits associated with the use of iconic HCI models, there is a nota-
ble paucity of literature describing rigorous methods for the design and validation of such HCI 
components. Instead, much of the available literature describing methods for the design of iconic 
HCI models relies upon the intuition of graphic designers in order to create sufficiently expressive 
and easily understood graphical elements. In some domains, for example word processing, it is 
relatively easy to employ graphic designers with domain expertise and an intuitive grasp of the 
metaphor of reference (i.e., desktop) [29]. However, the biomedical environment is one of many 
domains that do not share this advantage, due to the existence of a multitude of highly specialized 
metaphors and workflows. As in other highly technical areas, it is difficult to find individuals who 
posses both graphic design skills and an intuitive understanding of the given domains concepts. 
Given these challenges, intuitive approaches to the design of icons for use in biomedical applica-
tions [30] are less than ideal. As an alternative to such intuitive design methods, we previously de-
veloped a rigorous and structured approach to the design of icons, known as Presentation Discov-
ery (PD) [14, 31], which consists of four major steps: 
1. Identification of target domain concepts for use in a HCI model using one or more conceptual 

knowledge engineering techniques such as conceptual knowledge discovery in databases 
(CKDD), text mining, or subject matter expert interviews/focus groups. 
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2. Elicitation of candidate graphical primitives that represent the selected domain concepts from 
domain experts. 

3. Categorical sorting of candidate graphical primitives into “consensus clusters” based upon their 
visual characteristics, validated using comparisons to computational simulations of random be-
havior. 

4. Extrapolation of representative prototype graphics from the “consensus clusters” that can be 
used to inform the design of iconic HCI models. 

 
This approach incorporates the conceptual knowledge of domain experts during the identification 
of targeted domain concepts and the generation of candidate graphical primitives [14]. In addition, 
PD leverages the personal constructs [20] utilized by the targeted end-users when reasoning or 
solving problems in a specific application area, during the categorical sorting phase. Ultimately, PD 
is intended to provide a reproducible and rigorous alternative to intuitive design methods that may 
become intractable in complex, technical domains. In prior reports, we have demonstrated the 
reproducibility and efficacy of PD steps 1-3 in both the radiology and clinical research domains [14, 
16, 31, 32]. In the study described in this report, we evaluated the impact of PD relative to step 4 
and the design of an iconic HCI model using those results. This evaluation was conducted in the 
specific context of the motivating gap in knowledge concerning the design of CTPT tools as intro-
duced earlier. 

2. Methods 

Building upon the objectives for this study described above, the specific research questions we in-
tend to address in the remainder of this report are: 
• Will an PD-derived iconic HCI model for CTPT tools be quantitatively and qualitatively equiva-

lent and/or superior in terms of task accuracy, completion time and subjective end-user satisfac-
tion in comparison to a CTPT iconic HCI model derived from commonly available commercial 
software? 

• Does the complexity or type of task which end users are performing impact the effectiveness of 
the PD-derived iconic HCI model for CTPT tools? 

 
It is our hypothesis that a CTPT tool designed using a PD-derived HCI model will exhibit equivalent usability in 
comparison to tools incorporating intuitively developed HCI models, and in cases where the task being performed 
required end users interpret the meaning of multiple complex icons, the usability of CTPT tools designed using a 
PD-derived HCI model will be superior. 

 
In order to address the preceding research questions and evaluate the hypothesis being posed, we 
used a multi-method study design, culminating in the conduct of a formal usability analysis, as 
summarized in Figure 2. The specific approaches used for each study phase are summarized in 
the following sub-sections. 

As was introduced in the preceding discussion of the PD methodology, and indicated in the in-
put required for our first study phase as reflected in Figure 2, a critical component of our meth-
odological approach is the identification and selection of targeted domain concepts. For the pur-
poses of this study, we utilized a randomly selected sub-set of 50 concepts derived from a taxonomy 
of clinical trial tasks and events developed using conceptual knowledge engineering techniques 
(including text mining and multi-expert categorical sorting exercises) as part of a prior study [33, 
34]. 

2.1 Phase One: Development of Prototype Graphical Primitives 
Five subjects with backgrounds in the conduct of clinical research (e.g., physicians, nurses, and 
study coordinators/managers) were recruited from the Columbia University Medical Center 
(CUMC). These subjects were each provided with a survey booklet and asked to draw graphics 
intended to represent each of the 50 selected clinical research task or event concepts. The respon-
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dents were also provided with the ability to indicate if they were not able to draw a graphic for a 
given concept, or felt that there was no appropriate graphical representation for the concept. As an 
indicator of the suitability of the underlying concepts for inclusion in a HCI model, a simple statis-
tical analysis was performed to determine the frequency with which the subjects were able to draw a 
graphic for each concept. A threshold was established for determining such suitability. Specifically, 
if three or more of the subjects (≥ 60%) were either unable to generate a graphic for a given con-
cept, or indicated there was no appropriate graphical representation for a concept, then that con-
cept was censored from subsequent study phases or analyses. 

2.2 Phase Two: Categorical Sorting of Prototype Graphical Primitives 
Five graduate students with backgrounds in the general biomedical domain (2 clinicians, 3 non-
clinicians) were recruited from the Columbia University Department of Biomedical Informatics, 
and asked to perform an “all-in-one” categorical sort of the graphics generated during the preced-
ing study phase [35]. During the categorical sorting exercise, the subjects were instructed to sort the 
graphics into groups based upon their visual similarity. The subjects were not given any a-priori 
criteria for the creation of the groups, or any limits as to their number or size. Subjects did not have 
access to the textual meanings associated with the graphics during the conduct of the sort, and the 
order of the set of graphics provided to the sorters was randomized on an individual basis. The 
results of the categorical sort were represented as a symmetric agreement matrix where each cell was 
assigned a numerical score indicating the number of sorters who placed the two graphics indicated 
by the column and row indices together in a group. None of these study participants were involved 
in the prior study phase. 

2.3 Phase Three: Analysis of Categorical Sorting and Development of HCI 
Model(s) 
The agreement matrix generated in the preceding study phase was analyzed using several tech-
niques, as follows: 
• Agreement statistics were calculated at the individual graphic level to determine how many sort-

ers agreed on each possible pair-wise grouping of an individual graphic with all remaining 
graphics. Similar agreement statistics were calculated at the “concept group” level to ascertain 
how many sorters grouped graphics from one “concept group” with another “concept group”. 
“Concept groups” are defined as the set of graphics associated with a common unique concept as 
used in Phase One. Such agreement was calculated as a simple percentage of the number of sort-
ers who agreed, out of the total number of study participants in this phase, on the pair-wise 
grouping of any two graphics. 

• Hierarchical cluster analysis was performed, using an average linkage algorithm as implemented 
in the JMP 7 statistics package [36], to generate “consensus clusters” at both the individual 
graphic and “concept group” levels. “Concept group” clustering was performed by collapsing the 
rows or columns for each “concept group”, and taking the average agreement score for each 
graphic in that row or column. During this process, a Euclidean distance metric is calculated for 
the relative “distance” between the graphics comprising a cluster, as well as between clusters. 
This metric allows for the subjective assessment of the relative strength or “tightness” of each 
cluster or set of clusters in the ensuing dendrogram [37]. The results of the cluster analysis were 
visualized using a heat-map. 

• The observed sorting behavior was compared to the results of a computational simulation of 
comparable random sorting behavior, as has been previously described by the authors [32]. The 
magnitude of difference in standard deviations between the random and observed agreement 
matrices was calculated. 
 

Based upon the results of the preceding categorical sort and quantitative analysis process, a set of 
graphical primitives that were strongly correlated with the initial clinical trial event/task concepts 
selected for this study were identified and used to inform the design of a simple iconic sub-
language. This iconic sub-language was incorporated into two variants of an existing CTPT tool 
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that had previously been developed by the NCI-funded CLL Research Consortium (CLL-RC, 
cll.ucsd.edu). Both of the variants of the CLL-RC CTPT tool were configured using a temporal grid 
layout, with the only difference being the inclusion of textual labels for the icons in one of the two 
variants. For the purposes of comparative analyses, an additional variant of the CLL-RC CTPT tool 
was populated with icons that had been designed using conventional, intuitive design methods 
during the initial development of that application by the CLL-RC. 

2.4 Phase Four: Usability Testing of Iconic HCI Model(s) 
Six subjects with backgrounds in the conduct of clinical research (e.g., physicians, nurses, study 
coordinators/managers) were recruited from CUMC, and asked to evaluate the usability of the 
three CTPT tools established in the preceding study phase. None of these participants were engaged 
in any of the preceding study phases. In order to ensure that study results were not biased, subjects 
were randomly assigned to one of three testing scenarios in which the order of exposure to the 
CTPT tools was uniquely randomized. Prior to beginning the usability evaluation process, each 
subject was given a schema for the hypothetical protocol used to populate the prototype CTPT 
tools, which was adapted from an active protocol underway within the CLL-RC. The subjects were 
given 5-10 minutes to explore in an unguided manner the first CTPT tool to which they were ex-
posed. Each instance of the CTPT tools to which the subjects were exposed was populated with 
differing but comparable data sets representing ten hypothetical patients enrolled in the hypotheti-
cal protocol. Each of these data sets was designed to utilize each of the icons included in the proto-
type iconic sub-language designed during Phase 3. The subjects were provided with a worksheet 
containing a task set consisting of three information retrieval tasks ( Table 1) of increasing com-
plexity (as defined by domain experts from the CLL-RC), and spaces in which to record their an-
swers for each of those tasks. In this context, complexity corresponded to the number and types of 
conceptual entities needed to satisfy a given information retrieval and interpretation task. While 
executing the tasks, the subjects were instructed to “think-aloud”. Both their interactions with each 
CTPT HCI model, as well as their general activities and verbalizations were recorded using the 
Morae™ usability testing software suite [38], and conventional audio and video recording equip-
ment which was employed as a back-up measure. 

After each instance where the subjects evaluated a CTPT tool, they were asked to complete a 
variant of the “Qualitative User Satisfaction” (QUS) survey instrument [39]. The survey contains 
questions concerning both the overall usability of an HCI model, and the specific usability of the 
icons being used. Responses to the survey questions were recorded using a 10-point Likert-like scale 
[40]. 

After the completion of the preceding usability evaluation, a comparative analysis of the subjects’ 
performance and responses for each of the three HCI models was performed. This analysis involved 
the use of both descriptive statistics and significance testing targeting the differences in speed and 
accuracy of task completion for each CTPT tool, as well as responses to the QUS survey instrument. 
The specific statistical analyses performed included: 
• One-way analysis of variance (ANOVA) for correlated samples to determine if a statistically 

significant difference in speed of task completion existed among the three HCI models, with fur-
ther testing of the significance of the differences in task completion times performed using post-
hoc t-test comparisons of completion times for the each possible pairing of the CTPT tools (util-
izing a Sidak alpha (α) correction to account for the probabilistic effects of performing multiple 
related t-tests) [41, 42]); 

• Fisher exact probability test to assess the significance of the difference in accuracy of task com-
pletion among the three interfaces. This test was selected due to the low number of subjects in 
this study, which precluded the use of a chi-square analysis. In this context, task set accuracy was 
represented as a categorical variable with the following possible values: 
− Correct: the subject correctly answered the question, 
− Partially correct: the subject identified the correct number of hypothetical participants or par-

ticipant identifiers, but did not identify the correct visits or tasks, or 
− Incorrect: the subject did not provide a correct or partially correct response, per the previous 

definitions; and 
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• Friedman test to evaluate the significance of the difference in responses to the QUS survey ques-
tions for each CTPT tool. 
 

In addition, both the one-way ANOVA for correlated samples and Fisher exact probability tests 
were repeated to compare the aggregate performance of subjects according to testing scenario. This 
analysis was performed in order to determine if the order in which the subjects were exposed to the 
three HCI models resulted in any significant differences in task completion time or accuracy. Fi-
nally, a qualitative evaluation of potential usability factors identified by the subjects as captured via 
audio and video recordings was performed and summarized thematically. 

3. Results 

In the follow sub-sections, the results for each of the study phases are summarized. As noted earlier, 
these study phases were informed by the results of a prior study that generated a taxonomy of 
common clinical trial tasks and event concepts. The selected tasks and events from that taxonomy 
that were used for this study are included in Supplemental Table A. 

3.1 Phase One: Development of Prototype Graphical Primitives 
The five subjects in this phase ranged in age from 28 to 57 years (average age = 36). All but one of 
the subjects had a graduate level education, with areas of study including nursing, physiology, psy-
chology and public health. The subjects had significant experience in the area of clinical research 
(on average, 21 years), serving as either research staff (e.g., study coordinator, data manager, re-
search nurse) or clinical investigators. The subjects generated a total of 172 prototype graphics. On 
average, 68.8 ± 25.6% of the subjects were able to draw a prototype graphic for each concept.  In 
contrast, on average 6.4 ± 12.4 % of the subjects reported that there was no appropriate graphic for 
a given concept, and 24.8 ± 21.2 % of the subjects reported that they could not draw a graphic for a 
given concept. There were only four concepts for which more than one subject indicated that there 
was no appropriate graphical representation (“Drug Kinetics”, “Immunoglobulin Measurement”, 
“Flow Cytometry”, and “Demographics”). There were no concepts for which there was not at least 
one graphical primitive generated. 

3.2 Phase Two: Categorical Sorting of Prototype Graphical Primitives 
The five subjects in this phase ranged in age from 32 to 49 years of age (average age = 36). All of the 
subjects had a graduate level education within the areas of biomedical informatics, computer sci-
ence, genetics, medicine or nursing. The subjects had on average 10.6 years of professional experi-
ence in the biomedical domain. These subjects conducted an “all-in-one” card sort of the prototype 
graphics generated in the preceding phase. The subjects created 88 unique groups of graphics, with 
an average size of 9.7 ± 9.4, and a range of 1 to 47 members. 

3.3 Phase Three: Analysis of Categorical Sorting and Development of HCI 
Model(s) 
Based upon the results of the preceding categorical sorting phase, observed aggregate sorter agree-
ment [14] at the graphic level was found to be 79 ± 7%. In comparison, the predicted aggregate 
agreement generated using a random computation simulation technique was found to be 3.5 ± 
1.6%. The average magnitude of difference between the observed and predicted aggregate agree-
ments was 10.7 standard deviations. Similarly, at the “concept group” level the observed aggregate 
agreement was found to be 61.3 ± 13.7%, while in contrast, the predicted aggregate agreement was 
found to be 4.4 ± 3.7%, with an average of four standard deviations difference between the observed 
and predicted aggregate agreement levels. 

Cluster analysis was performed at the individual graphic level using a hierarchical average linkage 
algorithm implemented in the JMP 7 statistics package [36]. This analysis generated 34 “consensus 
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clusters”, with an average size of 3.7 ± 3.5 concepts. These clusters had an average of 1.7 ± 0.9 
unique concepts associated with each of the member graphics. The average Euclidean distance be-
tween members of the “consensus clusters” was 5.9 ± 5.3, with a range of distances between zero 
and 20.  A similar cluster analysis was performed at the “concept group” level, and generated 11 
“consensus clusters”, with an average size of 4.5 ± 3.6 concepts. The average Euclidean distance 
between members of the “consensus clusters” at the “concept group” level was 8.1 ± 5.3, with a 
range of distances between zero and 18.2. For the purpose of visually inspecting the “consensus 
clusters” and their relationships with the underlying concepts used to generate the prototype graph-
ics, a heat-map visualization was constructed [43]. The x-axis of the heat-map was sorted according 
to the clustering order, or chronology generated during the cluster analysis at the “concept group” 
level. Similarly, the y-axis of the heat-map was sorted by the clustering order, or chronology gener-
ated during the cluster analysis at the individual graphic level. Concepts and “concept groups” that 
demonstrate potential overlap in the visual manifestation and interpretation of the prototype 
graphics for those concepts by the sorters are annotated in the heat-map Figure 3. 

The “consensus clusters” generated in the preceding stage of this analysis were inspected visually 
through the examination of the heat-map in order to provide a holistic overview. The groupings of 
prototype graphics that were associated with well defined and distinct “consensus clusters” in the 
heat-map were then subjected to further visual inspection. This assessment yielded 30 candidate 
graphical primitives for icons representative of tasks or events included in the initial set of 50 ran-
domly selected concepts. This number roughly paralleled the 34 “consensus clusters” generated via 
the preceding cluster analysis. Based upon these 30 candidate graphical primitives, a simple iconic 
sub-language (e.g., a set of symbols related to a domain of conceptual knowledge, with an associ-
ated combinatorial syntax [44, 45]) was designed using the design methods previously described by 
the authors [14, 15] ( Supplemental Table B), and incorporated into two CTPT HCI models (with 
and without textual labels), arranged in a temporal grid layout.  In order to convey task or event 
status, these prototypical icons were color-coded using prevailing norms to indicate event status as 
follows: 
1. yellow: event pending for future completion; 
2. green: event completed on schedule; and 
3. red: event overdue. 

 
As described earlier, a third CTPT HCI model was instantiated using conventional icons that had 
been previously designed intuitively during the development of the CLL-RC CTPT tool. Illustrative 
examples of the PD-derived and conventional iconic CTPT HCI models are provided in Figure 4. 

3.4 Phase Four: Usability Testing of Iconic HCI Model(s) 
The six subjects recruited for this final phase ranged in age from 27 to 56 years old (average age = 
38.2). All but one of the subjects had a graduate level education, and had on average 12.3 years of 
professional experience in the biomedical and/or clinical research domains. Five of the subjects 
identified themselves as expert computer users on a three-category scale consisting of novice, occa-
sional and expert, and the remaining subject identified himself or herself as an occasional computer 
user. None of the subjects has a primary educational or professional background focusing on the 
computational or information sciences. Of note, the small number of participants involved in this 
phase are consistent with best-practices for subject matter expert (SME) oriented usability studies, 
in which combined quantitative and qualitative analyses support multi-faceted triangulation of 
findings, thus offsetting limitations related to the ability to make statistical inferences from resulting 
quantitative data sets [22, 46, 47]. This approach is used in contrast to empirical usability evalua-
tions, which require sufficiently large sample sizes intended to satisfy statistical power requirements, 
and is preferred when studying new or poorly-defined human-computer interaction phenomena, as 
is the case in this study [47]. As a result, all statistics reported relative to this particular phase of our 
work are descriptive in nature, and cannot be used in isolation to draw conclusions regarding 
broader end-user populations. 

Descriptive statistics, as summarized in Table 2, were calculated to determine the time taken 
by each subject to complete the three-question task set for each HCI model instance to which they 
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were exposed. As indicated by the bold italics values in Table 2, the lowest average completion 
time for tasks with a difficulty of “easy” was generated when the participants used the PD-derived 
HCI model incorporating prototype icons without textual labels. Similarly, for “moderate” or “dif-
ficult“ tasks, the HCI model incorporating prototype icons with textual labels exhibited the lowest 
average completion times. Subsequent to the calculation of the preceding descriptive statistics, a 
one-way repeated measures analysis of variance (ANOVA) for correlated samples test was run to 
compare all the task completion times, stratified by both difficulty levels and HCI model. The re-
sults of this analysis demonstrated that there was a statistically significant difference in task comple-
tion time for tasks with a “moderate” difficulty across the three HCI models (p = 0.033). Post-hoc 
t-test statistics demonstrated that the differences in task completion time when comparing the con-
ventional HCI model with the PD-derived HCI model including textual labels and the PD-derived 
HCI model without labels were both statistically significant (p = 0.046 and 0.045, respectively). 

The accuracy of each subject’s responses to the task sets for each HCI model was assessed 
through the assignment of a value of correct, partially correct or incorrect as described previously. 
The summary statistics shown in Table 3 were compiled for these categorical variables, and or-
ganized by interface type and task difficulty level. 

A Fisher’s exact probability test was used to determine the possible significance of the differences 
in accuracy for each task difficulty level and HCI model. The Fisher’s exact probability test was 
applied to the contingency tables corresponding to the accuracy for all three HCI models organized 
by task difficulty level. The results of this test demonstrated a statistically significant difference in 
task accuracy for tasks with a “moderate” difficulty level (pa = 0.0011 and pb = 0.0003). To further 
explore this finding, the Fisher’s exact probability test was subsequently applied to contingency 
tables comparing the task accuracy for each possible pairing of HCI model for moderately difficult 
tasks. These tests showed a statistically significant difference in task accuracy when comparing the 
conventional HCI model with the PD-derived HCI model including labels (pa = 0.0152 and pb = 
0.0087) as well as the prototype HCI model that did not include labels (pa = 0.0022 and pb = 
0.0011). 

Upon completion of the task set for each HCI model, the subjects completed an eight-question 
Qualitative User Interface Satisfaction (QUS) survey (39). This survey used a 10-point Likert-like 
scoring system (40). The significance in the difference of the subjects’ responses to the eight-
question QUS survey was then assessed using a Friedman test, yielding both a p-value and a ranking 
assignment for each HCI model. These analyses demonstrated that no question on the QUS survey 
instrument yielded a statistically significant difference (i.e., p ≤ 0.05). 

Both the ANOVA test for correlated samples as applied to task completion times, and the 
Fisher’s exact probability test as applied to task accuracy were repeated for data sets representing 
aggregate task completion time and accuracy for each testing scenario. These tests were performed 
to assess what effects, if any, were generated as a result of the order in which subjects were exposed 
to the HCI models. The results of these analyses indicated that no significant effects were realized in 
either task performance time or accuracy as a result of the order in which the subjects were exposed 
to the three interface models. 

3.5 Qualitative Analyses 
In addition to the preceding formal usability analyses, qualitative analyses were performed based 
upon the utterances of the participants involved in phase four. Using a grounded theory approach 
[48], field notes generated during these interviews were analyzed thematically, yielding the follow-
ing four findings: 
1. Participants unanimously preferred the prototype icons in comparison to the traditional ones, 

referring to them as “fun” and “easy to understand.” 
2. Participants were able to quickly ascertain the meaning of the prototype icons, and found them 

to be intuitive. They described the prototype icons as “easy to understand”, “simple”, and “more 
fun than the ‘other’ icons”. 

3. Participants unanimously indicated that they felt that all of the interface models could benefit 
from increased density, thus allowing for the review of larger amounts of data in a smaller screen 
area, as well as the ability to filter or customize the HCI model. 
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4. Participants found it difficult to complete tasks with a complexity level of “difficult” due to the 
configuration of the temporal grids in the prototype CTPT tools, which required them to switch 
multiple times between different view of the data in order to integrate and synthesize the re-
quired information. 

5. Participants indicated that in the context of moderate or complex tasks, when icons were pre-
sented with textual labels, they had a tendency to focus upon those labels, rather than the meta-
phoric meaning of the constituent icons.  Of interest, this phenomena is reflects in Table 3, 
relative to the superior performance of traditional icons in some instances, as compared to PD-
derived icons accompanied by textual labels, for such moderate or complex tasks. This finding 
may serve as the basis for an argument that textual labels in combination with iconic graphics 
may actually decrease usability and intuitive understanding of a given presentation model by in-
ducing potentially conflicting contextual information. 

4. Discussion 

Our findings demonstrate that CTPT tools designed using an PD-derived iconic HCI model were 
quantitatively and qualitatively equivalent and is some instances superior in terms of task accuracy, 
completion time and subjective end-user satisfaction in comparison to commonly available CTPT 
tools. In particular, within the context of use cases with a moderate difficulty level, which required 
end users to interpret and synthesize the meanings of multiple icons, the usability of the CTPTs 
designed using PD was significantly better. Of note, the PD-derived iconic HCI model that did not 
include textual labels performed equivalently to the PD-derived iconic HCI model with labels, indi-
cating that the meaning of the icons was readily and reproducibly understood by the end users 
involved in the usability testing phase of the study. Given these findings, we can conclude that our 
hypothesis was correct, in that 
 

CTPT tools designed using a PD-derived HCI model exhibited equivalent usability in comparison to tools incorpo-
rating intuitively developed HCI models, and in cases where the task being performed required end users inter-
pret the meaning of multiple complex icons, the usability of CTPT tools designed using a PD-derived HCI model 
was superior. 

 
An interesting corollary to this finding is the simultaneous conclusion that while such improved 
task completion time and accuracy correlate with our qualitative findings that participants pre-
ferred the icons developed using PD-derived approach, the findings of our survey did not indicate 
this correlation. Given the other results of our study, it is likely the case that our survey instrument 
and approach were simply not able to discern this correlation due to insufficient power. Neverthe-
less, this discrepancy is notable and will have to be explored further in future studies. Nonetheless, 
given the equivalency of end user satisfaction across all three HCI models evaluated in this study, 
we do not believe that such a factor would pose a significant barrier to adoption of novel HCI mod-
els for CTPT that are designed using PD. 

Of note in the context of the qualitative analyses and results described in Section 3.5, such the-
matic findings are reflective of usability problems previously demonstrated by the authors in studies 
of CTPT tools. However, given that the objective of this study was to compare and evaluate the 
iconic components of such HCI models, a conscious decision was made to not make any changes to 
this particular aspect of prevailing CTPT tool functionality, which would have introduced an addi-
tional variable into our analyses. 

It is also important to note that this study represents the first time that PD has been applied to 
actions (essentially verbs). Previous studies had only demonstrated the efficacy of the method for 
static concepts (essentially nouns). 

There are several important limitations that must be considered when interpreting the results of 
this study, namely: 
1. During all phases of the study, a relatively low number of subjects participated. 
2. In the case of phases 2-4, there was some reliance on subjective investigator judgment which 

could introduce an element of bias. 
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3. In phase three, the comparison of the study results to those of a computational simulation tech-
nique for the sake of qualifying them is still very novel and subject to further validation. 

4. The statistical analyses performed during phase four to determine the significance of observed 
quantitative differences in task completion time, accuracy and qualitative user satisfaction are 
descriptive only, given the small sample size, and therefore cannot be used to draw population-
level conclusions. 
 

Despite these limitations, we believe that the findings described in this report serve as a strong indi-
cator of the ability of a PD-derived iconic HCI model to positively impact the conduct and quality 
of clinical trials by increasing task accuracy and decreasing task completion times, thus serving to 
support protocol compliance and resulting data quality as well as reduced participant attrition bias. 
Further empirical usability testing of such PD-derived iconic HCI models will allow for the confir-
mation of these phenomena at a broader population level. 

Based upon our results and conclusions, we believe there are a number of important next steps 
to be pursued in order to further our understanding of the benefits of applying a rigorous technique 
like PD to the design of HCI models for semantically complex and information-dense domains 
such as the management of clinical trials participants, including: 
• The further development and validation of a complete clinical trials iconic sub-language for use 

in CTPT tools and clinical trials management system (CTMS) platforms in general, 
• the evaluation of the effects of differing HCI model functionality and physical and/or conceptual 

organization schemes on task completion and accuracy, especially for more difficult tasks involv-
ing the integration of multiple data sets or view of that data, and 

• the study of the usability of prototype CTPT HCI models in “real world” settings in order to 
understand how system-level variables (e.g., existing workflows/processes, communications pat-
terns, the availability/type of information resources used by study investigators or staff) influence 
the usability of such HCI models. 

• Comparative evaluation of PD-derived iconic CTPT HCI models and alternative approaches 
such as those afforded via dynamic web application technologies (e.g., pop-up windows, mouse-
over contextual information, etc.) or complex information visualization techniques (e.g., multi-
dimensional or information-dense models). 

4.1 Conclusions 
This study demonstrates that it is possible to design an iconic sub-language for the domain of clini-
cal trial participant tracking using the PD methodology. Furthermore, our results demonstrate that 
the usability of CTPT tools incorporating such HCI models as good or better than existing CTPT 
tools and HCI models that do not incorporate such rigorously designed icons. These results have 
the potential to inform improvements that can prevent or mitigate protocol non-compliance, thus 
reducing clinical trial participant attrition and associated sources of bias. Such improvements in the 
conduct of clinical trials can be directly linked to validity and generalizability of study results, both 
of which serve to enhance the dissemination and adoption of the evidence generated by such studies 
that can ultimately improve clinical care and public health outcomes. 
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Fig. 1 Generic layout of 
a clinical trial protocol 
schema, composed of 
atomic temporal con-
straints. Event instances 
are shown as Time Point 
(T) – Event (E), using the 
notation: TxEy, where x is 
the Time Point descrip-
tor, and y is the Event 
descriptor. In some 
instances, a transposed 
version of this grid is 
used. 

 

Fig. 2 Overview of study methods, including input and output research products. 
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Fig. 3 Annotated heat-map visualization of "consensus clusters" generated during phase three. Tightly clustered 
sections of the heat-map (as indicated by increased density) correspond to "consensus clusters" that have a strong 
correlation between the visual similarity and semantic meaning of a group of prototype icons, and can therefore 
serve as the basis for informing the design of icons intended to serve as HCI-model metaphors such concepts. 
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Fig. 4 Illustrative example of prototype CTPT HCI models. Notable features include: A) the ability to filter the end-
user view of records by visit, protocol or participant; B) a tabbed interface model for navigating between visit days 
as defined by the study protocol; C) optional textual labels to accompany icons; D) result-set rows corresponding to 
a specific trial participant; E) prototype icons designed using PD which indicated from left-to-right: medical history, 
physical exam, case report form, lymph node measurement, bone marrow biopsy, radiology, blood specimen collec-
tion and laboratory procedures; and F) conventional icons adapted from commonly available CTPT software. 
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Table 1 Usability testing information retrieval task types and example questions 

Task 

Complexity Type 

Example Question 

Easy Count the number of participants 
who meet a specified criteria. 

How many participants have completed all treatment tasks 
or events for Visit 5 (Day 11)? 

Moderate Identify participants who meet one or 
more specified criteria and interpret 
specific task or event types or status 
associated with one or more visits. 

Which participants have partially completed Visit 4 (Day 
10)?  For each such participant, which events or tasks are 
still pending? 

Difficult Integrate the results of two moderate 
complexity tasks. 

For those participants with pending events or tasks for Visit 
5 (Day 11), which (if any) have overdue tasks or events for 
other visits?  Which visits?  Which tasks or events? 

 

 

Table 2 Task completion times by HCI model and task difficulty. Optimal values are shown in bold italics 

Interface Model Task -
Difficulty 

Average Task 
Completion Time 
(m:s:ms) 

Shortest Task 
Completion Time 
(m:s:ms) 

Longest Task 
Completion Time 
(m:s:ms) 

Easy 0:22:49 ± 0:13:37 0:10:00 0:40:00 

Moderate 1:47:10 ± 0:44:55 0:44:00 2:38:00 

Conventional 
Icons 

Difficult 2:44:40 ± 0:48:37 1:56:00 4:09:00 

Easy 0:21:20 ± 0:13:26 0:06:00 0:40:00 

Moderate 1:12:50 ± 0:26:15 0:45:00 1:59:00 

Prototype Icons 
(without textual 
Labels) 

Difficult 3:18:10 ± 1:55:42 1:13:00 6:27:00 

Easy 0:35:40 ± 0:20:12 0:10:00 1:02:00 

Moderate 1:09:50 ± 0:58:15 0:25:00 2:40:00 

Prototype Icons 
(with textual 
Labels) 

Difficult 2:31:50 ± 0:39:21 1:47:00 3:22:00 

 

 
Table 3 Accuracy by interface model and task difficulty, showing the number of correct, partially correct and incor-
rect responses. Optimal values are indicated in bold italics. 

Task Difficulty Interface Model Correct Partially Correct Incorrect 

Conventional 6 0 0 

Prototype w/o labels 6 0 0 

Easy 

Prototype w/ labels 5 0 1 

Conventional 5 1 0 

Prototype w/o labels 6 0 0 

Moderate 

Prototype w/ labels 0 5 1 

Conventional 4 1 1 

Prototype w/o labels 4 1 1 

Difficult 

Prototype w/ labels 4 0 2 
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Supplemental Table A Selected clinical trial task and event concepts 

Adverse effects Immunoglobulin measurement 

Alpha one fetoprotein measurement Inclusion and exclusion 

Assessment procedure, status Insulin 

Biological markers Laboratory procedures 

Biopsy of liver Leukapheresis 

Blood chemical analysis Lymph nodes, measurement 

Blood coagulation tests Medical history 

Blood pressure determination Neoplasms, measurement 

Blood specimen collection Obtain or verify patient's informed consent 

Body weight, height Ophthalmic examination and evaluation 

Bone marrow biopsy Oral glucose tolerance test 

Clinical examination Patient outcome assessment 

Cytomegalovirus, polymerase chain reaction Phlebotomy 

Demographics Pregnancy tests 

Diagnostic radiologic examination and procedures Pulse rate 

Diet Quality of life 

Dispensing medication Questionnaires 

Drug compliance checked Radiography, thoracic 

Drug kinetics Registration procedure 

Echocardiography Screening procedure 

Electrocardiogram Therapeutic procedure 

Endoscopy Urinalysis 

Flow cytometry Urine specimen collection 

Glucose measurement, fasting Vital signs 

Glycosylated hemoglobin A Waist circumference 
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Supplemental Table B PD-derived icons for clinical trial tasks and events 

Hemoglobin A1C 

(Measurement) 
 

Inclusion/exclusion criteria 

 
Adverse effects 

 

Laboratory procedures 

 
Assessment procedure, 
status 

 

Lymph node measurement 

 
Blood specimen collection 

 

Medical history 

 
Bone marrow biopsy 

 

Medication compliance 

(check) 

 
Blood pressure 

(measurement) 
 

Medication 

(dispense) 
 

Clinical examination 

 

Ophthalmic exam 

 
Consent 

 

PCR 

(testing) 
 

Demographics 

 

Pregnancy test 

 
Diagnostic radiology 

 

Quality of life 

(assessment) 

 
Diet 

 

Questionnaire 

 
Electrocardiogram 

 

Therapeutic procedure 

 
Endoscopy 

 

Urine specimen 

(collection) 

 
Fasting blood glucose 

(measurement) 
 

Vital signs 

(measurement) 
 

Height and weight 

(measurement) 
 

Waist circumference 

(measurement) 
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